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Given the current pandemic the world is struggling with, there is an urgent need to
continually improve vaccine technologies. Ionizing radiation technology has a long history
in the development of vaccines, dating back to the mid-20th century. Ionizing radiation
technology is a highly versatile technology that has a variety of commercial applications
around the world. This brief review summarizes the core technology, the overall effects of
ionizing radiation on bacterial cells and reviews vaccine development efforts using ionizing
technologies, namely gamma radiation, electron beam, and X-rays.
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INTRODUCTION

Vaccination is a cornerstone of public health measures. It promotes human and animal health as
well as prevents the spread of communicable diseases in humans and animals. Over one hundred
vaccines are currently licensed for human use in the United States (1). Despite this, many infectious
diseases, such as Covid-19, HIV, Influenza, Malaria, and Tuberculosis continue to cause severe
illness and death globally. In the feed and livestock animal industries, the use of antibiotic growth
promoters has been substantially reduced due to fears of multi-drug resistant bacteria, (2–5).
However, with the ban of antimicrobial usage, therapeutic usage of antimicrobials increased in
Denmark by 33.6% (6) and mortality in weaning pigs increased by 1.5% (2). The resurgence of
previously controlled infections and diseases have led to the intensive investigation and
commercialization of multiple methods to control and improve animal health, with vaccinations
being the most common (3, 7–9).

Current vaccine technologies have their advantages and disadvantages. Live vaccines often elicit
strong immune responses, but a balance between attenuation, safety, and protection must be struck.
Vaccination with attenuated strains has often been successful, although this option is not suitable
for some diseases (10–13). A disadvantage of attenuated vaccines is the fear of regained virulence.
Inactivated, or killed vaccines are inactivated using chemicals such as formalin,
diethylpyrocarbonate and b-propiolactone. Although there are reduced safety risks associated
with chemically inactivated vaccines, they often exhibit reduced immunogenicity due to damaged
antigenic epitopes. Toxoids, recombinant vaccines, as well as subunit vaccines are typically
considered safe because attenuation is induced by deletions preventing the strain from
overgrowing and causing disease (14). The disadvantage of sub-unit vaccines is that only a
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singular antigen or at times multiple antigens are presented,
generally limiting the cross-protective ability of such vaccines.

Given increased urbanization, climate change and close
interaction of animals and humans, there is a continuous need
to evaluate vaccine technologies to deal with epidemics,
pandemics, and rapidly emerging infectious virus variants. The
vaccine technologies should be robust and capable of dealing
with multiple pathogens, their possible variants and host species
(15). Ionizing radiation technology has benefitted society for
over 65 years. Legacy nuclear technologies based on radioactive
isotopes such as cobalt-60 and cesium-137 have resulted in
significant benefits to human and animal health and
agriculture. Besides radioactive isotope based ionizing radiation
technology, electron beam (eBeam) and X-ray technologies have
grown rapidly in the last decade and are now becoming widely
used for a variety of commercial applications. The overall
objective of this brief review is to summarize the history and
the advances of using ionizing radiation technology for
developing vaccines against infectious diseases.
PRINCIPLES OF IONIZING RADIATION

