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Abstract

Cats, similar to humans, are known to be affected by hippocampal sclerosis (HS), potentially

causing antiepileptic drug (AED) resistance. HS can occur as a consequence of chronic sei-

zure activity, trauma, inflammation, or even as a primary disease. In humans, temporal lobe

resection is the standardized therapy in patients with refractory temporal lobe epilepsy

(TLE). The majority of TLE patients are seizure free after surgery. Therefore, the purpose of

this prospective cadaveric study is to establish a surgical technique for hippocampal resec-

tion in cats as a treatment for AED resistant seizures. Ten cats of different head morphology

were examined. Pre-surgical magnetic resonance imaging (MRI) and computed tomogra-

phy (CT) studies of the animals’ head were carried out to complete 3D reconstruction of the

head, brain, and hippocampus. The resected hippocampal specimens and the brains were

histologically examined for tissue injury adjacent to the hippocampus. The feasibility of the

procedure, as well as the usability of the removed specimen for histopathological examina-

tion, was assessed. Moreover, a micro-CT (mCT) examination of the brain of two additional

cats was performed in order to assess temporal vasculature as a reason for possible intrao-

perative complications. In all cats but one, the resection of the temporal cortex and the hip-

pocampus were successful without any evidence of traumatic or vascular lesions in the

surrounding neurovascular structures. In one cat, the presence of mechanical damage (a

fissure) of the thalamic surface was evident in the histopathologic examination of the brain

post-resection. All hippocampal fields and the dentate gyrus were identified in the majority

of the cats via histological examination. The study describes a new surgical approach (par-

tial temporal cortico-hippocampectomy) offering a potential treatment for cats with clinical

and diagnostic evidence of temporal epilepsy which do not respond adequately to the medi-

cal therapy.
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Introduction

Epilepsy is a common neurologic disease in cats [1]. When animals experience epileptic sei-

zures in absence of structural brain lesions, metabolic disturbances, or the influence of a toxin,

they are diagnosed with idiopathic epilepsy (IE) [2]. In spite of evidence for genetic causes of

IE in dogs [3], the association of specific genetic variants with feline epilepsy remains elusive

[2]. However, great strides have been made in the evaluation of yet undetected epileptic dis-

eases in cats formerly presumed to have IE. Although additional validation studies are neces-

sary, important advances in neuropathologic investigation imply that the substrate of feline

seizures can be a disorganization in the hippocampal cytoarchitecture and/or connectivity, as

well as gliotic reactivity of the pyramidal cell band of the hippocampus fields (cornu ammonis

[CA]-fields), referred to as hippocampal sclerosis (HS). These findings might be in part ana-

logue to those described as a cause for human temporal lobe epilepsy (TLE) [4–8].

Different etiologies have been suggested to induce feline HS. Antibodies against voltage-

gated potassium channel complex can induce limbic encephalitis and later degeneration of

pyramidal neurons [9]. Such antibodies can be produced along underlying neoplasms [10];

however, in cats these antibodies were found mostly in absence of any neoplastic diseases [9].

A familial form of spontaneous epilepsy in cats has been described in association with geneti-

cally determined loss of neurons and gliosis in the hippocampus subfields [11]. Whereas HS

may provide the primary basis of epileptogenesis in some cats [12], it has also been suggested

that cats with chronic epilepsy may develop neuropathological changes consistent with HS as a

consequence of seizures, often with a history of status epilepticus [4,13].

A presumptive diagnosis of HS can be made on living animals using magnetic resonance

imaging (MRI) [14,15]. Hippocampal hyperintensities in T2-weighted and fluid-attenuated

inversion recovery (FLAIR) images, as well as hippocampal contrast enhancement, seem to be

significantly associated with HS [15]. Volumetric analysis of the hippocampus based on MRI

images allows the determination of hippocampal atrophy, which can be another feature of HS

[16,17]. In order to improve the detection of hippocampal pathology in MRI, optimized epi-

lepsy protocols have been developed [18]. Research conducted to improve the diagnostic sensi-

tivity of MRI for the detection of HS is of course not only motivated by the desire to rule out

IE. Several investigations established an association of HS with resistance to antiepileptic drugs

(AED) [4,9,13,19], which has a major influence on the individual prognosis of affected cats. As

animals with insufficient seizure control are often euthanized, non-pharmacological treatment

modalities are becoming increasingly important [20]. The resection of the hippocampus in

cats with HS may be capable of improving their quality of life and seizure frequency, or even

result in seizure freedom as it was shown for humans with TLE [21]. Human TLE is associated

with AED resistance, and thus surgical resection of the hippocampus, rather than AED-based

treatment, has become the therapy of choice and has thus far proved to have excellent clinical

outcome [21,22]. Although hippocampectomy was suggested as a treatment option for resis-

tant cats with HS [18,23], a surgical technique has not been introduced yet.

In this descriptive cadaveric study, we investigated the topographical morphology of the

feline hippocampus using 3D brain and skull models to examine possible surgical approaches to

the hippocampus in feline cadavers to allow removal of the hippocampus without harming the

deeper brain structures, and to obtain standardized tissue specimen for histological evaluation.

