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Abstract

Background: Alzheimer's disease (AD), as a neurodegenerative condition, is one
of the leading causes of dementia. Our study aims to explore the key genes of
Xingnaojing (XNJ) for treatment of AD by integrated microarray analysis and network
pharmacology.

Methods: The differentially expressed genes (DEGs) were identified in AD compared
with normal control. According to these DEGs, we performed the functional annota-
tion, protein-protein interaction (PPI) network construction. The network pharma-
cology was used to explore the potential targets of XNJ in the treatment of AD. The
expression level of selected candidate genes was validated by quantitative real-time
polymerase chain reaction (QRT-PCR).

Results: A total of 1,424 DEGs (620 genes were upregulated and 804 genes were
downregulated) between AD and normal control were obtained. The functional
annotation results displayed that neuroactive ligand-receptor interaction, regula-
tion of actin cytoskeleton, Estrogen signaling pathway and notch signaling pathway
were significantly enriched pathways in AD. Comparing the target genes of four ac-
tive ingredients, a total of 16 shared genes were found. Among which, HTR2A and
ADRA2A were also enriched in pathway of neuroactive ligand-receptor interaction.
The expression of 4 DEGs (SORCS3, HTR2A, NEFL, and TAC1) was validated by gRT-
PCR. Except for TAC1, the other 3 DEGs in AD were consistent with our integrated
analysis.

Conclusions: The results of this study may provide novel insights into the molecular

mechanisms of AD and indicate potential therapeutic targets for AD.
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1 | INTRODUCTION

Alzheimer's disease (AD) is a kind of dementia in aging population.
The clinical features of AD mainly include memory loss, cognitive
dysfunction behavioral abnormalities, and social disorders (Isaev
et al., 2015). At present, the clinical diagnosis of AD requires a va-
riety of examinations such as medical history, neuropsychological
evaluation, and various radiological investigations (Yao et al., 2018).
However, these diagnostic procedures cannot be used as routine
checks for AD because they are time-consuming. In order to diag-
nose AD accurately, it is necessary to use biotechnology bioinfor-
matics methods to find disease biomarkers.

With the development of gene expression profiles, bioinformat-
ics comprehensive analysis is the most commonly used ways to find
key biomarkers for multiple diseases (Quan et al., 2020; Wang, Wu,
Liu, Wu, & Dong, 2015). Nowadays, network pharmacology has be-
come a new topic for us to uncover complex biological processes
from the perspective of integrated multi-component networks
(Hopkins, 2008). The holistic approaches of network pharmacology
in traditional Chinese medicine research may be viable options for
the AD treatment (Jarrell, Gao, Cohen, & Huang, 2018). Xingnaojing
(XNJ) is an effective traditional Chinese medicine agents used to
treat stroke in China. Network pharmacology studies have reported
that XNJ can relieve brain injury and has neuroprotective effects in
models of stroke (Ma et al., 2017; Xu et al., 2014). Several previous
published in Chinese academic journals have reported the effects
of XNJ for AD. AD is thought that the loss of memory because of
aggregating beta amyloid (Ap) and neurofibrillary tangles of hy-
per-phosphorylated tau protein (Izadi & Soheilifar, 2018). XNJ ex-
hibits a protective effect against excitatory amino acid toxicity and
synaptic plasticity via AKT/mTOR signal pathway in mice with Ap1-
42-induced memory deficit. These results provide evidences for the
novel and potential application of XNJ for the treatment of AD (Liu,
Cao, & Xu, 2019). However, the potential mechanisms of XNJ on AD
are not clear, which limits further clinical usage.

In this study, we integrated eight gene expression datasets to
obtain the DEGs between AD and normal controls and uncover the
molecular mechanisms of AD. Functional enrichment analysis and
PPl network were performed to understand the biological functions
of these DEGs. The network pharmacology was used to explore the

potential mechanisms of XNJ in treating of AD.

