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Abstract

Background: Vascular endothelial cells (ECs) express and release protein components of the complement pathways, as well
as secreting and anchoring ultra-large von Willebrand factor (ULVWF) multimers in long string-like structures that initiate
platelet adhesion during hemostasis and thrombosis. The alternative complement pathway (AP) is an important non-
antibody-requiring host defense system. Thrombotic microangiopathies can be associated with defective regulation of the
AP (atypical hemolytic-uremic syndrome) or with inadequate cleavage by ADAMTS-13 of ULVWF multimeric strings secreted
by/anchored to ECs (thrombotic thrombocytopenic purpura). Our goal was to determine if EC-anchored ULVWF strings
caused the assembly and activation of AP components, thereby linking two essential defense mechanisms.

Methodology/Principal Findings: We quantified gene expression of these complement components in cultured human
umbilical vein endothelial cells (HUVECs) by real-time PCR: C3 and C5; complement factor (CF) B, CFD, CFP, CFH and CFI of
the AP; and C4 of the classical and lectin (but not alternative) complement pathways. We used fluorescent microscopy,
monospecific antibodies against complement components, fluorescent secondary antibodies, and the analysis of .150
images to quantify the attachment of HUVEC-released complement proteins to ULVWF strings secreted by, and anchored
to, the HUVECs (under conditions of ADAMTS-13 inhibition). We found that HUVEC-released C4 did not attach to ULVWF
strings, ruling out activation of the classical and lectin pathways by the strings. In contrast, C3, FB, FD, FP and C5, FH and FI
attached to ULVWF strings in quantitative patterns consistent with assembly of the AP components into active complexes.
This was verified when non-functional FB blocked the formation of AP C3 convertase complexes (C3bBb) on ULVWF strings.

Conclusions/Significance: AP components are assembled and activated on EC-secreted/anchored ULVWF multimeric
strings. Our findings provide one possible molecular mechanism for clinical linkage between different types of thrombotic
and complement-mediated disorders.
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Introduction

Common clinical characteristics of the thrombotic microan-

giopathies, thrombotic thrombocytopenic purpura (TTP) and

atypical hemolytic-uremic syndrome (aHUS), include microvas-

cular platelet adhesion/aggregation/occlusion, thrombocytope-

nia, and mechanical hemolysis. [1] TTP is often associated with

a deficiency of functional ADAMTS-13 (mutations or autoan-

tibody-inhibited), the protease responsible for regulating the size

of circulating VWF multimers. There is an accumulation of

ULVWF strings on endothelial cell (EC) surfaces under

conditions when the ULVWF strings are secreted at increased

rates combined with lower amounts of functional ADAMTS-13.

[2,3] Bacterial toxins, inflammatory cytokines, phosphodiesterase

inhibitors and calcium ionophore are among the agents that

cause increased rates of ULVWF secretion from ECs [4–6].

aHUS is the result of excessive complement activation or, more

commonly, defective regulation of proteins of the alternative

complement pathway (AP). The primary effect of uncontrolled

AP activity in aHUS is damage to renal endothelium, resulting

in renal failure [7].

Although it has been established that AP regulation is

dysfunctional in aHUS, it is unclear what initiates the AP

activation. Limited activation of the AP can begin by direct

hydrolysis of an intra-molecular bond in C3 to C3-H2O.

Subsequent cleavage activation of C3, releasing 9 kDa fragment

C3a to form C3b, and further amplification of C3b production

depends on the presence of ‘‘activating surfaces’’ [8]. C3b (not
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intact C3) attaches covalently via an exposed thioester to

hydroxyl-containing amino acids (threonine, serine and tyrosine)