Materials and methods

Cats

Fourteen cats of different age were collected from the Department of Veterinary Clinical Sci-

ences, Clinic for Small Animals of the Justus-Liebig-University, Giessen. The cats were
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euthanized or had died from diseases unrelated to the skull and central nervous system. Written

consent was obtained from all owners that donated their animals for the study, and actual cats

remained anonymous. Two cats were excluded due to the presence of cerebral disease in the

pre-surgical MRI. Of the remaining twelve cats, ten were enrolled to perform the surgical proce-

dure and the other two were used for the mCT study of vascular supply in the surgical field.

The cats were all but two (British Shorthair, Persian) Domestic Shorthair cats (DSH), weigh-

ing between 0.5 and 5.6 kg (median weight: 3.79 kg). Median age was 4.9 years (range: 1 month

to 10 years). Of the twelve cats, six were females (3 spayed and 3 sexually intact) and six were

neutered males (Table 1). Cadavers were eligible for the current study if they did not present

morphologic brain abnormalities, as assessed through the pre-surgical MRI examination.

MR- and CT-imaging of the head

A standardized MRI protocol was used to examine the brain before and directly after removal

of the hippocampus using a 3.0-T superconductive system and a flex-mini sensitivity-encoding

coil (Siemens Healthcare). Sagittal, dorsal, and transverse T2-weighted (TE = 120 ms,

TR = 2.900 ms) and T1-weighted 3D sequences were acquired in all cats pre- and post-opera-

tively. Slice thickness varied from 1–2 mm. The field of view measured 180 x 180 mm. The

matrix was 288 x 288. Before surgery, CT data sets were also acquired with a 16-slice helical

CT scanner (CT Brilliance, Philips, Hamburg, Germany; 120 kV, 350 mAs, matrix 512 x 512,

slice thickness 0.8 mm, pitch 1).

Image processing

In order to find the appropriate surgical approach to the hippocampus, 3D models of the head

were built on the basis of MR- and CT images. Image processing for volume rendering of the

Table 1. Signalment and cause of death of the study cats.

Animals Breed Weight

(kg)

Age Sex Cause of death

1 Domestic

Shorthair

5.2 5 years Male,

neutered

Spinal fracture Th10

2 Domestic

Shorthair

3.5 10

months

Male,

neutered

Fractures of both femurs, fracture of the ileo-sacral joint on the right, fracture of the ileus,

fracture of the 3rd coccygeal vertebra

3 Domestic

Shorthair

3.7 4 years Male neutered Suspected rupture of the trachea with pneumomediastinum

4 Domestic

Shorthair

3.5 9 years Female, entire Subcutaneous emphysema and pneumothorax due to rips fracture after trauma

5 Domestic

Shorthair

3.75 8 years Male,

neutered

Tarsal luxation and mandibular luxation

6 Domestic

Shorthair

2.7 10 years Female,

neutered

Inguinal wound and hypothermia after trauma

7 British Shorthair 0.5 1 month Female, entire Atresia ani

8 Domestic

Shorthair

3.8 7 years Female,

neutered

Intestinal neoplasia

9 Domestic

Shorthair

4.2 5 years Female, entire Aortic thromboembolism

10 Domestic

Shorthair

5.6 9 years Female,

neutered

Aortic thromboembolism

11 Domestic

Shorthair

4.8 1 year Male,

neutered

High-grade mediastinal lymphoma

12 Domestic

Shorthair

4.2 11

months

Male,

neutered

Pulmonary contusion and pneumothorax after trauma

https://doi.org/10.1371/journal.pone.0244892.t001
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volumes of interest was achieved using specialized graphical software (AMIRA1, Mercury

Computers Systems, Berlin, Germany). This program can combine image information of CT

and MRI into 3D models. The hippocampus, brain surface, skull and skin surface were

extracted from the digital images by manually tracking the boundaries of the structures as

described previously [24]. Using landmark tools, the hippocampus was highlighted within the

brain model and its position was projected on the surface of the brain and skull.

mCT study

In order to visualize the blood vessels of the surgical area, the cerebral vasculature of two cats

was perfused with Solutrast1. Directly after death the chest was opened, the brachiocephalic

trunk was prepared, and a blunt cannula was inserted into the vessel. After tight fixation of the

cannula and ligation of the vessel caudal to the cannula, the animals were first perfused with

heparin (25000 UI) diluted in crystalloid solution (500 ml) to prevent the blood from clotting

in the vessels. The blood in the cerebral vessels was drained out through an incision on the

right auricle. Solutrast1 was infused into the vascular system after complete drainage of blood.

After exit of the Solutrast1 from the right atrium, the chest was tamponed, and the carcass was

stored at room temperature with the head hanging down for one night. Then, the brains were

removed from the skull and fixed in formalin.

The brains of the perfused cats were examined with the mCT System Skyscan 1173 of the

company Brucker Microct (Kontich, Belgium). The SKYSCAN 1173 is a high energy mCT

scanner which includes a 130 kV microfocus (< 5 μm), X-ray source (Hamamatsu 130/300),

flat panel sensor (detector), and a precision object manipulator. Before scanning, the brains

were wrapped in parafilm in order to avoid dehydration and fixed into the sample holder with

styrofoam. The sample holder was then positioned on the sample stage, between the X-ray

source and detector, within the mCT.