Ionizing radiation is defined as energy capable of removing
electrons from atoms and, thereby, causing ionization. The
three main ionizing radiation technologies are gamma
radiation technology (based on photons), electron beam
(eBeam) technology (based on electrons), and X-rays (based on
photons) (16). Gamma rays are electromagnetic radiation
composed of photons emitted from the nucleus of a
radioactive isotope. In most commercial settings, the isotope
source is cobalt-60. In some instances, gamma rays are produced
from cesium-137 as well. Electron beam (eBeam) technology is
based on highly energetic electrons that are produced from
regular electricity using industrial equipment called “eBeam
accelerators”. X-rays are also electromagnetic radiation
composed of photons. However, they are generated using
energetic electrons from accelerators which are allowed to
strike an extremely dense metal such as tantalum or tungsten
resulting in the formation of X-ray photons. Cobalt-60 is a
radioactive isotope and, therefore, it is of serious security
concerns. Also, due to increasing cobalt-60 costs, its stringent
safe-guarding requirements, and ultimate disposal needs and
costs, this legacy technology is quickly becoming commercially
unsustainable. Commercially, gamma radiation technology is
being quickly replaced with accelerator-based technologies,
namely eBeam and X-ray technologies (16, 17). From a
commercial perspective, eBeam technology is an attractive
technology because of its relatively overall lower costs and
relative ease of adoption. One of the key attractive features of
eBeam and X-ray technologies is that they are switch- on/switch-
off technologies meaning that they can be switched off when not
in use. This is in direct contrast to radioactive isotopes such as
cobalt-60 where the emission of gamma ray photons cannot be
switched off.
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Today, eBeam and X-ray technologies are commercial off the
shelf technologies with a diverse array of energy and beam power
configurations. In commercial settings, eBeam irradiation is
generated using accelerators. In these accelerators, electrons
generated from commercial electricity are accelerated to
approximately 99.999% of the speed of light resulting in
electron energies up to 10 MeV (Mega electron volts) (18).
These highly energetic electrons are then focused and pulsed
uniformly over a material, solid or liquid (16, 18). When the
electrons interact with a molecule leading to its ionization, the
ejected electron becomes energized, going on to interact with and
ionize an adjacent molecule. This chain reaction continues until
the energy has fully dissipated (18). High energy eBeam
technology is also currently used in the food and medical
device industry for its ability to either pasteurize products or
achieve complete sterility. In the food industry, this technology is
regularly used for phytosanitary treatment, shelf-life elongation,
pathogen inactivation, and occasionally terminal sterilization
(16, 17). In the medical device industry, this technology is used
to sterilize single-use medical devices and laboratory
consumables (19).
EFFECT OF IONIZING RADIATION
EXPOSURE ON MICROORGANISMS

Ionizing radiation inactivates microorganisms through direct
and indirect methods. Direct damage is caused as a result of
interactions between energetic electrons or photons and the
molecules within an organism, while indirect damage is caused
as a result of interactions with products of water radiolysis (18,
20, 21). When an energized electron from an accelerator (or a
gamma photon emitted from a radioactive isotope) interacts with
a material, molecules are ionized, ejecting electrons from the
outermost valence shells. These ejected electrons in turn cause a
cascade of similar ionization events on adjoining atoms until all
its energy is fully dissipated. In microorganisms, DNA is the
largest molecule, therefore, resulting in it being the primary
target of direct ionization events. The ionization of DNA results
in the cleavage of the phosphodiester bonds along the DNA
backbone. While single-stranded breaks are repairable, extensive
double stranded breaks are much harder for an organism to
repair and overcome. Due to excessive shearing of the nucleic
acid, the microorganism is ultimately inactivated (21). The other
major target of ionizing radiation in a microorganism is its
cellular water content, leading to the production of radiolytic
species. Radiolysis of water generates a diverse array of highly
reactive, but short lived free radical species such as hydroxyl
radicals, hydrogen peroxide, hydrogen, hydrated electrons, and
hydrated protons. The summary equation for water radiolysis is
presented below (Equation 1) with the quantity of each product
per 100 eV of energy absorbed shown in parenthesis.

e− + H2O ! �OH(2:7) + e−aq(2:7) +
 �H(0:55)

+H2(0:55) + H2O2(0:71) + H3O
+(2:7)

Equation 1
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The damage to the cellular components often results
indirectly from the interaction of these reactive species as
opposed to the direct incident electrons. Hydroxyl radicals
(*OH) are extremely short lived. However, during their short
time, they can cause significant damage to molecules in their
immediate surroundings (22). Superoxide radicals (O∗

2− ) are also
generated by the radiolysis of water, and it is hypothesized that
these molecules accumulate within a microbial cell causing
severe damage to proteins such as enzymes with exposed iron-
sulfur clusters (23, 24). Additionally, methionine and cysteine
have been shown to be especially susceptible to ionizing radiation
(25). Superoxide radicals also react with endogenous nitric oxide
within a cell, forming reactive nitrogen species (RNS) such as a
peroxynitrite anion (ONOO-), nitrogen dioxide (NO∗

2), and
dinitrogen trioxide (N2O3), which cause further damage to the
DNA and are the primary agents of damage to proteins within
bacterial cells (26). This protein damage can have significant
effects on the microorganism’s ability to function. Taken
together, direct and indirect mechanisms of damage lead to the
inactivation of microbial cells due to the high number of single
and double strand breaks (21). Assuming a hypothetical genome
size of 3.5 million base pairs, a dose of 1 kGy would cause
approximately 200 single stranded breaks and 14 double
stranded breaks, per copy of a bacteria’s genome (18, 27). This
extent of DNA damage is irreparable in most microorganisms,
resulting in their inactivation due to the inability of the DNA to
replicate, thereby, resulting in the microbial population being
unable to reproduce. This damage done to microorganisms is
extremely rapid. Direct damage due to chemical bonds cleavage
is estimated to occur within 10-14 – 10-12 seconds of exposure.
Within one picosecond (10-12 s), superoxide and hydrogen
peroxide radicals are formed. By about 1 millisecond after
exposure, the reactions of most reactive species are
hypothesized to be complete (25, 28).