on activating surfaces [9]. C3b then binds factor B (FB) to

produce C3bB [10,11]. FB in the C3bB complex is cleaved to

active Bb by factor D (FD) to produce C3bBb, the AP C3

convertase (with t1/2 of 1–3 min) [12] that is stabilized by factor

P (properdin; FP) [13–15]. The Bb in C3bBb on an activating

surface cleaves fluid-phase C3 to generate additional surface-

bound C3b, a process that rapidly amplifies C3b generation

from C3. As the ratio of C3b to Bb increases, C3bBbC3b is

formed (as the AP C5 convertase), binds C5 with high affinity,

and cleaves C5 to C5b [12,16]. C5b combines with C6 and C7

to generate C5b67 complexes that insert into cell membranes. If

C8 and multiple C9 molecules combine with C5b67 complexes

in the cell membrane, then lytic C5b678(9)n terminal comple-

ment complexes (TCCs) are formed.

Factor H (FH) and factor I (FI) are fluid-phase negative

regulatory proteins of the AP [17,18]. FH can displace Bb from

C3bBb and C3bBbC3b complexes and enables FI to cleave and

inactivate C3b [19]. Heterozygous mutations of the CFH gene or

autoantibody-mediated inhibition of FH are prominent causes of

aHUS [20,21]. aHUS is also associated with heterozygous loss-of-

function mutations of CFI, and heterozygous gain-of-function

mutations in C3 or CFB [22,23].

In contrast to the AP, the classical complement pathway (CP)

and lectin-activated complement pathway (LP) are initiated by C1

(complex of C1q6, C1r2, C1s2) attachment to antigen-antibody

aggregates or mannose/N-acetylglucosamine-binding lectin

(MBL)/MBL-associated protein (MASP), respectively [24,25].

Both the CP and LP lead to cleavage and activation of C4 and

C2 to generate C4b2a complexes [8,26]. Analogous to activated

C3b, activated C4b has an exposed thioester capable of binding

covalently to surfaces [10]. The C2a protease in C4b2a (the

classical/lectin pathway C3 convertase) cleaves C3 into active

C3b.

Human ECs of a variety of types (umbilical vein, arterial,

lung microvascular, glomerular microvascular) secrete and

anchor ULVWF strings in response to many stimuli [5,27]. In

vivo, EC-secreted/anchored ULVWF strings are exposed to all

of the complement components in the circulation. After

verifying and quantifying human umbilical vein endothelial cell

(HUVEC) expression of complement proteins, we initially

studied ULVWF strings and the attachment of complement

components that were released exclusively from cultured ECs in

the absence of other plasma proteins. ULVWF multimers are

compressed in WPBs in a spring-like conformation that allows

its rapid unfolding to the EC surface after stimulation, without

additional application of shear stress or flowing conditions [28].

In our experiments, the non-flowing static conditions allowed

HUVEC-released complement components to accumulate and

bind to their targets [3,29]. The extensive interactions observed

between AP components and the anchored ULVWF strings

suggested AP activation. To test this hypothesis, we added

normal serum, heated in order to inactivate FB (a component

essential for AP activation), to the stimulated HUVECs and

measured the changes in C3, C5 and FB attachment to EC-

anchored ULVWF strings. Our goal was to determine if

HUVEC-anchored ULVWF strings function as activating

surfaces capable of initiating AP component attachment and

activation. The goal was achieved in our studies, and we

demonstrate here for the first time a possible molecular

mechanism linking complement activation and the initial events

in hemostasis-thrombosis.

Results

HUVEC Gene Expression of Complement Components
Transcripts for C3 and C5, the AP-specific complement

components CFB, CFD, CFP, CFH, CFI, and the CP-specific

component C4 were identified in HUVECs and quantified relative

to VWF expression for the first time using real time RT-PCR

(Fig. 1). TaqMan probes that recognize only cDNA transcribed

from mature mRNA were used in order to exclude genomic DNA.

Synthesis of CFD has never previously been detected in HUVECs

by any technique. FD is required to cleave C3b-bound FB to Bb

[the C3 convertase (C3bBb)] during AP activation.

The alternative pathway regulatory components CFH and CFI

were the only complement genes expressed in HUVECs at levels

in the range of VWF, a major synthetic product of human ECs:

CFH expression was similar to VWF and CFI was ,6-fold higher.