The voltage and current source selected for the acquisition were respectively 70 kV and

114 μA. The detector had a matrix size of 2240x2240 pixel, with a pixel size of 20.1 μm. In

order to reduce the beam hardening, a 1.00 mm aluminum filter was used. For each brain, two

scans were necessary in order to obtain a complete 3D image. The samples moved with a rota-

tion step of 0.25–0.30˚ on their vertical axis with a “step and shoot” type of motion, whereas

the detector was still. The exposure time was between 950–1100 ms. The result of the acquisi-

tion process was raw data in TIFF format with a depth of 16 bits. Next, the raw data was recon-

structed using a modified Feldkamp algorithm. As a result, three-dimensional data sets with

isotropic voxels and 8-bit grey tone distribution were obtained and saved as BMP files. The

digital processing and analysis of the 3D images was then performed with the program Ana-

lyze© 12.0, produced by the company Biomedical Imaging Resource (BIR) (Mayo clinic in

Rochester, MN, USA). For the identification of the hippocampal vasculature and its isolation

from the surrounding tissues, a grey threshold on a grey scale was set. Once the vessels of the

hippocampus were extracted, they were inserted in the cerebral frame in order to allow better

orientation. Relevant arteries in the surgical field were identified on the basis of published

investigations [25–27].

Tissue sample processing

All resected hippocampus specimens were fixed in 10% neutral-buffered formalin for at least 5

days at room temperature. Before paraffin embedding, the samples were taken off formalin

and pre-treated with phosphate buffered saline (PBS), in order to wash out formalin. This pro-

cess lasted 72 hours, and the PBS solution was replaced twice in order to optimize formalin dif-

fusion out of the samples. The resected specimens were infiltrated with paraffin wax and then
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embedded into wax blocks. These were then sectioned with a Leica RM2125RT Microtome.

Seven μm thick sections were mounted on standard microscope slides. Before staining, the sec-

tions had to be deparaffinized through a passage in a 100% xylene solution and then hydrated.

The slides were stained using Nissl staining (cresyl-violet). In order to obtain this staining,

after the hydration process the sections had to be put in a 50% potassium-disulphite solution

for 15–20 minutes before being washed with distilled water. Following this, the sections were

ready for staining in a 1.5% cresyl-violet solution for 20 minutes at room temperature. After

staining, a quick rinse in PBS was performed. The next step was a differentiation in alcohol:

the slides were immersed first in a 70% ethanol solution, then twice in a 96% ethanol solution,

and finally twice in a 100% ethanol solution to remove the excess stain. The dehydration pro-

cess was then completed through a passage in xylene.

After resection of the hippocampus, all brains were fixed in formalin and processed in the

same way as described above. 10–15 slides (76x52 mm) at different levels of the corticotomy

were obtained and stained with the cresyl-violet staining. These slides were used to evaluate

the extent of the resection and the presence of accidental traumatic injury in the structures

mesial to the hippocampus.

Results

Localization of the hippocampus within brain and skull

Using transparent skull and brain models, the opaque hippocampus could be clearly visualized

within the brain (Fig 1). The body and part of the tail of the hippocampus were identified

underneath the caudal ectosylvian gyrus in mesocephalic as well as in brachycephalic cats (Figs

1 and 2). The most lateral point of the body of the hippocampus was localized at the level of

the dorsal part of the caudal ectosylvian sulcus. Using landmark tools, the position of this part

of the hippocampus was projected to the bone and skin surface (Fig 2). It was then localized

using an imaginary line between the external occipital protuberance and the tip of the frontal

process of the zygomatic bone. The middle of this line marked the center of the craniectomy

site, approximately 0.5–1 cm rostral to the lateral cantus of the pinna.

Compared to mesocephalic cats, the brain of brachycephalic cats is distorted to accommo-

date their altered skull [24]. Due to the reduction in its longitudinal extension, the hippocam-

pus is less curved but has the same position underneath the caudal ectosylvian gyrus. The

concave side is slightly tilted towards the midline. The orbit of brachycephalic cats in this

study was closed, and thus the tip of the frontal process could not be used as an orientation

point. The external occipital protuberance and the base of the frontal process of the zygomatic

bone, where it merges with the zygomatic process of the frontal bone can be used as a land-

mark in brachycephalic cats (Fig 2).

