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Abstract Introduction: We characterize long-term disease dynamics from cognitively healthy to dementia us-
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ing data from the Alzheimer’s Disease Neuroimaging Initiative.
Methods: We apply a latent time joint mixed-effects model to 16 cognitive, functional, biomarker,
and imaging outcomes in Alzheimer’s Disease Neuroimaging Initiative. Markov chain Monte Carlo
methods are used for estimation and inference.
Results: We find good concordance between latent time and diagnosis. Change in amyloid positron
emission tomography shows a moderate correlation with change in cerebrospinal fluid tau
(r 5 0.310) and phosphorylated tau (r 5 0.294) and weaker correlation with amyloid-b 42
(r5 0.176). In comparison to amyloid positron emission tomography, change in volumetric magnetic
resonance imaging summaries is more strongly correlated with cognitive measures (e.g., r 5 0.731
for ventricles and Alzheimer’s Disease Assessment Scale). The average disease trends are consistent
with the amyloid cascade hypothesis.
Discussion: The latent time joint mixed-effects model can (1) uncover long-term disease trends; (2)
estimate the sequence of pathological abnormalities; and (3) provide subject-specific prognostic
estimates of the time until onset of symptoms.
� 2018 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
nd/4.0/).
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1. Introduction

It is important to determine the long-term dynamics of
markers of Alzheimer’s disease (AD) to better understand
disease progression and to identify the ideal timing of poten-
tial interventions and preventative approaches [1]. Long-
term dynamics are especially crucial for neurodegenerative
diseases such as Parkinson’s disease and AD, as therapeutic
interventions are more likely to be effective in the earliest
disease stages [2]. Patterns of disease progression can be
explored in data sets capturing the natural history of markers
of AD. Such data sets are longitudinal, in the sense, that they
contain repeated measurements at multiple time points on
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multiple individuals. The main difficulty in deriving models
of disease progression from such data sets is that individuals
progress to different stages of disease at different ages and
the age of disease onset is generally unknown. The onset
of symptoms of AD may vary from 40 to 80 years of age,
and the pathology may evolve over decades. Moreover, the
onset of the disease pathology does not correspond with
the onset of the symptoms [3].

Many methods exist for estimating trajectories from lon-
gitudinal observations of individuals over a given biologi-
cally common time span. For example, generalized linear
or nonlinear mixed-effects models [4,5] can model
repeated measures based on time from a given event (e.g.,
birth or administration of an intervention). A reference
time (point of origin) is required to fit these mixed-effects
models, which may be implied by the experimental design.
However, in studies of diseases that occur over long periods
of time, we often sample individuals at different stages of
disease and observe short-term longitudinal “snapshots”
[6] of disease trajectories. Epidemiological studies with bio-
logically heterogeneous subpopulations might not have a
manifest biological event, which could serve as a reference
time common to all subjects. Using traditional longitudinal
models would require registering the data for each individual
to a common event before analysis.We focus on the situation
where such a common reference event is unknown and the
estimation of “latent disease time” is required.

The Alzheimer’s Disease Neuroimaging Initiative
(ADNI) is a multicohort longitudinal study in which volun-
teers diagnosed as cognitively healthy or with various de-
grees of cognitive impairment have been followed up since
2005 [7]. The ADNI battery includes serial neuroimaging,
cerebrospinal fluid (CSF), and other biomarkers, as well as
clinical and neuropsychological assessments. Participants
returned for repeated assessments after 6 months, 1 year,
and every year thereafter. Time of onset of dementia, a po-
tential reference “time zero”, is recorded for subjects with
or transitioning to dementia, but these reference times are
subjective and may be unreliable. Furthermore, subjects
who are cognitively normal (CN) or with mild cognitive
impairment may not be followed up long enough to observe
clinical transitions.