2 | MATERIALS AND METHODS
2.1 | Microarray data

The gene expression data of AD and normal control used in this
study were downloaded from the Gene Expression Omnibus
(GEO) database (http://www.ncbi.nlm.gov/geo) with the keywords
(Alzheimer's disease) AND “Homo sapiens” [porgn]. Eight data-
sets (GSE110226, GSE39420, GSE37264, GSE48350, GSE26972,
GSE37263, GSE32645, and GSE16759) were selected for datasets

base on the selection criteria described as follows: (1) Dataset
should be whole-genome mRNA expression profile by array. (2)
Datasets must contain both brain tissue samples of AD and nor-
mal control. (3) The datasets should be normalized or original.
The impact of different platforms on the sequencing results, we
normalized the data through the log function and centralized and
standardized the scale function to eliminate the impact of the di-
mension on the data structure.

2.2 | Differential expression analysis

MetaMA package was performed to combine data from multiple
microarray datasets. Individual P-values were analyzed and multiple
comparison correction false discovery rate (FDR) was obtained ac-
cording to the Benjamini and Hochberg approach. DEGs were con-
sidered with thresholds of FDR < 0.01. The heat map of top 100
DEGs was generated by R package.

2.3 | Functional enrichment analysis

The David (6.8; https://david.ncifcrf.gov) was used to perform func-
tional enrichment analysis. Gene Ontology (GO) classification and
the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses were identified as enriched with thresholds of

p value < .01.

2.4 | PPI network construction

The PPI network was constructed via Biological General Repository
for Interaction Datasets (BioGRID; http://thebiogrid.org/), and then
the PPl network was visualized by Cytoscape (3.6.1; http://www.
cytoscape.org/). The nodes represent proteins and edges connect

the nodes to show their relationship.

2.5 | Medicine-active ingredients-targets-
disease network construction based on network
pharmacology

To obtain the medicine-active ingredients-targets-disease net-
work of XNJ, we searched BATMAN-TCM database, which is the
first online Bioinformatics Analysis Tool for molecular mechanism
of Traditional Chinese Medicine (http://bionet.ncpsb.org/batma
n-tcm/). XNJ was composed of four herbs, such as SHEXIANG,
YUJIN, BINGPIAN, and ZHIZI. We input the herb list denoted by
‘SHEXIANG, YUJIN, BINGPIAN and ZHIZI" with the following de-
fault parameters: predicted candidate targets (including known tar-
gets) with Score cutoff > 20 and p-values < .05 for each ingredient
are presented and used for further bioinformatics analyses. The

core idea of this method, first proposed by Perlman, Gottlieb, Atias,
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Ruppin, and Sharan (2011), is to rank potential drug-target interac-
tions based on their similarity to the known drug-target interactions.
The targets of XNJ were then obtained by a combination of the tar-
gets of SHEXIANG, YUJIN, BINGPIAN, and ZHIZI. The medicine-
active ingredients-targets-disease network of XNJ was visualized by
Cytoscape (3.6.1). In this network, nodes represented the medicine,
active ingredients, targets or disease, and edges represented the in-
teractions of them.
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2.6 | Quantitative real-time polymerase chain
reaction (QRT-PCR) confirmation

Based on the results of GEO integration analysis and network phar-
macology, four genes (SORCS3, HTR2A, NEFL, and TAC1) were se-
lected as candidate genes. Eleven blood samples from six AD patients
and five healthy individuals were obtained. All subjects were first on
an empty stomach for 12 hr, and we collected the blood samples by

TABLE 1 Gene expression datasets used in this study

GEO accession Author Platform Samples (N:P) Year Tissue

GSE110226 Edward G Stopa GPL10379 Rosetta/Merck Human RSTA Custom 67 2018 Choroid plexus
Affymetrix 2.0 microarray [HuRSTA-2a520709] tissue

GSE39420 Anna Antonell GPL11532 [HuGene-1_1-st] Affymetrix Human Gene 77 2015 Brain tissue
1.1 ST Array [transcript (gene) version]

GSE37264 Michelle GK Tan GPL5188 [HuEx-1_0-st] Affymetrix Human Exon 1.0 8:8 2014 Brain tissue
ST Array [probe set (exon) version]

GSE48350 Nicole Claudia GPL570 [HG-U133_Plus_2] Affymetrix Human 173:80 2014 Brain tissue