Surgical technique

The cats were placed in sternal recumbency with the head positioned at a 45-degree rotation to

the right. Silicone cushions were used to hold this position. Using the landmarks explained

above, a straight dorso-ventral skin incision was made, from the sagittal crest to the temporo-

mandibular joint (5–6 cm). The underlying fascia and the temporal muscle were dissected,

and the two edges of the muscle were retracted using Weitlaner retractors to expose the parie-

tal and temporal bone (Fig 3). After spreading the temporal muscle, the cranial sutures

between the frontal, parietal, and sphenoid bone could be used as landmarks. The coronal

suture (fronto-parietal suture) marks the rostral boundary, and the squamous suture (spheno-

parietal suture) marks the ventral boundary of the craniectomy (Fig 3). A rectangular opening

(ca. 2 x 3 cm) over the caudal sylvian and ectosylvian gyri was created 0.5–1 cm caudal to the
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coronal suture using a power-assisted drill and was enlarged as necessary using a Kerrison ron-

geur (Fig 4A). The orientation on the cranial sutures worked well in both mesocephalic and

brachycephalic cats. The underlying dura mater was opened with an upside-down Y-shaped

incision using an 11-scalpel blade and Castroviejo scissors (Fig 4B). The large meningeal

branches from the caudal and medial cerebral arteries were spared. The three parts of the dura

could then be easily reflected to expose the caudal sylvian and caudal ectosylvian gyri (Fig 4C).

Unlike in other species, the caudal and rostral part of the ectosylvian sulcus does not have

connective middle part in cats [28]. Thus, the upper end of the caudal ectosylvian sulcus was

used as a leading structure for the incision into the cortical surface (Fig 4D). On the surface of

the temporal lobe, at the level of the pseudosylvian fissure, the medial cerebral artery splits into

three to four main branches [25]. From this point, the caudal main branch traverses the caudal

sylvian gyrus and divides into subbranches, which run over the caudal sylvian and ectosylvian

gyri. In some cats used in this study, the caudal ectosylvian gyrus also received vessels from

branches of the caudal cerebral artery that approached from the dorsolateral aspect of the

occipital lobe. These vessels were cauterized on both sides of the caudal ectosylvian gyrus. The

Fig 1. Localization of the hippocampus within the brain. 3D models of the skull and brain of a domestic shorthair cat based on CT- and MRI-images. Model

A shows the whole brain (red) within the skull. Model B gives an overview of the neocortical sulci and gyri of the same brain. The brain surface is transparent

in model C that displays the hippocampus (yellow) within the brain. Most of the hippocampus (head, body and parts of the tail) is situated underneath the

caudal ectosylvian sulcus. ob: olfactory bulb; cor: coronal sulcus; Ecs: ectosylvian sulcus; ecs: ectosylvian gyrus; syl: sylvian gyrus; psyl: pseudosylvian fissure;

emg: ectomarginal gyrus; Ems: ectomarginal sulcus; cb: cerebellum; flo: flocculonodular lobe.

https://doi.org/10.1371/journal.pone.0244892.g001
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cortex of the ectosylvian gyrus was horizontally transected using an 11-scalpel blade 3–5 mm

below the upper end of the ectosylvian sulcus (Fig 4D). The underlying white matter was

gently dissected and gradually removed until cerebrospinal fluid emerged from the lateral ven-

tricle. The alveus of the hippocampus contrasted with a glistening ebony color against the

matt-white myelin of the surrounding cortical white matter (Fig 4E and 4F). The ependymal

lining of the ventricle appeared greyish in color.

The opening in the pallium was ventrally enlarged on each side of the first cortical incision

to further expose the hippocampus by gradually cutting the caudal ectosylvian gyrus left and

right parallel to the adjacent sulci using the scalpel blade and Castroviejo scissors. The paren-

chyma of the ectosylvian gyrus was gently pulled laterally and ventrally using a spatula or a

Fig 2. Localization of the ectosylvian sulcus and the hippocampus from the skin surface and skull. 3D models of the head, skull, and brain of a mesocephalic

Domestic Shorthair cat (A,B) and a brachycephalic Persian cat (C,D), in lateral (A,C) and a dorsal view (B,D). The graphical software combines MRI- and CT-images.

The hippocampus can be localized within the brain and the position can be projected on the brain and skull surface.

https://doi.org/10.1371/journal.pone.0244892.g002
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nerve hook and further dissected until the temporal horn of the ventricle was exposed (Fig 5A).

The gyrus was cut on its ventral aspect and then fully removed. The cortical window could be

mildly enlarged by reducing the adjacent white matter of the sylvian gyrus using surgical suc-

tion, exposing the transition from the hippocampus to the fimbria and the rostral choroidal

artery, which was cauterized dorsally and ventrally on the exposed part of the hippocampus. A 1

x 2 cm neurosurgical patty (Neurosorb1) was moistened and placed at the ventral edge of the

excised ectosylvian gyrus. A horizontal incision was made in the dorsal part of the exposed hip-

pocampus and the cut was deepened and enlarged until the longitudinal hippocampal artery on

the caudo-medial side was ruptured (Fig 5B). The procedure was repeated on the ventral aspect

of the exposed hippocampus (Fig 5C). Next, the fimbria was transected. The isolated middle

part was then gently pulled out by transecting its mesial connections with the help of a nerve

hook and placed on the surgical patty (Fig 5D and 5E). The head and tail of the hippocampus

were removed using surgical suction as much as possible under visual inspection.

At the end of the procedure, the dura mater was closed with a running suture using 5–0

Polyglactin. A standard closure method was then used to suture the temporal fascia, the subcu-

taneous tissues, and the skin. Operating time was approximately 120 minutes on average with

this technique.