A primary motivation for our work was to derive a data-
driven version of the progression curves hypothesized by
Jack et al. [8,9]. They pointed out that individual
biomarkers develop on their own time course and do not
become abnormal simultaneously. They proposed a long-
term model of the AD pathological cascade and specifically
hypothesized the trajectory of several key biomarkers during
the decades preceding the onset of dementia symptoms. The
hypothesized figure (Figure 2 in Jack et al [8]) has been high-
ly influential in the field of AD research. This figure shows
the keymarkers of disease progressing on a common vertical
scale from normal to abnormal, with clinical disease stage on
the horizontal scale. Ideally, one would test the hypothesized
model of Figure 2 in [8] by enrolling a large cohort of CN
subjects and by collecting biomarkers, cognitive, and func-
tional assessment results for decades. The subjects who
progress to AD in such a study could be used to model the
long-term biomarker progression of the disease. Until such
a study could be conducted, we are limited to analyze rela-
tively short-term studies such as ADNI.

Mixed-effects models incorporating fixed effects and
subject-specific random effects have been used to study
the Alzheimer’s Disease Assessment Scale–Cognitive sub-
scale [10,11], the principal cognitive assessment tool in
Alzheimer’s dementia studies. Schulam et al. developed a
spline model that incorporates longitudinal clustering and
modeling of individual level effects to investigate
trajectories of scleroderma markers [12]. Although these
models analyzed each measure separately, adequately char-
acterizing disease progression benefits from the modeling of
multiple outcomes simultaneously, especially if trajectories
across multiple measures are correlated and if the relative
timing of changes in each outcome is informative about dis-
ease progression. Young et al (2014) [13] used an event-
based probabilistic model to determine the ordering of
changes in longitudinal biomarker measures. This method
characterized longitudinal biomarker trajectories in a
discrete framework rather than a continuous one. Donohue
et al (2014) [6] proposed a semiparametric regression model
in a multivariate framework to characterize the longitudinal
trajectories of a set of cognitive, CSF, and neuroimaging-
based biomarkers. Although this approach modeled multiple
outcomes in a unified framework by introducing an
individual-specific latent time shift parameter that is shared
across outcomes, the method did not incorporate covariates
for fixed effects or consider the correlation among outcomes.

We apply a latent time joint mixed-effects model
(LTJMM) to characterize biomarker trajectories in disease
progression [14]. This model extends mixed-effects models
to include an individual-specific latent time shift, which is
shared across all of an individual’s outcomes and represents
the extent of their long-term disease progression. Although
similar to others (e.g., Jedynak et al [15] and Donohue
et al [6]), this model also accommodates covariates for
fixed-effects and is implemented in a Bayesian framework.
The Bayesian framework allows flexible but rigorous inter-
rogation of the posterior distribution to make inferences
about long-term disease dynamics and the potential propaga-
tion of treatment effects from early biomarkers to down-
stream cognitive and functional measures. Jointly
modeling all the outcomes in a multivariate framework not
only considers the inter- and intra-subjects variations but
also takes into account the associations between outcomes.
2. Methods

2.1. Study data

Data were acquired from the ADNI database, which has
been tracking outcomes of volunteers diagnosed as CN,



Fig. 1. Subject-level observed and predicted severity. The top panel shows spaghetti plots of the observed quantiles of each outcome from all subjects in the

Alzheimer’s Disease Neuroimaging Initiative with respect to their age over time. The bottom panel shows modeled trajectories for these same subjects from the

fitted LTJMM with respect to the sum of age and estimated latent time, d. The colors indicate diagnostic severity at first observation, from cognitively normal

(blue) through dementia (red). Abbreviations: PET, positron emission tomography; CSF, cerebrospinal fluid; P-tau, phosphorylated tau; Ab, amyloid-b; RAVLT,

Rey Auditory Visual Learning Test; MidTemp, middle temporal gyrus; FDG, fluorodeoxyglucose; ADAS13, Alzheimer’s Disease Assessment Scale (13-item

version); MMSE, Mini–Mental State Examination; CDRSB, Clinical Dementia Rating Scale Sum of Boxes; FAQ, Functional Activities Questionnaire;

