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Abstract

Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to
investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the
food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac
content using enzyme-linked immunosorbent assay (ELISA). Among the 22 species/taxa for which three samples were
analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the
concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was
between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding
Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug
belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life
stages (nymphs/larvae vs. adults) and sampling dates (before, during, and after flowering). Our study is the first to provide
information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese
soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean.
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Introduction

Genetically modified (GM) crops expressing cry genes from

Bacillus thuringiensis (Bt) are widely used to control major insect

pests and are an important component of integrated pest

management (IPM) systems [1–4]. The damage caused by

lepidopteran pests greatly reduces soybean yield and quality [5].

Recently, Monsanto Company has developed an insect-resistant

transgenic soybean cultivar called MON87701. This soybean line

expresses the cry1Ac gene and exhibits excellent efficacy against

some lepidopteran pests [6,7].

Before a new GM plant is grown in the field, its potential for

harming valuable non-target organisms (NTO) is determined as

part of an environmental risk assessment [8–11]. Risk is a function

of hazard (here: toxicity of the insecticidal compound) and the

likelihood that this hazard will be realized (here: likelihood of

exposure to hazardous concentrations of the insecticidal com-

pound) [8,9]. Knowledge about the NTOs most likely to be

exposed to the insecticidal compound enables researchers to

determine which species should be the focus of risk assessment

[12–14].

Herbivores are directly exposed to Bt proteins when feeding on

transgenic plant tissues [15]. The quantity of Bt protein ingested

can differ widely among herbivore species. This variation reflects

the time and site of toxin expression in the plant, the feeding

ecology of the herbivores, and the amount of plant material that is

ingested [15–17]. For example, the two-spotted spider mite,

Tetranychus urticae (Acari: Tetranychidae), has been reported to

contain high concentrations of Cry proteins when fed Bt maize or

Bt cotton; the concentrations were equal to or even higher than

the levels in the plant tissues [18–20]. In contrast, larvae of

Lepidoptera like Helicoverpa amigera (Noctuidae) or Spodoptera
littoralis (Noctuidae) contain Cry protein levels that are one or two

orders of magnitude lower than those in Bt plant tissues [21,22].

Interestingly, sucking pests such as aphids and planthoppers were

reported to contain no or only trace amounts of Cry proteins after

feeding on Bt crops [23,24].

Predators are exposed to Bt toxins mainly by consuming

herbivores that have ingested the toxin [15]. Omnivorous species

can also acquire Cry proteins by directly feeding on pollen or other

Bt plant tissue. This has, for example, been reported for various

species of Heteroptera, such as Orius spp. (Anthocoridae), adult

Chrysoperla spp. (Neuroptera: Chrysopidae), and species of

ladybird beetles (Coleoptera: Coccinellidae) [25–29]. Tri-trophic

laboratory studies have revealed that various species of predators

belonging to different arthropod orders contain Cry proteins after

feeding on prey reared on Bt-transgenic maize, rice, or cotton

plants [15,19,27,30–40]. In general, the concentrations of Bt
proteins were significantly diluted when transferred to higher

trophic levels, and there has been no indication of toxin

accumulation, which is also consistent with field studies with

different Bt plants [30,40,41–45].

The objective of our study was to characterize the level at which

different arthropod species are exposed to the Cry protein when

foraging in Bt soybean fields. The larger goal was to identify non-
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target species that are most likely at risk as a consequence of such

exposure. These data will provide baseline information for further

non-target risk assessment of transgenic Bt soybean.

Materials and Methods

Ethics statement
No specific permits were required for the described field studies.

The soybean fields from which the arthropods used in this study

were originally collected were owned by the authors’ institute

(Institute of Plant Protection, Chinese Academy of Agricultural

Sciences, CAAS). These field studies did not involve endangered

or protected species.