Possible intraoperative complications

During the procedure, intraoperative complications were recorded. While opening the tempo-

ral fascia, the superficial temporal vein was damaged in one cat provoking hemorrhage. This

vessel lies over the ventral border of the temporal muscle and should be avoided during this

phase. Blunt dissection of the temporal musculature is preferable in order to prevent muscular

bleeding and disruption, even if sharp dissection is faster and allows to prepare a wider bony

surface. Excessive retraction of the temporal muscle rostrally could provoke a bulbus prolapse

with traumatic damage to the optic nerve and secondary blindness can occur. While drilling

the craniectomy, the transverse sinus was opened in one cat. For this reason, the craniectomy

Fig 3. Pterional craniotomy: Bony anatomical landmarks. The cat’s head is turned 45˚ to the side in order to place the zygomatic arch at the highest point. Landmarks

for skin incision are the frontal process of the zygomatic bone and the external occipital protuberance. A skin incision is made in the middle of an imaginary line

connecting the two landmarks (A). After dissection and spreading of the temporalis muscle, the left parietal and temporal bone is exposed. The crossing of the coronal

and squamous suture is visible (B). The same landmarks that can be used for the orientation on the skin surface can be used at the calvaria as well. The middle point of

these imaginary line marks the position of the craniectomy site with the hippocampus body at the center.

https://doi.org/10.1371/journal.pone.0244892.g003
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should not reach the level of the nuchal crest. In all cats, the longitudinal hippocampal artery

must be transected during the procedure which can cause considerable hemorrhage.

Vascular supply of the hippocampus

mCT of the contrast-injected cat brains revealed the vascular supply of the hippocampal for-

mation. The main blood supply to the hippocampus comes from the caudal cerebral artery

which emits the longitudinal hippocampal artery at the medial base of the piriform lobe

[25,26]. Both vessels follow the convex longitudinal axis of the medial side of the hippocampus

(Fig 6). The large caudal cerebral artery runs more rostrally and curves around the medial

geniculate body. The longitudinal hippocampal artery is much smaller. In all cats in this study,

Fig 4. Transcortical approach to the hippocampus (part 1). Intraoperative photograph showing the view on the left sylvian and ectosylvian gyri and

corresponding sulci after craniectomy and dural exposure (A). Tripartite dural incision (B). View of the brain surface after reflection of the dura (C).

Magnified view on the incision in the dorsal ectosylvian gyrus (D). High magnification photograph of the transcortical access to temporal horn (E) and

exposure of the hippocampal body (F). Ecs: ectosylvian sulcus; ecs: caudal ectosylvian gyrus; hip: hippocampus; lv: lateral ventricle syl: caudal sylvian

gyrus.

https://doi.org/10.1371/journal.pone.0244892.g004
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there was not a single artery, but rather this vessel was divided into two to three arteries sitting

in the hippocampal fissure between the dentate and parahippocampal gyrus (Figs 5E and 6).

From the longitudinal hippocampal artery, numerous segmental vessels run nearly parallel

Fig 5. Transcortical approach to the hippocampus-hippocampal resection (part 2). Intraoperative photograph showing the hippocampus after resection of the

temporal neocortex (caudal ectosylvian gyrus). The hippocampus is cut off dorsally (B) and ventrally (C) with an 11-scalpel blade; then its mesial connections are

carefully transected with the help of a nerve hook (D) and the hippocampus is pulled out and removed (E). After completing the resection, the medial geniculate body

and the caudal cerebral artery become visible (F, enlarged view). ecs: caudal ectosylvian gyrus; syl: caudal sylvian gyrus; rcha: rostral choroidal artery; hip: hippocampus;

lv: lateral ventricle; fi: fimbria; hcf: hippocampal fissure; phg: parahippocampal gyrus; mgb: medial geniculate body; cca: caudal cerebral artery; lha: longitudinal

hippocampal artery.

https://doi.org/10.1371/journal.pone.0244892.g005
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towards the hippocampal fissure and supply the parenchyma of the hippocampus (as internal

transverse hippocampal arteries) by penetrating the dentate gyrus and connecting with the ros-

tral choroidal artery [25,26]. The rostral choroidal artery runs on the rostral side of the hippo-

campus in the shallow sulcus between fimbria and the hippocampus. This artery does not

contribute to the hippocampal blood supply but gives rise into the choroid plexus of the third

ventricle [25,26]. However, this artery must be considered as a source of hemorrhage during

hippocampus resection.

Postoperative MRI and histological evaluation of the resected tissue

Postoperative MRI and histopathological examination revealed that in all cats the whole body

of the hippocampus could be resected en bloc (Fig 7A and 7B). In nine cats, there was no evi-

dence of alterations in the surrounding structures. In one animal, the presence of a laceration

in the thalamus was evidenced in the histopathological examination of the brain. The same

lesion was not visible in the MRI post-resection. The entorhinal cortex and the amygdala adja-

cent to the hippocampus could not be removed.

All hippocampal specimens could be histologically examined and identification of the pyra-

midal and granular cell bands of all hippocampal fields was possible in five cats. In the other

five, partial loss of these was evident. The subiculum, presubiculum and parasubiculum were

in all cats damaged to a varying degree. In 3 specimens, the infrapyramidal blade of the dentate

gyrus was also disrupted (Fig 7C–7E). The entorhinal cortex was not included in the specimen.