LTJMM, latent time joint mixed-effects model.
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Fig. 2. Distribution of the subject-specific latent time shifts. The estimated latent time shifts are colored by baseline diagnostic group, a variable not included in

the model. This plot suggests that the time shifts are well aligned and consistent with diagnostic criteria. The density plot also demonstrates that there is much

overlap of the diagnostic criteria with respect latent time. Abbreviations: CN, cognitively normal; SMC, subjective memory concern; EMCI, early mild cogni-

tive impairment; LMCI, late mild cognitive impairment; AD, probable Alzheimer’s disease with mild-to-moderate dementia.
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subjective memory concern, early mild cognitive impair-
ment, late mild cognitive impairment (LMCI), and
mild-to-moderate dementia (AD) since 2005, and contain
demographic and clinical information from 55 research cen-
ters in the United States and Canada. The main goal of ADNI
has been to test whether the ADNI battery such as serial
magnetic resonance imaging (MRI), positron emission to-
mography (PET), other biological markers, and clinical
and neuropsychological assessments can be combined to
measure the progression of MCI and early AD.

For the current analysis, we consider 16 outcomes that
have been known to be associated with the progression of
AD. The outcomes include CSF tau and amyloid-b (Ab)
1–42; phosphorylated tau (p-tau); PET imaging of amyloid
deposition and glucose metabolism in the brain; FreeSurfer
volumetric MRI summaries of the hippocampus, whole
brain, entorhinal cortex, ventricles, fusiform gyrus, and mid-
dle temporal gyrus; the 13-item Alzheimer’s Disease
Assessment Scale; the Mini–Mental State Examination;
the Functional Activities Questionnaire; the Rey Auditory
Visual Learning Test, and the Clinical Dementia Rating
Scale Sum of Boxes. More details on these measures in
ADNI are available in Petersen et al (2010) [7]. Fixed-
effect covariates for each outcome include demographic fac-
tors: age, sex, education, and apolipoprotein E 34 (APOE 34)
carrier status (presence of an APOE 34 allele). Diagnostic
category is a somewhat subjective interpretation of the clin-
ical presentation (excluding CSF and imaging data) of the in-
dividuals by their physician and hence was not included as a
covariate in our model. As will be demonstrated later, one
advantage of our model is that latent time estimates could
provide a continuous alternative to diagnosis.

Our analysis aims to compare the long-term trends of the
outcomes on a comparable scale and make conclusions
about the temporal ordering of their emergence. The quantile
scale is commonly used to obtain a common scale. There-
fore, before fitting our model, we first transformed the raw
outcome measures into quantiles normalized to range from
0 (least severe) to 1 (most severe). Quantiles were calculated
using the empirical cumulative distribution function by
weighting according to the inverse proportion of observa-
tions from each diagnostic category for each outcome.
Because the diagnostic groups are not represented equally,
such a weighted quantile transformation allows an approxi-
mation of the quantiles from a sample with equal numbers of
each diagnosis. The quantiles were then transformed by the
inverse Gaussian quantile function. The resulting approxi-
mate z-scores will be used for model fitting.
2.2. Latent time joint mixed-effects model

Li et al (2017) [14] proposed the LTJMM to jointly model
multivariate longitudinal data. In this work, we employ the
LTJMM to provide smooth estimates of the longitudinal
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course of disease severity, assess the relationship between
different markers, and further characterize evolution of dis-
ease markers in the progression of disease. We denote yijk as
the outcome k observed at occasion j for individual i, where
i 5 1,., n, j 5 1,., qik and k 5 1,., p. Suppose all out-
comes are longitudinally measured continuous outcomes,
the model is given by

yijk5xijkbk1gk

�
tijk1di

�
1a0ik1a1iktijk1εijk; (1)

where xijk represents a set of possibly time-varying covari-
ates, and bk and gk are the traditional coefficients for cova-
riates and “long-term” progression time. The time shift di
is shared among outcomes for each subject, quantifying
the progression of subject i relative to the population, and

is assumed to follow diwNð0; s2dÞ. The measurement error

term εijkwNð0;s2kÞ accounts for outcome-specific variance.
The parameters a0ik and a1ik are the subject and outcome-
specific random intercept and slope. The model with multi-
variate random effects has the advantage of reflecting depen-
dency among outcomes. However, fitting the model with
univariate random effects is computational faster and also
has advantages in practice. In this study, we will explore
assuming the random effects follow both univariate and
multivariate Gaussian distributions with zero means. In our
application, all the outcomes are oriented to be increasing
with time, and thus we assume gk . 0, k 5 1, 2, ., p. We
place a constraint on Eqn (1) to ensure identifiability:Pp

k51a0ik5 0 for all individuals i 5 1, 2, ., n.