Berchtold Genome U133 Plus 2.0 Array

GSE26972 Amit Berson GPL5188 [HuEx-1_0-st] Affymetrix Human Exon 1.0 3:3 2012 Entorhinal
ST Array [probe set (exon) version] cortex tissue

GSE37263 Michelle GK Tan GPL5175 [HuEx-1_0-st] Affymetrix Human Exon 1.0 8:8 2012 Brain tissue
ST Array [transcript (gene) version]

GSE32645 Isabella Wimmer GPL4133 Agilent-014850 Whole Human Genome 3:3 2011 Cortex tissue
Microarray 4x44K G4112F (Feature Number
version)

GSE16759 Juan GPL570 [HG-U133_Plus_2] Affymetrix Human 4:4 2011 Parietal lobe
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FIGURE 1 The heat map of top 100 DEGs in AD compared with normal control. Row and column represented DEGs and GEO data,
respectively. The color scale represented the expression levels
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FIGURE 2 The top 15 most significantly enriched GO terms of DEGs in AD compared with normal control. The x-axis shows -log P and
y-axis shows GO terms and KEGG pathways. (a) Biological process. (b) Molecular function. (c) Cellular component. (d) KEGG pathways
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FIGURE 4 The medicine-active ingredients-targets-disease network of SHEXIANG. The inverted triangles, rhombus, ellipses, and
rectangles represent the composition of traditional Chinese medicine, active ingredients, disease, and DEGs. Red and blue colors indicate
upregulated and downregulated, respectively. The black border indicates top 10 Up/Down

venipuncture at 7:00-8:00 of the next morning. This study has been
approved by the ethics institute of our hospital. The signed informed
consents of all the participants were obtained.

Total RNA was isolated using RNA simple total RNA kit (Invitrogen).
Fast Quant RT Kit (Invitrogen) was utilized to obtain the complemen-
tary DNA. With Super Real PreMix Plus SYBR Green (Invitrogen),
quantitative real-time PCR was generated using the ABI 7500 system.
The amplification process was performed under the following con-
ditions: 15 min at 95°C followed by 40 cycles of 10 s at 95°C, 30 s at
55°C, 32 s at 72°C, and 15 s at 95°C, 60 s at 60°C, 15 s extension at
95°C. The 2724 method was used to address the data. The human

ACTB was used as endogenous controls for gene expression.

3 | RESULTS
3.1 | DEGsinAD

Eight datasets (GSE110226, GSE39420, GSE37264, GSE48350,
GSE26972, GSE37263, GSE32645, and GSE16759) were enrolled
from GEO (Table 1). Samples of GSE110226, GSE39420, GSE37264,
GSE48350, GSE26972, GSE37263, GSE32645, and GSE16759 were
obtained from participants of USA, Spain, Singapore, USA, Israel,
Singapore, Austria, and USA, respectively. Compared with the
healthy controls, 1,424 DEGs (620 genes were upregulated and 804

genes were downregulated) in AD were obtained with FDR < 0.01.
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FIGURE 5 The medicine-active ingredients-targets-disease network of YUJIN. The inverted triangles, rhombus, ellipses, and rectangles
represent the composition of traditional Chinese medicine, active ingredients, disease, and DEGs. Red and blue colors indicate upregulated
and downregulated, respectively. The black border indicates top 10 Up/Down

The heat map of top 100 DEGs in AD versus normal control was

manifested in Figure 1.

3.2 | Functional enrichment analysis

GO enrichment analysis and KEGG pathways analysis were
performed to obtain a deeper insight into the biological func-
tions and pathways of DEGs selected in this study. As shown in
Figure 2a-c, chemical synaptic transmission (p = 1.95E-09), po-
tassium ion transmembrane transport (p = 1.35E-05), cell junc-
tion (p = 9.19E-07), neuronal cell body (p = 8.45E-06), protein
binding (p = 3.45E-06), and neuropeptide hormone activity
(p = 9.28E-04) were significantly enriched GO terms. As shown in
Figure 2d, total 6 KEGG pathways were mainly enriched in pathway

of neuroactive ligand-receptor interaction (p = .003091196),
regulation of actin cytoskeleton (p = .004541129), estrogen sign-
aling pathway (p = .007003958), and notch signaling pathway
(p =.008787427).