The fimbria was in all cats torn off the hippocampus and was just partially visible.

Discussion

Feline HS may occur as a primary disease of the hippocampus, or as a consequence of status

epilepticus or chronic cluster seizures [4,11,29–31]. Regardless of whether hippocampal

Fig 6. Illustration of the blood supply of the hippocampus. Maximum intensity projection of the contrast-injected vascular supply of the hippocampus in a dorsal

view reveals the major blood vessels of the hippocampus (A). The brain and other vessel images have been removed using a grey threshold. The histopathological section

of the hippocampus shows the relevant arteries in the surgical field (B).

https://doi.org/10.1371/journal.pone.0244892.g006
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sclerosis is cause or the consequence of seizures, the change in the cellular architecture is

assumed to predispose for seizure development, propagation, and enhancement as well as for

refraction to medication [4,18,20]. Surgical resection of the hippocampus and associated tem-

poral lobe structures is considered an effective treatment for refractory seizures originating

from HS in humans, and seizure freedom rates after temporal surgery range between 69–90%

in humans [21,22]. Cats with seizures and HS may also benefit from hippocampal resection,

which is why an evaluation of possible surgical techniques is the first step towards the estab-

lishment of systematic epilepsy surgery in animals.

Due to morphological differences, the standard technique described for humans cannot be

directly adopted for cats. In humans, massive expansion of the temporal cortex caudal to the

non-growing insula creates a structurally distinct temporal lobe that is somewhat separated

from the rest of the hemisphere by the deep sylvian fissure [32]. The hippocampus head and

body follow this curved movement during development and the bulk of the hippocampus and

Fig 7. MRI before (A) and after (B) surgery and histological sections of the resected hippocampus (C-E). In the MRI post-resection, the left hippocampus

(body) as well as the temporal neocortex are absent. Nevertheless, most of the hippocampal tail and the whole head are still in situ (B). Histological sections of

the hippocampus after resection show that the specimen allow the examination of all CA-fields in most cases (C, D), but in some of them not all fields are

preserved and can be examined (E). The completeness of the resected specimens is also related to the surgeon’s learning curve.

https://doi.org/10.1371/journal.pone.0244892.g007
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amygdala lie separated from the rest of the hemisphere within the temporal lobe, which can be

resected en bloc [33]. In cats and other domestic carnivores, the temporal lobe has not devel-

oped to a comparable extent. The feline hippocampus lacks a distinct tapering from a head

into a tail [34,35]. The left and right hippocampi have a rather uniform shape in their dorso-

ventral course around the thalamus. The tail sits far dorso-medially underneath the corpus cal-

losum, and the head, associated with the amygdala, sits deep in the cerebral hemisphere adja-

cent to the thalamus [33,34,36]. The standard technique of anterior temporal lobectomy (also

called cortico-amygdalohippocampectomy) is therefore not applicable for cats, as a structurally

distinct temporal lobe has not evolved. Destruction of the hippocampus used to be frequently

performed in dogs and cats in experimental studies. Aiming to understand the physiology of

the hippocampus, researchers partially or totally removed the structure to study the effects of

the lesions in living dogs and cats [37–42]. The main approach used in such studies was a dor-

sal paramedian craniectomy in the parietal bone. The hippocampus was destroyed inside the

brain through a cortical resection window in the suprasylvian- and/or ectosylvian gyrus and

aspirated using surgical suction [37–43]. Access to the hippocampus is limited in this approach

and resection was incomplete in many animals. Furthermore, structural damage of the lateral

and medial geniculate body occurred in some of the operated cats [44]. Although the cortical

corridor may differ, the technique used in the old experimental studies resembles selective

amygdalohippocampectomy in humans, in which hippocampus and amygdala are removed

through different cortical corridors using an ultrasonic aspirator, a bipolar cautery, or suction

[33]. If histological examination of the resected tissue is not desired, such a minimally invasive

transcortical approach at variable sites might also be appropriate. In this case, the use of neuro-

navigational systems and an intraoperative microscope are most likely necessary to carry out a

successful surgery. In fact, thanks to these facilities, which are largely available in human neu-

rosurgery, selective amygdalohippocampectomy, the less invasive approach to mesial temporal

structures, can be performed in humans [33]. However, there is disagreement regarding as to

whether this approach or the more invasive cortico-amygdalohippocampectomy also known

as anterior temporal lobectomy is correlated with a better outcome and less post-operative

complications [45–51]. In veterinary medicine, the use of these devices could also be of great

help while performing mesial temporal resections, above all considering the aforementioned

anatomical and size differences existing between human and feline brains [36,52–54].