Estimation and inference are obtained using a Bayesian
method. Results of parameter estimates are reported as pos-
terior mean and 95% credible intervals. Analyses are im-
plemented in Stan [16]. We compute the deviance
information criterion [17], the widely applicable informa-
tion criterion [18–20], and the leave-one-out cross-valida-
tion information criterion [21,22] for model comparison.
We refer to Li et al (2017) [14] for more details of the
LTJMM and Bayesian implementation. The Stan code for
model specifications and related tools for estimation and
prediction are available as an R package from https://
bitbucket.org/mdonohue/ltjmm.
3. Results

3.1. Exploratory analysis

Our data consist of a subset of 1554 participants that were
diagnosed at their first visit with CN (N5 404, 26%), sub-
jective memory concern (N5 105, 6.76%), early mild
cognitive impairment (N5 285, 18.34%), LMCI (N5
487, 31.34%), and AD (N5 273, 17.57%). There were
702 (45.17%) female subjects in which 288 were APOE 34
carriers. Maximum follow-up is currently as long as about
11 years. Descriptive statistics for the raw values of 16 out-
comes by baseline diagnostic category and the length of
follow-up by outcome are provided in Supplementary
Tables S0 and S1.

The data are grouped by individual and sorted by age at
observation time. Raw values are transformed into a quantile
scale using a weighted empirical cumulative distribution
function. The raw values that correspond to the resulting
quantiles are provided in Supplementary Table S2. Fig. 1
(top) shows the longitudinal measurements of the 16
outcomes over age (in years) for all participants.
Additional exploratory graphical analyses are available in
Supplementary Material (see Supplementary Figs. S1 and
S2).
3.2. Latent time joint mixed-effects model

The LTJMMs with univariate and multivariate Gaussian
random effects (denoted as model I and II) were fitted,
respectively. All the transformed outcomes were modeled
as Gaussian with identity link. The priors specified for model
parameters are as discussed in Section 2.2. The estimated
potential scale reduction factors bR are below 1.1 for all pa-
rameters, indicating successful convergence. Table 1 sum-
marizes the posterior estimates of the key model
parameters based on posterior mean and 95% credible inter-
vals. Table 2 summarizes the model comparison results.
Model II is chosen as the best model with lower deviance in-
formation criterion, widely applicable information criterion,
and leave-one-out cross-validation information criterion;
andmodel II has smaller value of effective number of param-
eters than model I, indicating less model complexity.

Fig. 1 shows the subject-level observations with respect
to age (top) and predictions according to the sum of age
and estimated latent time (bottom). From the observations,
we notice that age explains variance in these outcomes.
The bottom panel shows that the predictions provide a
reasonable smooth of the observations, and latent time pro-
vides a reasonable ordering of individuals according to dis-
ease severity. The posterior mean (95% credible interval) for
the standard deviation of latent time parameters is 10.679
(9.625 to 11.602) years, as shown in Table 1. Fig. 2 displays
a density plot for the posterior mean of the subject-specific
latent time by diagnosis at first ADNI visit. This figure indi-
cates that the latent time estimates are temporally sorting in-
dividuals in a manner that is consistent with physician
diagnosis, although diagnostic category is not included in
the model. Latent time estimates provide a continuous alter-
native to diagnosis which is objectively derived from a
comprehensive model of longitudinal measures of disease.
Fig. 3 shows the posterior mean of correlation parameters
for random intercepts (diagonal upper left) and random
slopes (diagonal lower right), reflecting the inherent pair-
wise association between outcomes. We find that there are
moderate or strong positive correlations of change between
many outcomes. Most of the outcomes have weak correla-
tions of random intercepts. Interestingly, change in fibrillar
amyloid burden as assessed by 18F-florbetapir shows a
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Table 1