Expression levels of C5 and CFB were 10-fold and 70-fold lower,

respectively; and C3, CFD and CFP were ,500 to 1200-fold lower

than VWF expression levels.

Expression of the CP component C4 was 50-fold lower than

VWF.

Transcripts for the VWF protease, ADAMTS13, which is also

produced and released from HUVECs, [30] were ,10-fold lower

than VWF transcripts. ADAMTS13 was included in this study as an

additional indicator of EC transcription.

HUVEC-released Complement Components Bind to
HUVEC Secreted and Anchored ULVWF Strings

In the presence of the EC stimulatory substance, histamine,

HUVECs rapidly (within 2 min) secrete ULVWF strings from

their storage vesicles [Weible-Palade bodies (WPBs)] onto cell

surfaces. We have previously demonstrated the release of anchored

ULVWF strings from histamine stimulated HUVECs under non-

flowing, static experimental conditions. The static conditions allow

the accumulation of HUVEC-released proteins that would be

washed away under flowing conditions [3,29]. Antibodies to VWF

were added 2 min after the ECs were stimulated with histamine, to

identify fluorescently the ULVWF strings and to prevent cleavage

of the secreted/anchored ULVWF strings by HUVEC-released

ADAMTS-13. Over the following 15 min complement compo-

nents released from the HUVECs attached to the EC secreted/

anchored ULVWF strings.

Fluorescent imaging was used to analyze the attachment of

complement proteins to HUVEC-secreted and anchored ULVWF

strings. The polyclonal antibodies made against human comple-

ment proteins used in fluorescent microscopy experiments

specifically identify individual complement components, as dem-

onstrated by Western blots (Fig. 2). The serum samples applied to

the gels (usually 20–25 mg/lane) contained many-fold higher

amounts of protein than were secreted by the HUVECs during

our experiments; nevertheless, bands for other proteins other than

the specific complement factors (and corresponding cleavage

fragments) were not detected by the individual mono-specific

polyclonal antibodies made against the different complement

components. A degradation product of C4 is detected in the C4-

depleted serum and two degradation products of C5 are detected

in the C5-depleted serum.

In order to analyze FD and FP in serum, the quantities of

protein in gel samples were increased even further to ,100 mg/

lane. This is the maximum amount of protein per gel lane that

can enter completely, and be separated effectively, in our

electrophoresis system. The FD in the serum samples was still

undetectable because of the low FD serum concentrations (1–

2 ng/ml). In the blot detected with antibody to FP, the

Alternative Complement Components and ULVWF
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migration of the FP standard was altered slightly by the high

albumin concentration present in the FP-depleted sample in the

adjacent lane. The FP in normal serum (4–6 ng/ml) was barely

detectable.

The complement components in this study were not detected in

HUVEC WPBs and, therefore, it is improbable that ULVWF

multimers were pre-bound with complement proteins prior to

their secretion. The technical details are in ‘‘Fluorescent emission

‘bleed-through’ controls’’ in the Material and Methods section.

In the initial fluorescent imaging experiments, the complement

proteins analyzed for attachment to HUVEC-secreted and

anchored ULVWF strings were synthesized and released exclu-

sively from HUVECs and accumulated under the non-flowing

experimental conditions. Neither a serum nor plasma source of the

components was present in the experiments. Fluorescent images

and fluorescent intensity graphs of complement components

attaching along the HUVEC-secreted/anchored ULVWF strings

are shown in Figs. 3, 4, 5, 6, 7, and the quantitative attachment

data are summarized in Fig. 8.