However, we consider pathologic examination of the resected tissue of paramount impor-

tance to verify the presumptive diagnosis of HS and to clarify the role of HS in epileptogenesis

and/or seizure perpetuation [4]. In this study, we designed an approach to remove the hippo-

campus and obtain specimens usable for histological examination at the same time. This

approach is partly built upon existing craniectomy techniques that were slightly refined. To

access most of the forebrain lobes, a standard rostro-tentorial craniotomy is described for dogs

and cats [53]. Using the crossing of the squamous suture and the coronal suture as a landmark,

opening of the skull in this approach resembles the pterional approach in humans. The Greek

word “pterion” describes a localization on the lateral calvarium where the squamous suture

meets the coronal- and spheno-squamosal suture. These sutures are also present on the skull

of cats [34] and thus we suggest referring to the craniectomy used for hippocampectomy in

cats as pterional craniectomy. A T-shaped incision of the temporal muscle was proposed to

access the temporal lobe in dogs [55], but such an incision was not necessary to sufficiently

expose the skull in the cats of this study. However, the tri-partite, or even better X-shaped, inci-

sion of the dura was vital to expose enough of the sylvian and ectosylvian gyri and to orientate

in the surgical field. A simple straight incision did not allow sufficient exposure of all cortical

landmarks. Particularly, the ventral end of a straight dural incision hindered preparation and

removal of the caudal ectosylvian gyrus and placing of the surgical patty on which the
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hippocampus bloc comes to lie after resection. Removal of the caudal ectosylvian gyrus was

necessary to achieve resection of the hippocampus tissue en bloc. Spreading the cortical mantle

after vertically cutting the caudal ectosylvian sulcus might also be possible to spare some of the

structural integrity of the gyrus. However, spreading the ectosylvian gyrus to an extent that

allows removal of the hippocampus en bloc could anyway lead to damaging the cortex in this

gyrus and, more importantly, compressing the medial cerebral artery in the adjacent pseudo-

sylvian fissure with devastating consequences for the vascular support of the hemisphere.

Spreaders might also further limit approachability to the hippocampus.

In this study, the presence of a thalamic laceration possibly due to manipulation during sur-

gery was evident in one cat. Since the same abnormality was not observed in the post-operative

MRI, it was speculated that this could also be an artefact related to the histological preparation

of the tissues. In fact, this is more likely to occur with less invasive approaches, in which the

hippocampus cannot be directly visualized by the surgeon, in absence of neuronavigational

systems as we know from the older studies [44]. With the approach described here it is indeed

more likely to provoke ischemic damage or swelling of the surrounding structures due to vas-

cular impairment and/or manipulation of the parenchyma.

The head and tail of the hippocampus could not be resected as a whole. However, as they

were visible as a distinct structure, they could be removed using suction. Sclerosis of the hippo-

campus can occur in combination with neuronal loss and gliosis in the amygdala [11,56]. The

epileptogenic role of the amygdala in cats has been emphasized in experimental studies

[12,57,58]. Thus, additional resection of the amygdala could provide more effective seizure

control than resection of the hippocampus alone [56]. The nuclear masses of the amygdaloid

body lie further rostro-ventrally underneath the sylvian gyrus [34,35]. Removal of the sylvian

gyrus in order to expose the amygdala might again carry the risk of damaging the medial cere-

bral artery. An approach to the amygdala might be possible by undermining the sylvian gyrus

from the corticotomy site laterally, but the view into this area is extremely limited. Further-

more, the medial aspect of the amygdala lies in close proximity to the cavernous sinus.

Removal of this brain section is hardly feasible using the approach described here.

The excised tissue did not include all parts of the hippocampal formation. The cutting line

is through the subiculum and parahippocampal gyrus, which is why examination of these

parts and the entorhinal cortex is not possible with this technique. The International League

Against Epilepsy (ILAE) classifies HS into three subgroups based on neuronal loss and gliosis

in the subfields of the hippocampus [59]. The subiculum and entorhinal cortex are not

included in this classification system, and thus absence of these parts in the resected tissue

seems to be acceptable at this time. A pioneering study investigating the hippocampus in a

large cohort of cats with HS demonstrated that all CA fields can show cytopathological changes

with the CA3 region being most frequently affected [4]. The quality of the specimen increased

with increasing experience with the technique. In the end, almost all CA fields were well pre-

served in the tissue specimen and would therefore be sufficient to allow reproducible examina-

tion according to standards in human neuropathology [59]. Diagnosis of HS relies mostly on

documentation of reduced pyramidal cell density and astrogliosis, which may differ through-

out the hippocampal axis, also in healthy cats. If only the body of the hippocampus is available

for examination, reference values on cellular density and cytoarchitecture for this part of the

feline hippocampus would be necessary to establish standardized examination and diagnosis

of feline HS.

The expected clinical manifestations of the loss of hippocampal tissue have been demon-

strated in the resection studies of the past century. The caudal ectosylvian gyrus is part of the

primary auditory cortex, which is tonotopically organized [60]. Unilateral loss of hearing fre-

quencies between 2.5 and 9 mHz must be expected after resection of the caudal ectosylvian
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gyrus, but there is no reason to expect total hearing loss on one side. Removal of the hippocam-

pus was associated with deficits in motivation, spatial memory, and orienting response, as well

as loss of conditioned reflexes and learned behaviors [38,42,61,62]. Cats can get hyperactive

and aggressive [63] and may have a disruption of their diurnal cycle [38,44]. Moreover, due to

the greater development of the temporal muscle in cats in comparison to humans, it can be

speculated that cats could develop problems with chewing and food uptake after invasive dis-

section of this muscle. Nevertheless, no studies evaluating surgical procedures of the temporal

area with involvement of the temporal muscle recorded such complications [64–67]. Further-

more, in our approach neither the muscular insertions nor its vascularization is compromised.