Posterior mean and 95% credible intervals of parameters for the proposed LTJMM it to 16 outcomes from the ADNI

Parameter Posterior mean (95% CI) Parameter Posterior mean (95% CI) Parameter Posterior mean (95% CI)

Hippocampus CSF tau MidTemp

Intercept 23.885 (24.375, 23.358) Intercept 20.992 (21.530, 20.454) Intercept 23.028 (23.510, 22.486)

Age 0.054 (0.048, 0.059) Age 0.015 (0.009, 0.021) Age 0.043 (0.037, 0.048)

APOE 34 0.353 (0.261, 0.448) APOE 34 0.475 (0.367, 0.579) APOE 34 0.291 (0.203, 0.386)

Sex 20.303 (20.390, 20.222) Sex 0.095 (20.002, 0.194) Sex -0.096 (20.188, 20.011)

Education 20.007 (20.023, 0.008) Education 20.025 (20.043, 20.008) Education 20.011 (20.027, 0.005)

Latent time 0.056 (0.051, 0.063) Latent time 0.025 (0.020, 0.030) Latent time 0.058 (0.052, 0.064)

s1 0.133 (0.130, 0.136) s7 0.147 (0.141, 0.154) s13 0.168 (0.165, 0.172)

ADAS13 CSF p-tau RAVLT learning

Intercept 21.038 (21.490, 20.547) Intercept 20.818 (21.341, 20.285) Intercept 20.416 (20.869, 0.066)

Age 0.024 (0.019, 0.029) Age 0.012 (0.006, 0.018) Age 0.017 (0.011, 0.022)

APOE 34 0.401 (0.327, 0.474) APOE 34 0.536 (0.430, 0.639) APOE 34 0.367 (0.292, 0.444)

Sex 20.250 (20.326, 20.179) Sex 0.069 (20.027, 0.168) Sex 20.262 (20.336, 20.191)

Education 20.051 (20.065, 20.037) Education 20.025 (20.042, 20.008) Education 20.044 (20.058, 20.031)

Latent time 0.059 (0.054, 0.066) Latent time 0.026 (0.021, 0.031) Latent time 0.050 (0.044, 0.056)

s2 0.326 (0.319, 0.332) s8 0.116 (0.111, 0.122) s14 0.659 (0.647, 0.671)

FDG PET Whole Brain MMSE

Intercept 21.839 (22.392, 21.281) Intercept 24.590 (25.053, 24.095) Intercept 21.308 (22.005, 20.534)

Age 0.028 (0.022, 0.034) Age 0.063 (0.058, 0.068) Age 0.030 (0.021, 0.037)

APOE 34 0.411 (0.320, 0.498) APOE 34 0.231 (0.138, 0.321) APOE 34 0.584 (0.469, 0.700)

Sex 20.178 (20.271, 20.089) Sex 20.198 (20.283, 20.115) Sex 20.262 (20.379, 20.149)

Education 20.023 (20.039, 20.006) Education 20.005 (20.021, 0.011) Education 20.097 (20.118, 20.076)

Latent time 0.052 (0.046, 0.058) Latent time 0.052 (0.047, 0.058) Latent time 0.083 (0.075, 0.093)

s3 0.292 (0.282, 0.303) s9 0.139 (0.136, 0.141) s15 1.051 (1.033, 1.070)

Amyloid PET CDRSB Fusiform

Intercept 20.372 (20.913, 0.185) Intercept 20.624 (21.518, 0.353) Intercept 22.742 (23.229, 22.234)

Age 0.001 (20.005, 0.007) Age 0.013 (0.003, 0.023) Age 0.040 (0.035, 0.046)

APOE 34 0.697 (0.594, 0.803) APOE 34 0.764 (0.609, 0.909) APOE 34 0.273 (0.184, 0.365)

Sex 0.142 (0.042, 0.240) Sex 20.309 (20.466, 20.162) Sex 20.089 (20.181, 0.002)

Education 20.007 (20.025, 0.010) Education 20.079 (20.108, 20.052) Education 20.017 (20.034, 20.001)