Plants
Experiments were conducted with transgenic soybean

MON87701, which produces the Cry1Ac protein (Bt), and the

corresponding non-transformed near-isoline A5547. Soybean

seeds were supplied by Monsanto Company (St. Louis, MO,

USA). In 2010, the two soybean lines were sown at the Agriculture

Experiment Station of the Chinese Academy of Agriculture

Sciences (CAAS) located at Langfang, Hebei Province. Soybeans

were managed according to the common growing practices in the

region but without pesticide application. Bt soybean and control

soybean were grown in separate fields at a distance of about

500 m. Each field was divided into four 180-m2 plots

(length6width: 15 m612 m). Plots were isolated by belts of maize

plants (length6width: 5 m612 m).

Bt protein content in transgenic soybean plants
Different soybean plant tissues were collected at different

growth stages in 2010: before anthesis (V6–8 and V11–12; 1 to

25 August); during anthesis (R1 and R3; 26 August to 10

September); and after anthesis (R5, R6, and R7; 15 September to

10 November) [46,47]. Only leaves were collected before anthesis;

leaves and flowers were collected during anthesis; and leaves and

pods were collected after anthesis. At each sampling date, 30

leaves or 50 flowers or 20 pods were collected from 10 randomly

selected soybean plants from each of the four soybean plots as one

sample, resulting in a total 44 samples [leaves: 4 replications

(plots)67 growth stages, resulting in 28 samples; flowers: 4

replications (plots)61 growth stage (anthesis), resulting in 4

samples; pods: 4 replications (plots)63 growth stages (R5, R6,

R7), resulting in 12 samples] for each Bt soybean and control

soybean. The leaves were the third fully expanded trifoliate leaves,

and the flowers were taken from the upper part of the plants. All

samples were kept at 280uC for later ELISA analyses.

Cry protein content in arthropod species collected from
Bt soybean plots

Arthropods were collected from soybean plots using a sweep net

between 5 August and 30 October 2010 when the soybean plants

were at the V6 to R7 growth stage. In addition, leaves covered with

aphids were cut, put into a plastic bag, and transported to the

laboratory; soybean aphids were collected from the underside of the

leaves using a camel-hair brush and amicroscope. Immediately after

they were collected in the field, all other arthropods were placed

individually in 2- or 5-ml centrifuge tubes and were kept in a cooling

box to reduce metabolism and to reduce excretion of Bt protein.

Once transferred to the laboratory, the arthropods were immedi-

ately stored in a 280uC freezer. Since the experimental plots were

not large enough, and the arthropods were not evenly distributed,

for some species, we could not collect enough individuals for ELISA

measure in some plots, while in other plots excess individuals were

collected. In addition, ELISA measures showed that Bt concentra-

tions in samples collected from different field plots were not

significantly different. Therefore, we pooled arthropod individuals

of the same species collected from the different plots and

subsequently divided them in equal sub-samples for the ELISA

analyses. The arthropod species that were analysed are listed in

Tables 1 and 2 and in Table S1. Most species names were verified

using the Catalogue of Life (www.catalogueoflife.org) and Fauna

Europaea (www.faunaeur.org). Species names that were not

included in the databases were confirmed by experts from China

Agriculture University and Northwest A&F University.

ELISA measurement
The concentrations of Cry1Ac in fresh soybean leaves and

insect samples were measured by double-sandwich ELISA using

the Cry1Ac detection kit from Envirologix Inc. (Portland, ME,

USA). Before measurement, the collected arthropods were

identified to species and then washed in deionized water to

remove any Bt protein from their outer surface before lyophili-

zation. For small arthropods, several or many individuals were

pooled as a sample. For larger arthropods (e.g., the grasshopper

Atractomorpha sinensis; Orthoptera: Acrididae), one individual

was analyzed per sample. Thus, the dry weight of the arthropod

samples ranged from 1.6 to 100 mg. Table 1 and Table S1

provide information about the number of individuals that were

pooled per sample. Whenever possible, arthropods were split into

three samples that were analysed separately. Arthropod samples

were homogenized in phosphate-buffered saline with

0.05%Tween-20 (PBST). The ratio of lyophilized sample (dry

weight, DW) to extraction buffer was 20 mg:1 ml. After PBST was

added to the samples in a centrifuge tube, the samples were fully

ground with a Tissuelyser II mill from QIAGEN (Germany)