While microbial cells cease to multiply due to damage to their
nucleic acids, multiple studies have demonstrated that their
cellular membrane remains intact even after exposure to
ionizing radiation. It needs to be pointed out the how microbial
cells respond to ionizing radiation can be extremely varied
depending on the microorganism in question and the ionizing
radiation dose applied to the cells. Studies conducted in our
laboratory demonstrate that eBeam exposure even at lethal
doses does not compromise the bacterial cellular membrane as
observed using microscopy (29–33). Similarly, gamma irradiation
has also been shown to cause no damage to bacterial cell
membranes at lethal doses (34–36). Furthermore, there is now
significant evidence that in cells treated with lethal doses of
ionizing radiation, there is residual metabolic activity after
treatment (33, 35, 37–41). For example, in Escherichia coli K-12
metabolic activity of E. coli was sustained for up to nine days
following treatment, as demonstrated using AlamarBlue™ as well
as ATP assays (33). Other studies have demonstrated that gamma
radiation also does not significantly hinder cellular functions.
Gamma irradiated cells maintained oxidative function and the
ability to continue nucleic acid and protein synthesis (35, 38).
Furthermore, metabolic activity persists, despite several double
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stranded breaks of the cell’s genome. Researchers hypothesize that
there are portions of genomes which are still intact, enough to
sustain cellular functions (35, 39, 42). Bacterial cells exposed to
eBeam exposure exhibit similar features. Studies examining the
metabolomic state of inactivated E. coli and Salmonella
Typhimurium have shown that immediately after treatment,
cells are metabolically active with metabolomic fluxes
continuing even 24 hours after eBeam treatment (43).
Nevertheless, the ability of microbial cells to continue their
metabolic activity even after physical damage to their nucleic
acids is a scientific conundrum that is worthy of deeper
investigation. Taken together, this state in microbial cells where
the cells cannot multiply yet remain metabolically active can be
termed as a Metabolically Active, yet Non-Culturable (MAyNC)
state. In vaccinology, the term that is often used especially with
irradiated malarial sporozoites is “Metabolically active, non-
replicating”. This state has potential broad applications in
vaccine development. MAyNC cells are inactivated, but
maintain cell membrane integrity, and therefore, function as a
killed vaccine. The biological significance of residual metabolic
activity on the potency of the vaccine is yet to be completely
understood. Because ionizing radiation maintains membrane
integrity, MAyNC cells may be specifically well-suited for
vaccines against pathogens that require immune recognition of
multiple antigenic epitopes. Furthermore, due to the growing
availability of eBeam and X-ray technologies which can be
installed inline to the manufacturing process, the ability to
generate MAyNC cells of varying potency can be extremely
valuable for vaccine development.
HISTORY OF VACCINES USING
IONIZING RADIATION

The use of ionizing radiation as a method to attenuate or inactive
microorganisms for the use as vaccines is not novel, with reports
of gamma and x-ray-inactivated vaccine research dating back to
the mid-20th century (44–50). The advantage of ionizing-radiation
vaccines, or radio-vaccines, is that because they are inactivated,
they are able to retain immunogenicity even when stored at non-
refrigerated conditions potentially eliminating the need for cold-
chain to preserve vaccine potency (31, 51, 52). The ability to store
vaccines at ambient or refrigerated storage (as compared to frozen
storage) can translate to significantly lower overall costs for
vaccine transportation and distribution. The ability to distribute
vaccines without the need for cold chain distribution also
increases vaccine access in remote areas (53, 54). Importantly,
eBeam and X-ray technologies are scalable, with the capability to
inactivate large quantities of preparations (55).