Latent time 0.030 (0.025, 0.036) Latent time 0.120 (0.110, 0.133) Latent time 0.050 (0.044, 0.056)

s4 0.282 (0.269, 0.296) s10 0.662 (0.650, 0.674) s16 0.185 (0.181, 0.189)

CSF Ab Entorhinal Standard deviation of latent time

Intercept 22.131 (22.912, 21.307) Intercept -2.295 (22.810, 21.773) sd 10.679 (9.625, 11.602)

Age 0.020 (0.011, 0.029) Age 0.034 (0.029, 0.039)

APOE 34 0.915 (0.776, 1.057) APOE 34 0.356 (0.262, 0.448)

Sex 20.142 (-0.275, 20.010) Sex 0.431 (0.344, 0.521)

Education 20.005 (-0.029, 0.019) Education 20.035 (20.051, 20.020)

Latent time 0.046 (0.039, 0.055) Latent time 0.049 (0.044, 0.055)

s5 0.416 (0.392, 0.441) s11 0.345 (0.337, 0.353)

FAQ Ventricles

Intercept 22.382 (23.337, 21.355) Intercept 24.954 (25.439, 24.428)

Age 0.027 (0.016, 0.037) Age 0.066 (0.061, 0.071)

APOE 34 0.806 (0.646, 0.956) APOE 34 0.194 (0.098, 0.294)

Sex 20.347 (20.507, 20.195) Sex 20.343 (20.435, 20.247)

Education 20.064 (20.093, 20.036) Education 0.007 (20.010, 0.024)

Latent time 0.125 (0.114, 0.138) Latent time 0.047 (0.042, 0.053)

s6 0.846 (0.830, 0.861) s12 0.058 (0.057, 0.059)

Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; LTJMM, latent time joint mixed-effects model; APOE 34, apolipoprotein E; PET, posi-

tron emission tomography; CSF, cerebrospinal fluid; P-tau, phosphorylated tau; Ab, amyloid-b; RAVLT, Rey Auditory Visual Learning Test; MidTemp, middle

temporal gyrus; FDG, fluorodeoxyglucose; ADAS13, Alzheimer’s Disease Assessment Scale (13-item version); MMSE, Mini–Mental State Examination;

CDRSB, Clinical Dementia Rating Scale Sum of Boxes; FAQ, Functional Activities Questionnaire.
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Table 2

Model comparison results for the LTJMMs under two different assumptions

of random effects

Model DIC pDIC WAIC pWAIC LOOIC pLOOIC

I 72,346.68 26,374.40 72,040.75 21,073.00 78,708.15 24,406.70

II 66,244.56 23,652.62 66,177.87 19,339.56 71,038.37 21,769.81

Abbreviations: LTJMM, latent time joint mixed-effects model; DIC,

deviance information criterion; WAIC, widely applicable information crite-

rion; LOOIC, leave-one-out cross-validation information criterion.
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moderate correlation with change in CSF tau (r 5 0.310)
and p-tau (r 5 0.294) and weaker correlation with Ab42
(r5 0.176). In comparison to amyloid PET, change in volu-
metric magnetic resonance imaging summaries (e.g., ven-
tricular volume) is more strongly correlated with cognitive
measures (e.g., r 5 0.176 for ventricles and Alzheimer’s
Disease Assessment Scale–Cognitive subscale). Evaluation
of the model fit and the assumptions of latent time and
random effects are available in Supplementary Material
(see Supplementary Figs. S3–S6).

The average “long-term” predicted trajectories of
severity are displayed in Fig. 4. The depicted curves are
Fig. 3. Posterior mean correlations among random intercepts (diagonal upper lef

emission tomography; CSF, cerebrospinal fluid; P-tau, phosphorylated tau; Ab, amy

poral gyrus; FDG, fluorodeoxyglucose; ADAS13, Alzheimer’s Disease Assessmen

Clinical Dementia Rating Scale Sum of Boxes; FAQ, Functional Activities Quest
for female APOE 34 carriers with the mean education and
the average age in the LMCI diagnostic group. The predicted
trajectories indicate the ordering of disease progression for
the 16 outcomes. By considering the severity level 0.5 as a
benchmark, the ordering of outcomes is as described in the
legend of Fig. 4 (upper panel). For example, amyloid PET
and CSF p-tau attain severity 0.5 about 10 or more years
earlier than Clinical Dementia Rating Scale Sum of Boxes
and Functional Activities Questionnaire. The bottom panel
shows the same trajectories for progressive Alzheimer’s
with contrasting hypothetical trajectories for healthy aging.
To obtain the hypothetical estimates for healthy aging, the
effect of latent time is forced to be zero to isolate the effect
of age.