(frequency: 28/s, 4 min). After centrifugation at 120006 g and

appropriate dilution of the supernatants, ELISA was performed

according to the manufacturer’s instructions. The measured OD

values were calibrated to a range of concentrations of purified

Cry1Ac protein purchased from Envirotest-China (agent for

Envirologix Inc., Portland, ME, USA; www.envirotest-china.

com). The protoxin from B. thuringiensis had been expressed as

single-gene products in Escherichia coli at Case Western Reserve

University (USA). The protoxin inclusion bodies were then

dissolved and trypsinized, and then isolated and purified by ion

exchange HPLC; the pure fractions were then desalted and

lyophilized. The purity was about 94–96% (Marianne P. Carey,

Case Western Reserve University, personal communication). The

toxin was considered not detectable if the concentration was lower

than three-fold concentrations of blank optical density (about

0.02 mg/g DW).

Samples from various species belonging to the different

arthropod orders addressed in the present study that were

collected in control soybean plots were also analysed by ELISA

to test for any cross-reaction of arthropod proteins with the

ELISA. No such cross-reaction was apparent.

Statistical analyses
For comparison of Cry protein concentrations in soybean tissue

at different growth stages, one-way ANOVAs were carried out

followed by Tukey’s HSD test using SPSS 13.0.

Results

Bt protein content in transgenic soybean plants
Concentrations of Cry1Ac differed significantly among different

soybean plant tissues collected at different growth stages (one-way

Acquisition Cry1Ac Protein by Arthropods
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ANOVA, F10,65 = 314.80, P,0.0001) (Fig. 1). The Cry1Ac

content in leaves ranged from 25.50 to 37.50 mg/g DW. Before

anthesis, the leaves collected from Bt soybean plants at V6–8 and

V11–12 had similar Cry1Ac contents (P = 0.70). During anthesis,

Cry1Ac levels in leaves significantly declined, i.e., levels were

significantly lower at R1 and R3 than at V6–8 and V11–12. After

anthesis, the Cry1Ac content rebounded, reaching a level at R5

(37.50 mg/g DW) that was similar to the levels before anthesis.

Subsequently, the concentration in leaves declined significantly,

but the levels at R6 and R7 remained higher than the levels

measured during anthesis. The Cry1Ac concentration was

significantly lower in flowers than in any of the leaf samples but

was significantly higher than in pod samples (P,0.0001). Cry1Ac

contents were similar in pods at R5 and R6 but declined

significantly at R7 (P,0.0001). No Cry1Ac was found in control

soybean tissues.

Cry1Ac toxin content in arthropods represented
by three samples

In total, we collected and analysed different life stages of more

than 50 arthropod species/taxa belonging to 42 families in 10

orders (Tables 1, 2, Table S1). ELISA results for species for which

three sub-samples were analysed are presented in Table 1.

Among the species/taxa for which three samples were analysed,

a total of 17 were positive for Cry1Ac, i.e., the protein levels were

higher than the detection limit (Table 1). For all positive samples,

the amounts of Cry1Ac were lower than the amounts measured in

soybean leaf tissue (based on a mean level of 32 mg/g DW). By far

the highest concentration was detected in adults of the herbivorous

grasshopper A. sinensis, which contained up to 16.24 mg Cry1Ac/

g DW, representing about half of the concentration detected in

soybean leaves. For other samples, the species contained between

1 and 10% of the amount of Cry1Ac in soybean leaves, and these

species included adult Misumenopos tricuspidatus (Araneae:

Thomisidae), adults of unidentified Anthocoridae (Hemiptera),

adults of Deraeocoris punctulatus and nymphs of Lygus spp. (both

Hemiptera: Miridae), nymphs of Dolycoris baccarum and Halyo-
morpha halys (both Hemiptera: Pentatomidae), and nymphs of

Cicadella viridis (Homoptera: Cicadellidae).