AP-specific Complement Components FB, FD and FP
Attach to HUVEC-secreted/anchored ULVWF Strings

Each of the AP-specific components FB, FD and FP (the positive

AP regulatory protein) bound to the ULVWF strings with average

fluorescent intensities per micron of ULVWF string length that

were 30- to 50-fold higher than values for the classical pathway-

specific component C4 (C4 data shown in Fig. 7). FB, reactive only

with activated C3b not intact C3, bound most extensively to the

ULVWF strings (.1600 fluorescent intensity per micron)

(Fig. 3A). The measured fluorescent intensities for FP and FD

(,1000 units/micron) were also high, considering the low

expression levels of these components in HUVECs (as shown in

Fig. 1). This demonstrates a high affinity of FD and FP for

HUVEC-anchored ULVWF strings (Fig. 3B–C).

AP-specific Regulatory Components FH and FI Attach to
HUVEC-secreted/anchored ULVWF Strings

Fluorescent intensities measured for the AP-specific negative

regulatory components FH and FI along the ULVWF strings were

similar to each other (Fig. 4A–B, ,2400 units/micron), averaging

,30 to 40% lower than the fluorescence measured for the most

extensively bound complement components, C3 and C5, as

discussed below. FH displaces FB or Bb bound to C3b, thereby

preventing further AP activation. FH also acts as a cofactor for the

FI proteolysis and inactivation of C3b.

Complement Components C3 and C5 Attach to HUVEC-
secreted and Anchored ULVWF Strings

HUVEC-released C3 (in the form of C3b) was the complement

component that bound most extensively to the secreted/anchored

ULVWF strings, with average intensities of .4000 fluorescent

intensity units per micron of ULVWF string length (Fig. 5A).

HUVECs synthesize low levels of C3, as demonstrated by C3

mRNA levels in Figure 1; however, the extensive attachment of C3

indicates a high level of affinity of C3 for the HUVEC-anchored

strings.

C5 released from HUVECs was the second most abundant

complement component detected along HUVEC-anchored

ULVWF strings (.3000 fluorescent intensity units per micron)

(Fig. 5B).

The binding of C5 suggests that C5 convertases (C3bBbC3b)

have formed on the ULVWF strings because C5 binds preferen-

tially to C3b molecules within or adjacent to C3bBbC3b

complexes [16]. This interpretation was confirmed by the

demonstration that C3 and C5 often attached to the same

positions on HUVEC-secreted/anchored ULVWF strings (Fig. 6).

In these experiments, C3 was detected using a combination of two

mouse monoclonal antibodies. One of the monoclonal antibodies

was reactive only with C3b.

Figure 1. Gene expression of complement components in HUVECs. HUVECs were maintained for 24 hours in serum-free medium prior to
RNA extraction. Total RNA was isolated, reverse transcribed, and the cDNA was analyzed by real-time PCR using TaqMan probes with GAPDH as the
reference gene. The graph shows fold differences (log scale) of complement component expression in unstimulated HUVECs relative to VWF
expression (marked by asterisk). The line at 1 is the boundary between increased and decreased expression. Data shown are means plus SD, N = 4.
Values for ADAMTS13 (A13) are shown for comparison.
doi:10.1371/journal.pone.0059372.g001
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Classical and Lectin Pathway Complement Component
C4 Does Not Attach to HUVEC-secreted/anchored ULVWF
Strings

In contrast to C3 and C5, and the AP-specific components,

there was almost no binding of classical component C4 to

ULVWF strings. The average C4 fluorescent intensity measured

along the strings was 100-fold less per micron than the intensities

measured for C3 or C5 (Fig. 7).

Quantitative Summary
The quantitative data of exclusively HUVEC-released comple-

ment component binding to EC-secreted/anchored ULVWF

strings is summarized in Fig. 8. The fluorescent intensity at

594 nm (red), used for detection of the complement proteins

attached to HUVEC-anchored ULVWF strings, was not a result

of fluorescent ‘‘bleed through’’ from the 488-nm channel (green)

used for VWF detection. The experimental details that confirm

this conclusion are in the Materials and Methods section.