The known postoperative complications in human medicine can include fever, mild local

pain, and mild to moderate headaches. These symptoms normally resolve over few days. In

case they persist, it is indicated to perform a CT examination and a liquor study in order to

rule out meningitis [22]. The development of a hematoma after resection is also a possible

complication, but this can be removed in a second surgery [68]. In another study, the occur-

rences of infection of the bone lap (1.3%), mild hemiparesis (0.9%), hemianopia (0.4%), tran-

sient cranial nerve palsies (3.2%), transient postoperative language difficulties (3.7%), verbal

memory deficits (8.8%), postoperative psychosis (2.3%) and postoperative depression (5.5%)

are described as rare complications [21]. Global memory deficits occur rarely (1%), however

after dominant hemisphere resection verbal memory deficits and language deficits happen

very often (25–50% and 25–60%, respectively) [22].

Suitable candidates for surgical resection must be selected based on convergent lines of evi-

dence implicating the hippocampus as epileptogenic region. Feline HS in association with

feline partial seizures with orofacial involvement (FEPSO) seems to be a unique seizure disease

because the structurally abnormal brain area (epileptogenic lesion), the area from which the

abnormal electrical activity arises (epileptogenic zone), and the area that is responsible for the

clinical manifestations of the seizures related to FEPSO (symptomatogenic zone) [23] are com-

bined into a single structure [8]. Resective surgery might be most successful in these cats. How-

ever, a consensus about presurgical evaluation of a potential candidate for hippocampectomy

will be necessary.

Conclusions

Resection of the hippocampus and extraction of a hippocampus specimen for histopatholog-

ical examination should be feasible in cats. Resected tissue does not include subiculum, ento-

rhinal cortex, or amygdala. If seizures fail to respond to medication, then epilepsy surgery may

be an option for cats with intravital diagnosis of HS.

Acknowledgments

We wish to acknowledge the following individuals for their helping this study: Sigrid Kettner

for her support in performing the histopathological examinations, Gunhild Martels for the

mCT studies, and Ella Wenz for the MRI and CT studies.

Author Contributions

Conceptualization: Martin J. Schmidt.

Data curation: Jessica Zilli, Martin J. Schmidt.

Formal analysis: Jessica Zilli.

Investigation: Jessica Zilli, Marian Kampschulte.

PLOS ONE Partial cortico-hippocampectomy in cats

PLOS ONE | https://doi.org/10.1371/journal.pone.0244892 January 15, 2021 15 / 19

https://doi.org/10.1371/journal.pone.0244892


Methodology: Jessica Zilli, Monika Kressin, Marian Kampschulte.

Project administration: Monika Kressin, Anne Schänzer.

Resources: Monika Kressin, Martin J. Schmidt.

Supervision: Monika Kressin, Anne Schänzer, Martin J. Schmidt.

Validation: Anne Schänzer, Martin J. Schmidt.

Writing – original draft: Jessica Zilli, Martin J. Schmidt.

Writing – review & editing: Monika Kressin, Martin J. Schmidt.

References
1. Barnes H. Feline epilepsy. Vet Clin North Am Small Anim Pract. 2018; 48: 31–43. https://doi.org/10.

1016/j.cvsm.2017.08.011 PMID: 29037435

2. Pakozdy A, Halasz P, Klang A. Epilepsy in cats: theory and practice. J Vet Intern Med. 2014; 28: 255–

263. https://doi.org/10.1111/jvim.12297 PMID: 24438024

3. Ekenstedt KJ, Patterson EE, Mickelson JR. Canine epilepsy genetics. Mamm Genome. 2012; 23: 28–

39. https://doi.org/10.1007/s00335-011-9362-2 PMID: 22037590

4. Wagner E, Rosati M, Molin J, Foitzik U, Wahle AM, Fischer A, et al. Hippocampal sclerosis in feline epi-

lepsy. Brain Pathol. 2014; 24: 607–619. https://doi.org/10.1111/bpa.12147 PMID: 24698012

5. Gastaut H, Naquet R, Meyer A, Cavanagh JB, Beck E. Experimental psychomotor epilepsy in the cat;

electro-clinical and anatomo-pathological correlations. J Neuropathol Exp Neurol. 1959; 18: 270–293.

https://doi.org/10.1097/00005072-195904000-00004 PMID: 13642085

6. Wada JA, Wake A, Sato M, Corcoran ME. Antiepileptic and prophylactic effects of tetrahydrocannabi-

nols in amygdaloid kindled cats. Epilepsia. 1975; 16: 503–510. https://doi.org/10.1111/j.1528-1157.

1975.tb06080.x PMID: 1183427

7. Pakozdy A, Klang A, Kneissl S, Halász P. Naturally occurring temporal lobe epilepsy in cats. In: Pitkä-
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