In Fig. 5, each entry of the positional variance diagram
represents the proportion of samples in which a particular
outcome appears in a particular position in the central
ordering, ranging from 0 in white to 1 in red. In Fig. 5
(top), we study the positional variance of ordering for the fe-
male APOE 34 carriers with the mean education and the
average age of the LMCI group inferred by population-
t) and random slopes (diagonal lower right). Abbreviations: PET, positron

loid-b; RAVLT, ReyAuditory Visual Learning Test; MidTemp, middle tem-

t Scale (13-item version); MMSE,Mini–Mental State Examination; CDRSB,

ionnaire.



Fig. 4. Modeled population-level severity. The top panel shows themodeled average trajectories. The depicted evolution is for female APOE 34 carriers with the

ADNI mean education and the average age of the LMCI group. The bottom panel shows the same trajectories for progressive Alzheimer’s (blue triangles) with

contrasting trajectories for healthy aging (red dots). For the latter, the effect of latent time is forced to be zero to isolate the effect of age. Abbreviations: PET,

positron emission tomography; CSF, cerebrospinal fluid; P-tau, phosphorylated tau; Ab, amyloid-b; RAVLT, Rey Auditory Visual Learning Test; MidTemp,

middle temporal gyrus; FDG, fluorodeoxyglucose; ADAS13, Alzheimer’s Disease Assessment Scale (13-item version); MMSE, Mini–Mental State Examina-

tion; CDRSB, Clinical Dementia Rating Scale Sum of Boxes; FAQ, Functional Activities Questionnaire; ADNI, Alzheimer’s Disease Neuroimaging Initiative;

APOE 34, apolipoprotein E ε4; LMCI, late mild cognitive impairment.
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Fig. 5. Positional variance diagram of the central ordering. The x-axis is the event position. The top panel shows the population-level positional variance di-

agram of the central ordering for the female APOE 34 carriers. The bottom panel shows the subject-level positional variance diagram of the central ordering for

the APOE 34 carriers. Abbreviations: PET, positron emission tomography; CSF, cerebrospinal fluid; p-tau, phosphorylated tau; Ab, amyloid-b; RAVLT, Rey

Auditory Visual Learning Test; MidTemp, middle temporal gyrus; FDG, fluorodeoxyglucose; ADAS13, Alzheimer’s Disease Assessment Scale (13-item

version); MMSE, Mini–Mental State Examination; CDRSB, Clinical Dementia Rating Scale Sum of Boxes; FAQ, Functional Activities Questionnaire;

APOE 34, apolipoprotein E ε4.
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level predictions of the LTJMM based on the posterior sam-
ples of each parameter, followed by computing the central
ordering for each sample. A red diagonal corresponds to
high certainty in the ordering of outcomes, such as amyloid
PET, CSF p-tau, and tau. The off-diagonal shaded blocks in
this diagram indicate that the outcomes permute, indicating
uncertainty in the estimation of central ordering. In Fig. 5
(bottom), we obtained the ordering of outcomes for APOE
34 carriers in the data from the subject-level predictions of
the LTJMM. The figure represents the distribution of the
estimated subject-level ordering of outcomes. We also con-
ducted a simulation study to assess the model performance
and to find out how often the orderings of markers could
be correctly estimated. The estimated marker orderings for
the simulations demonstrated that our method could recover
the true ordering reasonably well. For example, for 84% of
the simulated data sets the model correctly identified the first
marker. For details of the simulation study, please refer to
Supplementary Material (see Supplementary Note S1,
Figure S8, Table S3).
4. Discussion