Complement Components do not Bind to Surfaces of
Unstimulated HUVECs

Neither C3 nor C5 exclusively released from the HUVECs, or

added in heated serum was detected on unstimulated HUVEC

surfaces devoid of ULVWF strings. The absence of C3 and C5 on

HUVEC surfaces, along with the absence of anchored ULVWF

strings, indicates that C3 and C5 were only bound to HUVEC-

secreted/anchored ULVWF strings in our experiments (Fig. 9).

Non-functional FB Reduces the Amounts of AP
Components on EC-secreted/anchored ULVWF Strings:
Functional Evidence for C3bBb (C3 convertase) and
C3bBbC3b (C5 Convertase) Assembly

The concentrations of complement proteins in normal human

serum are many-fold higher than the accumulated amounts

released by the HUVECs over the 15 min time period of the

previous experiments (summarized in Fig. 8). In the experiments

described in this section, heated serum (diluted to 25% in PBS) was

added to HUVECs during histamine stimulation. Binding

intensities per micron along EC-anchored ULVWF strings was

compared for C3, C5 and FB with the previous experiments using

exclusively HUVEC-released complement proteins. Heating to

56uC was necessary in order to prevent heat-labile serum

ADAMTS-13 from cleaving the EC-anchored ULVWF strings

prior to the addition of antibody to VWF (which also blocks

ADAMTS-13-mediated VWF cleavage). The functions of C3 and

C5 are unaffected by 56uC heat. In contrast, heating to 56uC
completely inhibits the proteolytic function of FB [31].

The non-functional, structurally altered, heated form of FB

exhibited an increased capacity for binding to HUVEC-anchored

ULVWF strings. The binding intensities of non-functional FB per

micron of ULVWF string in heated serum experiments were 2-fold

higher than the intensities of functional FB released exclusively

from HUVECs (Fig. 10). In contrast, less than half as much

functional C3 from heated serum attached to ULVWF strings

compared to the amounts of functional C3 attached exclusively

from HUVECs (Fig. 10). These results suggest that reduced

amounts of activated C3 (C3b) were generated, in the absence of

functional FB, even though increased amounts of fluid-phase C3

were available in the heated serum. We conclude that heated,

enzymatically-inactive serum FB bound competitively to C3b on

the ULVWF strings and formed inactive C3b-FB complexes

instead of active C3 convertases (C3bBb). Inactive C3b-FB

complexes are incapable of the proteolytic cleavage of C3 to

activated C3b that is required to attach C3b to certain surfaces (in

these experiments, to HUVEC-anchored ULVWF strings).

The binding of C5 to ULVWF strings also did not increase with

the addition of higher quantities of functional C5 in heated serum

(Fig. 10). This is compatible with a reduced number of ULVWF

string-bound C3b molecules restricting binding sites for C5 on

C3b molecules adjacent to, or in, C3bBbC3b (C5 convertase)

complexes [12,16]. The large increase in heat-inactivated FB

binding to the EC-anchored ULVWF strings may further restrict

C5 binding to the ULVWF strings by sterically hindering the

access of C5 to binding sites on C3b.

Discussion

In earlier reports, HUVEC transcripts of CFH [32,33] and C5

[34] were easily identified; however, gene expression of other

complement proteins was less convincing [33,35,36]. CFD

expression in HUVECs had not previously been investigated. In

our study, transcripts for complement components C3, C4A, C5,

CFB, CFD, CFH, CFI and CFP were verified and quantified

relative to VWF expression in unstimulated HUVECs using real-

time PCR and TaqMan expression assays.

AP negative regulatory components CFH and CFI were the only

complement genes expressed in HUVECs at levels comparable to

VWF. These results indicate that EC synthesis of FH and FI are

important for EC self-protection.

Excessive secretion/anchorage of endothelial cell-ULVWF

strings occurs in response to endothelial cell stimulation by many

agents, including histamine, shiga toxins, and inflammatory

cytokines [4–6,28]. Under our experimental conditions, [3]

ADAMTS-13 cleavage of cell-bound ULVWF strings is dimin-

ished or delayed, allowing the AP components to attach to, and

initiate C3b amplification, by the activating surfaces of the strings.