For some species for which different life stages were collected,

the quantity of Cry1Ac significantly differed between adults and

larvae/nymphs. This was the case for three species of herbivores,

Table 2. Detection of Cry1Ac in arthropods collected from Bt soybean plots at different growth stages for which only one or two
sub-samples were analysed (by ELISA).

Cry1Ac Order Family: Species [stage analyseda]

Detected Araneae Linyphiidae: Erigonidium graminicolum (Sundevall) [A]

Coleoptera Curculionidae: Xylinophorus mongolicus Zumpt, T. [ A], Sympiezomias velatus Kôno, H. [A];
Chrysomelidae: Callosobruchus chinensis (Linnaeus) [A]

Diptera Agromyzidae: Melanagromyza sojae Zehntner [A]; Drosophilidae: n.i. [A]

Hemiptera Alydidae: Riptortus pedestris (Fabricius) [N,A]

Hymenoptera Apidae: Apis mellifera ligustica Spinola [A]

Lepidoptera Arctiidae: Spilosoma niveus (Ménétriés) [L]; Sphingidae: Clanis bilineata tsingtauica Mell [L]

Odonata Zygoptera: n.i. [A]

Orthoptera Acrididae: Diabolocatantops pinguis (Stål) [N,A]

Not detected Araneae Lycosidae: PardosaT-insignita Bosenberg & Strand [M]

Coleoptera Elateridae: Pleonomus canaliculatus Falderman [A]; Tenebrionidae: n.i. [A]

Dermaptera Anisolabididae: Euborellia pallipes Shiraki [A]

Diptera Anthomyiidae: Delia platura (Meigen) [A]; Calliphoridae: n.i. [A]; Dolichopodidae: n.i. [A]; Syrphidae:
Episyrphus balteatus (De Geer) [A], Sphaerophoria sp. [A]

Hemiptera Pentatomidae: Eysacoris guttiger (Thunberg) [A]

Hymenoptera Braconidae: Microplitis mediator (Haliday) [A]; Formicidae: n.i. [A]; Ichneumonidae: Campoletis chlorideae
Uchida[A]; Sphecidae: n.i. [ A]; Vespidae: n.i. [ A]

Lepidoptera Arctiidae: Spilosoma niveus (Ménétriés) [A]; Lycaenidae: Plebejus argus (Linnaeus) [A]; Pieridae: Colias
poliographus Motschulsky [A]; Pyralidae: Dichocrosis punctiferalis Guenée [A]

aA: adults, L: larvae, M: mixture of all available stages, N: nymphs; n.i. = species not identified.
doi:10.1371/journal.pone.0103973.t002

Figure 1. Cry1Ac toxin concentrations (mg/g dry weight,
mean+SE) in plant tissues of Bt soybean from the field. Samples
were taken before (I), during (II) and after anthesis (III) (n = 6). Bars with
different letters are significantly different at P,0.05.
doi:10.1371/journal.pone.0103973.g001
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including Lygus spp. and C. viridis, in which Cry1Ac concentra-

tions were generally higher in the nymphs than in adults, and A.
sinensis, in which levels were higher in adults than in nymphs

(Table 1). In the case of Trigonotylus ruficornis (Hemiptera:

Miridae), Cry1Ac levels in adults and nymphs were always below

the detection limit. For predators, two species contained higher

concentrations in the larvae than in adults, and these were

Propylea japonica (Coleoptera: Coccinellidae) and Chrysoperla
spp. In the case of Misumenopos tricuspidatus (Araneae:

Thomisidae), levels did not differ between adults and juveniles

(Table 1).

For some species, Cry1Ac concentrations differed among the

three sampling periods, i.e., before, during, and after anthesis

(Table 1). In the case of adults and nymphs of the herbivore Lygus
spp. and adults of the predator D. punctulatus, Cry1Ac

concentrations were highest before anthesis. In contrast, Cry1Ac

concentrations in nymphs of D. baccarum were highest after

anthesis. For adults of Paraluperodes suturalis nigrobilineatus
(Coleoptera: Chrysomelide), Cry1Ac levels were similar before,

during, and after anthesis.