Due to the vast commercial capabilities, numerous patents
related to “radio-vaccines” have already been filed (Table 1).
Interest in radio- vaccines has increased significantly recently,
with investigations into the creation of vaccines for bacterial,
viral, and protozoan diseases (Table 2). While many of the
researched vaccine candidates are based on gamma-irradiation,
there is significantly less research conducted on eBeam or X-ray
February 2022 | Volume 13 | Article 845514
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inactivated vaccines. This limited amount of information could
be attributed to the relatively recent commercial availability of
eBeam and X-ray technologies. Among all the research
conducted on radio-vaccines, the most progress has been on
Plasmodium sporozoites attenuated with irradiation to protect
against malaria. First examined in 1967 using x-ray irradiation,
this idea has evolved considerably over the last 50+ years to its
current iteration in phase 2 clinical trials using gamma-
attenuated sporozoites (75, 76, 93–97). Studies using gamma-
irradiated Listeria monocytogenes have demonstrated that unlike
other inactivation methods such as heat or formalin, irradiation
better maintained antigenic properties and stimulated robust T
cell responses (59).

IMMUNE RESPONSES TO
RADIO-VACCINES

In multiple studies investigating the immune response to
gamma-irradiated Brucella spp., investigators found that
gamma-irradiated cells were metabolically active and
inactivated cells were able to induce a significant cellular
immune response and were protective when challenged (34–
37, 56, 98). Furthermore, gamma-irradiated cells have even
exhibited an ability to act as an adjuvant, increasing the
immune response to co-administered antigens (71). A
significant amount of research has been conducted on the
development of a gamma-inactivated influenza vaccine,
demonstrating that this vaccine is effective in eliciting a strong
Frontiers in Immunology | www.frontiersin.org 4
antigen-specific antibody response as well as protecting mice
from challenge with heterologous influenza virus (27, 80, 83).

Electron beam (eBeam) technology has been investigated as a
method to generate vaccine-like immunomodulators against
Salmonella Typhimurium using a mice model (31). This concept
has been expanded to demonstrating the immunomodulatory
and protective effects of eBeam-inactivated Salmonella
Enteriditis and Typhimurium in chickens and Rhodococcus equi
in neonatal fouls (29–32, 40, 41, 64, 67). This concept is now
been expanded to include the use of low energy eBeam as
an inactivation technology for vaccine development with
considerable success (73, 77, 82).
ROLE OF ADJUVANTS

For a vaccine formulation to be effective upon challenge, it must
be able to induce a prolonged and protective immune response.
Live attenuated vaccines that retain their ability to replicate with
a host, naturally eliciting a strong CD8+ and CD4+ T cell
response, as well as a strong humoral response, while
inactivated vaccines often require the assistance of an adjuvant
to help the vaccine elicit a stronger immune response in the host.
An adjuvant is technically defined as a component that is added
to vaccine to enhance an immune response, and typically
provides the benefits of increased antibody titers and an
increased speed, breadth, and duration of an immune
response. Because radio-vaccines are unable to replicate within
a host, it has been proposed that their immunogenic potential
TABLE 1 | A selection of patents relating to radio-vaccines.

Patent # Country Year Statusa Title

US3657415A USA 1969 Expired Canine hookworm vaccines
DE3853854T2 Germany 1988 Expired Vaccine against group b Neisseria meningitidis, gammaglobulin and transfer factor
AU706213B2 Australia 1996 Ceased Method for obtaining a vaccine with wide protective range against group b Neisseria meningitidis, the

resulting vaccine, gammaglobulin and transfer factor
AU6320001A Australia 2001 Published Gamma irradiation of protein-based pharmaceutical products
KR20030034517A South Korea 2001 Granted Burkholderia gladioli k4 having antifungal activity, preparation method of its mutant by gamma radiation

and the mutant thereof
US20060147460A1 USA 2002 Granted Anticancer vaccine and diagnostic methods and reagents
KR101173871B1 South Korea 2004 Granted Modified free-living microbes vaccine compositions and methods of use thereof
US20050175630A1 USA 2004 Abandoned Immunogenic compositions and methods of use thereof
US8173139B1 USA 2009 Granted High energy electron beam irradiation for the production of immunomodulators in poultry
CA2733356C Canada 2009 Granted Influenza vaccines
US8282942B2 USA 2010 Granted Toxoplasma gondii vaccines and uses thereof
US20130122045A1 USA 2010 Abandoned Cross-protective influenza vaccine
US20150209424A1 USA 2011 Abandoned Inactivated varicella zoster virus vaccines, methods of production, and uses thereof
JP2014520117A Japan 2012 Granted Vaccine composition comprising inactivated chikungunya virus strain
AU2012211043B2 Australia 2012 Published Combination vaccines
US10080795B2 USA 2013 Granted Method for inactivating viruses using electron beams
WO2014155297A2 WIPObb 2014 Published Systems and methods for viral inactivation of vaccine compositions by treatment with carbohydrates and