3.3 | PPl network

The PPI network of top 100 DEGs in AD was consisted of 198 nodes
and 195 edges (Figure 3). RELA (degree = 23), IKBKB (degree = 12),
HOMER1 (degree = 10), MCM7 (degree = 9), HNRNPF (degree = 8),
CDK2 (degree = 8), TNFRSF10B (degree = 8), TUBB2A (degree = 8),
DST (degree = 7), CDK2AP1 (degree = 6), PTPRN (degree = 6),
MAP4K4 (degree = 5), MKLN1 (degree = 5), KIF5B (degree = 5), and
ACP2 (degree = 4) were considered the top 15 DEGs with high degree.
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FIGURE 6 The medicine-active
ingredients-targets-disease network

of BINGPIAN. The inverted triangles,
rhombus, ellipses, and rectangles
represent the composition of traditional
Chinese medicine, active ingredients,
disease, and DEGs. Red and blue colors
indicate upregulated and downregulated,
respectively. The black border indicates
top 10 Up/Down

3.4 | Medicine-active ingredients-targets-
disease network

The medicine-active ingredients-targets-disease network of
SHEXIANG was consisted of 155 nodes and 389 edges (Figure 4).
SHEXIANG's active ingredient 5-Cis-Cyclotetradecen-1-One and
Allantoin may involve in the brain injury process by regulating
GABRG2. SHEXIANG's active ingredient 5-Cis-Cyclotetradecen-1-
One and Allantoin may play an important role in the pathogenesis
of Parkinson's disease and Alzheimer's disease by regulating ACHE.
The medicine-active ingredients-targets-disease network of YUJIN
was consisted of 105 nodes and 283 edges (Figure 5). The medi-
cine-active ingredients-targets-disease network of BINGPIAN was
consisted of 52 nodes and 73 edges (Figure 6). The medicine-active
ingredients-targets-disease network of ZHIZ| was consisted of 115
nodes and 205 edges (Figure 7). Comparing the target genes of
four active ingredients (SHEXIANG, YUJIN, BINGPIAN, and ZHIZI),
a total of 16 shared genes were found. Among which, HTR2A and
ADRAZ2A were also enriched in pathway of neuroactive ligand-re-

ceptor interaction (Figure 8).

3.5 | gRT-PCR confirmation

To verify the results of integration analysis, we measured the expres-
sion of candidate genes (SORCS3, HTR2A, NEFL, and TAC1) using
the qRT-PCR (Figure 9). SORCS3, HTR2A, NEFL, and TAC1 were
members of 16 shared genes in target genes of four active ingre-
dients (SHEXIANG, YUJIN, BINGPIAN, and ZHIZI). Compared with
normal control, SORCS3, HTR2A, and NEFL were downregulated
in AD in the gRT-PCR confirmation which was consistent with that
in integration analysis. Compared with normal control, TAC1 was
downregulated in AD in qRT-PCR confirmation while upregulated
in AD in integration analysis. Overall, most of the gRT-PCR results

were consistent with the results of integration analysis.

4 | DISCUSSION

AD, as a neurodegenerative condition, is one of the leading causes
of dementia. Early diagnosis of AD is an urgent issues in discovery

and treatment of AD. To uncover key genes and related pathways
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FIGURE 7 The medicine-active ingredients-targets-disease network of ZHIZI. The inverted triangles, rhombus, ellipses, and rectangles
represent the composition of traditional chinese medicine, active ingredients, disease, and DEGs. Red and blue colors indicate upregulated
and downregulated, respectively. The black border indicates top 10 Up/Down

of AD, we downloaded the GSE110226, GSE39420, GSE37264,
GSE48350, GSE26972, GSE37263, GSE32645, and GSE16759 data-
sets from the GEO database to obtain gene expression data from
AD patients. Based on the previously published profiles, we firstly
obtained the DEGs for AD. Furthermore, we performed functional
enrichment analysis and PPl network on these genes to predict AD-
related genes and biological processes. Finally, the network phar-
macology was used to explore the potential mechanism of XNJ in
treating of AD.