Cry1Ac was not detected in any arthropod sample from control

soybean plots.

Cry1Ac toxin content in arthropods represented by one
or two samples

Results for species for which only one or two sub-samples were

analysed are summarized in Table 2. Rather than presenting

mean values for Cry1Ac concentration, Table 2 divides the species

into those which were positive or negative for Cry1Ac. Additional

details are provided in Table S1. Among species for which

analyses were replicated fewer than three times, 12 species/taxa

were positive for Cry1Ac (Table 2, Table S1). A significant

amount of Cry1Ac (about 13% of that detected in soybean leaves)

was detected in unidentified spiders belonging to the Thomisidae.

In addition, relatively high amounts of Cry1Ac (1 to 10% of that in

soybean leaves) were detected in adults of Sympiezomias velatus
(Coleoptera: Curculionidae), adults and nymphs of Riptortus
pedestris (Hemiptera: Alydidae), larvae of Spilosoma niveus
(Lepidoptera: Arctiidae), and adults of an unidentified species of

Zygoptera (Odonata). Nineteen species/taxa contained Cry1Ac

levels below the detection limit (Table 2, Table S1).

Discussion

Throughout the growing season, Cry1Ac protein concentrations

in Bt soybeans were higher in leaves than in other tissues. The

concentrations reached a maximum of 37.50 mg/g DW, which is

approximately equivalent to 13.4 mg/g fresh weight (FW) [7].

Thus, the Cry1Ac concentrations in Bt soybean leaves were higher

than the Cry1A concentrations reported from leaves of field-grown

Bt cotton (0.7 mg/g FW), Bt rice (8 mg/g FW), and Bt maize

(4 mg/g FW) [48–50]. The Cry1Ac concentration in soybean

leaves declined significantly during anthesis and then gradually

rebounded. A similar expression pattern has been reported for Bt
cotton [48]. It is well established that the Cry protein concentra-

tion in Bt-transgenic crops varies with plant variety, plant age, and

environmental conditions including temperature, relative humid-

ity, light, and soil properties [51–57]. It might thus be useful to

study the expression levels and patterns for other Bt soybean

varieties in other geographical regions where the plants will be

grown. The Cry protein concentrations reported also vary with the

detection method, including the extraction procedure and the

ELISA kit [58–60]. Because we used the same methods to analyse

all of our samples, the values reported within our study are

comparable.

For the assessment of the exposure of non-target species to

Cry1Ac toxin in Bt soybean fields, it is important to determine

which arthropod species are likely to be exposed to the toxin under

field conditions and at what level. We thus collected a total of 52

species or taxa belonging to 42 families in 10 different arthropod

orders from Bt soybean fields and measured their Cry1Ac content.

Among herbivores, no toxin was detected in the soybean aphid

Aphis glycines (Hemiptera: Aphididae), a species that feeds

exclusively on phloem sap. This result agrees with previous

reports that phloem feeders ingest little or no Cry protein when

feeding on Bt plant tissues [23,61,62]. In another sap-sucking

herbivore, the leafhopper C. viridis, significant amounts of Cry1Ac

were found in the nymphal stages but not in the adults. Previous

studies in Bt maize and Bt cotton fields also reported a low level of

Cry proteins in different species of Cicadellidae [43,44,63].

Mesophyll-feeding bugs (Hemiptera) belonging to the Miridae

(i.e., Lygus spp.) and Pentatomidae (D. baccarum and H. halys)
contained measurable concentrations of Cry1Ac (between 1 and

10% of the concentration measured in soybean leaves). In

contrast, levels detected in Rhopalus maculates (Hemiptera:

Rhopalidae) were less than 15% of that in leaves. In the case of

Lygus spp., nymphs contained much higher (5- to 23-fold)

concentrations than adults. A similar difference between life stages

has been reported for Lygus rugulipennis (Hemiptera: Miridae)

collected in Cry3Bb1-expressing Bt maize [44]. An artificial diet

study with Lygus hesperus (Hemiptera: Miridae) revealed that only

a small portion of the ingested Cry1Ac toxin was absorbed into the

hemolymph while most was excreted in a still biologically active

form [64]. Field investigations revealed that the abundances of

Lygus spp., C. viridis, and D. Baccarum were similar in Bt soybean

and control soybean (Yu et al., unpublished data). Although these

hemipteran pests ingested the Cry1Ac toxin, they did not appear

to be adversely affected [65].