radiation
WO2014165916A1 WIPOb 2014 Published Methods and compositions for inducing an immune response
DE102015224206B3 Germany 2015 Granted Irradiation of biological media in transported foil bags
KR20180036987A South Korea 2016 Published Vaccine composition
DE102016216573A1 Germany 2016 Published Inactivation of pathogens in biological media
WO2018167149A1 WIPOb 2018 Ceased Method for irradiating mammalian cells with electron beams and/or x-rays
WO2019191586A2 Canada 2019 Published Irradiation-inactivated poliovirus, compositions including the same, and methods of preparation
WO2020069942A1 WIPOb 2020 Published Method for inactivating biologically active components in a liquid
aStatus as of November, 2020; bWorld Intellectual Property Organization.
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TABLE 2 | List of radio-vaccines against bacterial, viral, and protozoan pathogens.

Type of
Pathogen

Pathogen Inactivation
Method

Inactivation
Dose

Model Notes Source

Bacteria Brucella abortus Gamma 4 kGy Mice Irradiated strains induced less of an immune response
than live strains

(56)

Bacteria Brucella abortus Gamma 3 kGy Mouse Antigen specific Th1 response (34)
Bacteria Brucella abortus Gamma 2.5 kGy Mice Stimulated IFN-gamma and Th1 cells (57)
Bacteria Brucella abortus Gamma 3.5 kGy Mice Protective upon challenge (58)
Bacteria Brucella abortus, B. melitensis, and B.

suis
Gamma 3.5 kGy Mice Protective upon challenge (36)

Bacteria Brucella melitensis Gamma 3.5 kGy Mouse Cytotoxic T cell response and protective against
challenge

(35)

Bacteria Listeria monocytogenes Gamma 6 kGy Mouse Induced protective T cell responses (59)
Bacteria Mannheimia haemolytica Gamma 2-20 kGy Rabbit Protection upon challenge (60)
Bacteria Orientia tsutsugamushi Gamma 2 kGy Mice Partially protective upon challenge (61)
Bacteria Orientia tsutsugamushi Gamma 3 kGy Mice Protective upon challenge (62)
Bacteria Pasteurella tularensis X-ray 10 kGy Mice Partially protective upon challenge (63)
Bacteria Rhodococcus equi Electron Beam

(High Energy)
4-5 kGy Horse Produced cell-mediated and upper respiratory

mucosal immune response
(30)

Bacteria Rhodococcus equi Electron Beam 5 kGy Horse Not protective upon challenge (64)
Bacteria Rodentibacter pneumotropicus Electron Beam

(Low Energy)
20 kGy Mice Protective upon challenge and reduced colonization (65)

Bacteria Salmonella Enteriditis Electron Beam
(High Energy)

2.5 kGy Chicken Protective upon challenge and reduced colonization (66)

Bacteria Salmonella Typhimurium Electron Beam
(High Energy)

2.5 kGy Chicken Heterophil-mediated innate immune response (67)

Bacteria Salmonella Typhimurium Electron Beam
(High Energy)

7 kGy Mouse Stimulated innate immune markers and reduced
colonization

(31)

Bacteria Salmonella Typhimurium Gamma 10-80 kGy Chicken Protective upon challenge (68)
Bacteria Shigella dysenteriae X-ray Not reported Rabbits Bacteria that were treated for a longer time were non-

toxic and protective upon challenge
(44)

Bacteria Staphylococcus aureus Gamma 2.5-2.9 kGy Mice Induced specific antibody production, but not
protective upon challenge

(69)

Bacteria Staphylococcus aureus Gamma 25-40 kGy Mice Induced B and T cell-dependent protection against
challenge

(70)

Bacteria Streptococcus pneumoniae Gamma 12 kGy Mice Protection upon challenge mediated by B-cells and
innate IL-17 response

(71)

Bacteria Streptococcus pneumoniae Electron Beam 25 kGy Rabbit and
Mice

Immunogenic and protective upon challenge (72)

Protozoa Eimeria tenella Electron Beam
(Low Energy)

0.1-0.5 kGy Chicken Partially protective upon challenge (73)

Protozoa Eimeria tenella X-ray 0.2 kGy Chicken Protective upon challenge (74)
Protozoa Plasmodium berghei X-ray 0.02-0.15

kGy
Mouse Protective upon challenge (75)

Protozoa Plasmodium falciparum Gamma 0.12-0.15
kGy

Human Long-lasting protective immunity (76)

Protozoa Plasmodium gallinaceum X-ray 0.005-0.2
kGy

Mosquito Sporozoites from irradiated oocysts were non-infective (49)