In this work, we apply an LTJMM to characterize the
long-term disease dynamics from cognitively healthy to de-
mentia using data from the ADNI. The LTJMMprovides two
key advantages over standard mixed-effects models for ap-
plications of multicohort studies of neurodegenerative dis-
ease. The first advantage is the ability to estimate disease
course across a wide spectrum of the disease across the mul-
tiple cohorts or diagnostic groups. Fig. 4 demonstrates this
ability and conveys a pathological cascade, which is consis-
tent with prevailing theories: amyloid and tau abnormalities
followed by cortical thinning, cognitive and FDG PET def-
icits, brain atrophy, and finally, loss of function. The lower
panel of Fig. 4 shows the same estimates for progressive dis-
ease compared with estimates of hypothetical disease-free
aging. The feature of the model, which allows this modeling
across diagnostic categories, is the individual-specific pa-
rameters for latent disease time. We find that these parame-
ters act as a continuous variable underlying the categorical
diagnosis (Fig. 2) and allows for robust estimation of
average pattern of disease progression as hypothesized by
Jack et al. [8,9]. The second advantage of the LTJMM is
the ability to model several outcomes at once and inspect
their correlations in level (intercepts) and rates of change
(slopes), as demonstrated in Fig. 3. In this parameterization,
the correlations are not dependent on observation or latent
time. This provides easy to interpret summary measures uti-
lizing all the data but might mask some temporal dynamics
in correlation. Future work will explore this model exten-
sion.

The model is a parsimonious extension of joint mixed-
effect models, adding subject-specific latent time parame-
ters. Single-outcome mixed-effect models are the ubiquitous
workhorse of longitudinal data analysis. They are robust,
flexible, and their assumptions and parameterizations are
generally well understood. The LTJMM shares these quali-
ties, and the additional assumptions required for latent
time are relatively weak. More flexible temporal trends
(e.g., polynomial splines) are possible within the model
framework but do not seem supported by ADNI data (Fig. 1).

In general, our findings are consistent with the amyloid
cascade hypothesis. We find evidence of amyloid abnormal-
ities first. The seemingly unexpected ordering of CSF Ab
might be explained by the higher within- and between-
individual variability observed with CSF Ab1–42, as seen in
Fig. 1. Consistent with our finding, Bouall�egue et al. [23]
found that amyloid PET appeared “more powerful than
CSF markers for AD grading and MCI prognosis in term
of cognitive decline and AD conversion” in an analysis of
ADNI data. It is likely that other common CSF summaries,
such as the ratio of tau to Ab1–42, might demonstrate a rela-
tively earlier appearance of abnormality than Ab alone. Not
surprisingly, functional impairment occurs last. In between
amyloid and function, there is much overlap. One reason
for this is the apparent heterogeneity of disease progression.
That is, not every individual follows the average disease
trends. The model can be used to explore subgroups that
demonstrate disease dynamics that differ from the average
pattern. Future work will formalize this concept with
mixture modeling. We will also leverage the model to
improve prognostic prediction and to identify clinical trial
populations and individuals most likely to benefit from a
given intervention.
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the existing
literature using traditional sources for biomedical
and statistical research journal articles, with search
terms “Alzheimer’s disease,” “joint mixed-effects
models,” “long-term disease dynamics,” “longitudi-
nal biomarker trajectories,” and “multicohort longi-
tudinal data”.

2. Interpretation: We characterize long-term disease
dynamics from cognitively healthy to dementia by
applying a latent time joint mixed-effects model. The
model can uncover long-term disease trends, esti-
mate the sequence of pathological abnormalities, and
provide subject-specific prognostic estimates of the
time until onset of symptoms. Our findings are in
general agreement with prevailing theories of the
Alzheimer’s disease amyloid cascade.

3. Future directions: The model can be applied to
explore subgroups that demonstrate disease dy-
namics that differ from the average pattern. Future
work will formalize this concept with mixture
modeling. We will also leverage the model to
improve prognostic prediction and to identify popu-
lations expected to experience the maximum benefit
from a given intervention.
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