In our study, a number of leaf-feeding herbivores contained

considerable amounts of Cry1Ac. By far the highest concentration

was detected in adults of the grasshopper A. sinensis (levels

reached 50% of that in soybean leaves), while their nymphs

contained amounts of Cry1Ac that were 75- to 8100-times lower.

The large difference between the life stages could be explained by

the fact that adults ingest significantly more food than nymphs

[66,67]and that adults are apparently inefficient at digesting or

excreting the ingested Cry1Ac protein. In contrast, adults of the

leaf beetle P. suturalis nigrobilineatus (Coleoptera: Chrysome-

lidae) contained low Cry1Ac toxin concentrations (less than 1% of

that in soybean leaves), and the concentrations did not differ

among soybean growth stages. This despite the fact that adults of

this species are reported to feed on soybean plants [68].The low

Cry1Ac concentration detected is surprising given that, in previous

studies, adults of Oulema species in Bt maize fields contained

among the highest concentrations found in the sampled arthro-

pods [43,44]. In the case of Lepidoptera that were analysed in the

current study, Cry1Ac was detected at low levels (up to 2% of the

concentration in soybean leaves) in larvae, while no toxin was

found in the adult stages, regardless of species.

Besides herbivores, a number of common predatory species

were collected and analysed in the current study. We found

detectable amounts of Cry1Ac in adults and larvae of Chrysoperla
spp., the larvae of P. japonica, the adults and nymphs of Geocoris
pallidipennis (Hemiptera: Lygaeidae), the adults and nymphs of

Orius spp., and the nymphs of Nabis stenoferus (Hemiptera:

Nabidae). The level was highest in G. pallidipennis at 0.3 mg/g

DW, which was 100-fold lower than the concentration in Bt
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soybean leaves. Overall, our data are similar to those reported for

generalist predators in Bt cotton, Bt rice, and Bt maize [41–45,69].

The level of exposure of predatory species to plant-expressed Bt
Cry proteins is highly variable and can differ depending on the

prey consumed, on the time of the last consumption, and on

whether the predators have directly consumed plant tissue such as

pollen [15]. The predators Geocoris spp. and Nabis spp., for

example, also directly feed on green leaf tissue [70,71]. Through-

out the soybean season, higher levels of Cry1Ac toxin were

detected in larvae than in adults of Chrysoperla spp. and P.
japonica. A likely explanation for the difference observed in the

case of Chrysoperla spp. is the difference in the food consumed.

While Chrysoperla spp. larvae are predaceous, adults consume

pollen, nectar, and aphid honeydew [72]. For P. japonica, the

situation is less clear because adults and larvae have a similar

feeding habit, i.e., both feed on aphids and other small arthropods

[73] and also utilize plant pollen and nectar as supplemental food

sources [74]. It is thus unclear what caused the difference in

Cry1Ac concentration in the two life stages of P. japonica.

Interestingly, similar results were reported from a field study with

Cry1Ab-expressing Bt maize in that field-collected larvae of the

spider mite predator Stethorus punctillum (Coleoptera: Coccinel-

lidae) contained about three-times more Cry protein than adults

[43]. Even under controlled laboratory conditions where S.
punctillumwas fed ad libitum with Bt maize-reared T. urticae,