Virus Human Respiratory syncytial virus
(RSV)

Electron Beam
(Low Energy)

20 kGy Mice Reduction in viral load upon challenge (77)

Virus Influenza A virus Gamma 12.6 kGy Mice Induced cytotoxic T cells and protective upon against
challenge

(78)

Virus Influenza A virus Gamma 10-40 kGy Mice Cross-reactive and cross-protective cytotoxic T cell
responses

(79)

Virus Influenza A virus Gamma 10 kGy Mice Protective upon challenge; freeze-drying did not affect
cross-protective immunity

(80)

Virus Influenza A virus Gamma 50 kGy Mice Intranasal vaccination conferred complete protection (81)
Virus Influenza A virus Electron Beam

(Low Energy)
30 kGy Mouse Elicited a protective immune response (82)

Virus Influenza A virus Electron Beam 25-40 kGy Nonhuman
primate

Elicited seroconversion (51)

Virus Influenza A virus Gamma 10 kGy Mice Protective upon heterotypic challenge (83)
Virus Middle Eastern Respiratory Virus

(MERS)
Gamma 50 kGy Mice Caused lung immunopathology upon challenge (84)

Virus Polio Virus Gamma 45 kGy Mice Protective upon challenge (85)
Virus Rotavirus Gamma 50 kGy Mice Induced a specific neutralizing-antibody response (86)
Virus Severe Acute Respiratory Syndrome

coronavirus 2 (SARS-CoV-2)
Gamma 50 kGy Mice Adjuvanted vaccine elicited T and B cell responses (52)

Virus SARS-CoV-2 Gamma 25 kGy Mice Humoral and cellular immune response, induced
neutralizing antibodies

(87)

Virus Vaccinia virus Gamma 0-15 kGy Rabbit Inactivated virus was immunogenic (48)
Virus Venezuelan Equine Encephalitis

Vaccine
Gamma 80-100 kGy Guinea Pig Protective upon challenge (88)

(Continued)
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has to be enhanced by the addition of an adjuvant. There are
several reports about coupling radio-vaccines with experimental
and commercially available adjuvants. Bayer et al. tested four
different adjuvants in combination with Respiratory syncytial
virus inactivated with low energy electron beam: Alhydrogel
(alum based), MF59 (squalene based), QuilA (saponin based),
and Poly IC : LC (synthetic double-stranded RNA based) (77). In
their study, strong immune responses and significant reductions
in viral loads were detected after immunization and subsequent
challenge, although the poly IC : LC adjuvanted vaccine elicited
lower titers of neutralizing antibodies than the other adjuvanted
vaccines tested (77). Substantial humoral and cellular responses
were observed when a gamma-inactivated polio vaccine
candidate was combined with an alum adjuvant and when a
gamma-irradiated HIN1 vaccine was co-administered with a
plasmid encoding mouse interleukin-28B (99, 100). Gamma-
inactivated SARS-CoV-2 also benefited from the addition of a
GM-CSF adjuvant in order to induce a T cell response (52).
CONCLUSIONS
Though ionizing radiation has been researched as a vaccine
technology for nearly a century, only recently have vaccines
utilizing ionizing radiation reached commercial development.
The general lack of interest in radio-vaccines could be attributed
to advances in cloning technologies, mRNA vaccines and gene
editing technologies. The recent availability of small footprint,
low energy eBeam and X-ray equipment could, however, spur the
development of radio-vaccines once again. Commercialization of
eBeam and X-ray technologies for the medical device, food, and
other industrial applications has led to a decrease in overall
technology costs and an increase in technology availability (101).
This review highlights the potential of ionizing radiation as a
Frontiers in Immunology | www.frontiersin.org 6
vaccine technology suitable against several pathogens causing
diseases in various hosts species. This has been most recently
demonstrated in the rapid development of vaccine candidates in
response to the COVID-19 pandemic, caused by the virus SARS-
CoV-2. Radio-vaccines have even been investigated as a response
to previous outbreaks of SARS and MERS, and it was
hypothesized that ionizing radiation could be used to rapidly
produce a vaccine for SARS-CoV-2 (84, 102–104). Gamma-
inactivated SARS-CoV-2 combined with GM-CSF as an
adjuvant has demonstrated ability to induce neutralizing
antibodies as well as a strong T and B cell response (87, 105).
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97. Arévalo-Herrera M, Vásquez-Jiménez JM, Lopez-Perez M, Vallejo AF,
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