Sortilin-related VPS10 domain containing receptor 3 (SORCS3)
is a member of the vacuolar protein sorting 10 receptor family and
expressed in the brain. Multiple evidences have suggested that
SORCS3 is considered to be a major genetic risk factor for AD (Reitz,
2012, 2015). Hermey et al. (2019) found that the level of SORCS3 is
downregulated in the frontal cerebral cortex of AD mouse model.

SORCS3 is reduced in AD compared with control brains and is

associated with increased risk of AD (Reitz et al., 2013). One study
displayed that SORCS3 is also a risk gene for major depressive dis-
order (Ni et al., 2018). Intriguingly, single nucleotide polymorphisms
of SORCS1, a family member of SORCS3, is associated with AD sus-
ceptibility (Reitz et al., 2011). In this study, SORCS3 was downreg-
ulated in AD in qRT-PCR confirmation and integration analysis. The
results of network pharmacology showed that SORCS3 was one of
16 shared genes in target genes of four active ingredients of XNJ.
These finds further confirmed that SORCS3 might be involved in AD.

Serotonin receptor 2A (HTR2A), a neurotransmitter with mul-
tiple functions, which codes for the serotonin receptor type 2A.
HTR2A has been associated with selective serotonin reuptake in-
hibitors response in depressed patients (Quesseveur et al., 2013).
Preclinical studies in humans provided support for the involve-
ment of HTR2A in major depressive disorder (Fabbri, Marsano, &
Serretti, 2013). Polymorphisms of HTR2A may be associated with
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the efficacy of antidepressants in the MDD therapy (Lin, Jiang, Kan,
& Chu, 2014). The serotonin receptor type 2A receptors are down-

regulated in frontal and temporal cortical of AD patients (Lai et al.,

2005). Polymorphism of serotonin receptor type 2A receptor may
be associated with expression of agitation/attack in AD patients
(Gotovac, Nikolac Perkovi¢, Pivac, & Borovecki, 2016; Ramanathan
& Glatt, 2009). Fehér et al. (2013) reported that polymorphism of
HTR2A has no influence for AD, but polymorphisms of the sero-
tonin transporter and HTR2A for possible association with AD. The
formula Tian-Ma-Gou-Teng-Yin inhibits the progression of AD by
regulating key target gene HTR2A (Wang et al., 2018). In the study,
HTR2A was reduced in AD in gRT-PCR confirmation and integration
analysis. HTR2A was enriched in pathway of neuroactive ligand-re-
ceptor interaction. Therefore, we speculated that HTR2A may be
involved in the progress of AD by regulating pathway of neuroactive
ligand-receptor interaction.

Neurofilament light (NEFL) is a putative marker of neurodegen-
eration-related axonal injury (Zetterberg et al., 2006). Serum NEFL
concentration is correlated with measures of familial Alzheimer dis-
ease stage and severity, indicating that serum NEFL level may be

a viable biomarker of early AD-related neurodegeneration (Weston
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et al., 2017). Zhou et al. found suggested that plasma NEFL levels
may not be a useful biomarker for the diagnosis of AD (Zhou et al.,
2017). A recent study showed that NEFL dynamics in serum pre-
dict AD progression and brain neurodegeneration at the early pre-
symptomatic stages (Preische et al., 2019). Here, NEFL was one of
the DEG between AD and normal tissue. This finding further pro-
vides evidence indicated that NEFL may be biomarker of AD-related
neurodegeneration.

5 | CONCLUSION

We obtained 1,424 DEGs between AD and normal tissue base on the
GEO datasets. KEGG pathways analysis displayed that the pathway
of neuroactive ligand-receptor interaction was closely associated
with AD. A total 16 common target genes in SHEXIANG, YUJIN,
BINGPIAN, and ZHIZI active ingredients. These 16 genes may have
important research value in the treatment of AD by XNJ. Interestingly,
HTR2A and ADRA2A were members of 16 common target genes and
also enriched in pathway of neuroactive ligand-receptor interaction.
However, this study has several limitations that need to be acknowl-
edged. The number of samples for gRT-PCR confirmation was small.
More samples are needed to validate expression of pivotal DEGs. In
addition, in model systems or cell lines, experiments are necessary to
uncover the biological functions of key DEGs in AD in future studies.
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