the larvae contained significantly more Cry protein than the adults

[20]. Anthocorids such as Orius spp. are known to feed on pollen

in addition to prey. This is likely why Orius spp. collected in

flowering Bt maize fields contained more Cry protein than

specimens collected before or after anthesis [43]. In our study,

however, Orius spp. and an unidentified Anthocorid species

contained higher amounts of Cry1Ac when collected after soybean

flowering than during flowering. This suggests that pollen feeding

is not very important for these two species in soybean fields. The

adults of Deraeocoris punctulatus (Hemiptera: Miridae) contained

relatively high amounts of Cry1Ac toxin when collected before

anthesis, but not during or after anthesis. This might be explained

by the fact that D. punctulatus adults ingests Cry1Ac when they

supplement their diet by feeding on soybean tissues [75]. Adults of

the aphid predator Aphidoletes abietis (Diptera: Cecidomyiidae)

are known to feed on nectar and honeydew [76] and are thus not

exposed to the Cry protein.

Predatory spiders such as M. tricuspidata and E. graminicolum
are true generalists and play an important role in controlling pests

such as thrips, spider mites, leafhoppers, aphids, and lepidopteran

larvae in Bt crop fields [77]. In addition to encountering Bt toxin

when feeding on above-ground herbivores, spiders may also be

exposed to Bt toxin when feeding on pollen and when feeding on

soil-associated prey; the latter may have acquired the toxin as a

consequence of root feeding or as a consequence of the exudation

of toxin by roots and its subsequent passage through the detrital

food web [78,79]. Despite their contribution to biological control

and despite the multitude of pathways through which spiders may

be exposed to Bt toxins in agroecosystems, few studies have

measured the uptake of Bt toxin by spiders and their exposure

level in the field. In three previous studies with Bt maize or Bt
cotton, field-collected spiders of different families (Linyphiidae,

Araneidae, Tetragnathidae, and Theridiidae) were found to

contain detectable concentrations of Cry toxin, and the amount

of uptake of Cry toxin was associated with their prey spectrum

[41,44,63]. Generally, the uptake of Bt toxin by spiders

(Theridiidae and Lycosidae) is low because the toxin is diluted

as it is transferred from the first trophic level (Bt crops) to the

second (prey) and because rapid excretion and digestion likely

prevent the toxin from accumulating in spider bodies [33,40]. In

our study, three species of spiders (M. tricuspidata, E. gramini-
colum, and an unidentified species of Thomisidae) collected from

Bt soybean were found to contain Cry1Ac toxin, indicating that

exposure pathways exist for these spiders in soybean fields.

Although relatively high amounts of Cry1Ac (about 13% of the

level in soybean leaves) were found in the unidentified species of

Thomisidae, the data should be considered with caution because

the analysis was not replicated. Lower levels of Cry1Ac (about 1%

of that detected in soybean leaves) were found in adult M.
tricuspidatus throughout the soybean season, which suggests that

M. tricuspidatus in Bt soybean field is likely to consume prey that

contain a similar Cry concentration throughout the season and

that pollen consumption is not an important exposure pathway.

Conclusions

The current report provides the first data concerning the

exposure of non-target arthropods to Cry proteins in Bt soybean

fields. The Cry1Ac concentration detected in arthropods varied

among arthropod species/taxa, between arthropod life stages, and

among the growth stages of the soybean plants. The highest

Cry1Ac concentration, which was about 50% of that in soybean

leaves, was found in adults of a grasshopper species. Other

herbivorous arthropods that were positive for Cry1Ac contained

levels between 1 and 10% of that found in the plants; these

included a cicadellid sap-feeder, and a number of hemipteran

species that are known to feed on mesophyll tissue, and the adults

of a curculionid beetle. Among the predators, the highest

concentrations were detected in a thomisid spider and an

unidentified species of Anthocoridae. For the remaining species/

taxa, concentrations were ,1% or even below the detection limits

of the ELISA. Such information on the exposure of different

arthropod groups to the plant-expressed Cry protein within

complex food webs is required for non-target risk assessment.

More specifically, such information enables researchers to focus on

those species that are most likely to be at risk from the insecticidal

compound in Bt crops [15,23,80,81].

Supporting Information

Table S1 Cry1Ac concentrations in arthropods collected in Bt
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