In the majority of the complement/ULVWF string binding

experiments in this study (Figures 3, 4, 5, 6, 7, 8), ADAMTS-13

was released from the HUVECs (along with complement

components) during the 2 min histamine stimulation and the

10 min time period when the cells were incubated with the anti-

VWF antibody and fluorescent secondary antibody combination.

The cleavage function of the ADAMTS-13 during the 2 min

stimulation was suppressed by the use of a relatively large volume

of fluid surrounding the cells (1 ml per 4.8 cm2 of surface area) that

reduced the affective concentration of released ADAMTS-13 near

the surface of the HUVECs as the ULVWF strings were secreted

and anchored. After the addition of the anti-VWF antibody,

ADAMTS-13 was no longer capable of cleaving the (anti-VWF-

coated) ULVWF strings [3,29]. We make the analogy between

Figure 2. Specificity of antibodies to human complement components. (A) Denatured, non-reduced samples were separated by 4–15% SDS-
PAGE and transferred blots were detected with polyclonal goat antibodies to single human complement components. Each blot contains lanes with:
50 ng of a purified complement protein (Std); normal serum (NS) containing 50 ng of the specific complement component; and an equal volume of
specific complement component-depleted serum (Dep). Arrows show relative molecular mass of each protein migrating in SDS and MW indicates
molecular weight markers in kDa. (B) FD and FP were analyzed by Western blots as described in (A) except: In the FD blot the Std lane contains
159 ng FD and NS lane contains 4 ng FD (FD serum conc. 1–2 ng/ml); and in the FP blot the NS lane contains 10 ng FP (FP serum conc. 4–6 ng/ml).
The Coomassie stained gels show the high levels of protein (,100 mg/lane) in the serum samples that were applied to the gels.
doi:10.1371/journal.pone.0059372.g002
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restricted of ADAMTS-13 activity (allowing some ULVWF strings

to remain uncleaved for our studies) and TTP or other thrombotic

microangiopathies with ADAMTS-13 activity that may be

inadequate for the rate of EC-secretion/anchorage of ULVWF

strings (augmented by cytokines in infection or inflammation).

Stimulation of HUVECs with histamine may result in the

release of other EC proteins or altered EC surface protein

exposure, in addition to WPB secretion of ULVWF strings. This

could account for the background binding (or cell surface binding)

of some complement proteins. Our studies were restricted to the

detection and measurement of complement proteins that were

bound to the HUVEC-secreted/anchored ULVWF strings.

Background subtraction of an equal number of data points, within

the same images and in parallel locations, makes it unlikely that

the measured intensities of the complement components on the

ULVWF strings were the result of random fluorescent binding.

Following the rapid secretion of ULVWF from WPBs, ULVWF

multimeric strings remain anchored to EC surfaces until smaller

VWF multimers are released into the plasma by ADAMTS-13

cleavage of the EC-secreted/anchored ULVWF. Without an

anchor point, the plasma-type small VWF multimers adopt a less

accessible globular conformation. Although we did not investigate

complement component interaction with plasma-type VWF

multimers, it is possible that the C3b recognition sites present on

EC-anchored ULVWF strings are not accessible (or less accessible)

on the globular conformation of plasma-type VWF.

In our studies, brief stimulation times and addition of VWF

antibodies (that block ADAMTS-13-mediated cleavage) combined

to restricted the cleavage of EC-secreted/anchored ULVWF

strings by HUVEC-derived ADAMTS-13. We previously dem-

onstrated that the addition of antibodies to VWF does not prevent

HUVEC-released ADAMTS-13 from attachment to EC-secreted/

anchored ULVWF strings [3]. The current experiments demon-

strate interactions between ULVWF strings and complement

components released from stimulated HUVECs. With the

exception of C4 (a component essential for CP and LP activation),

each of the other AP complement components studied (C3, C5,

and AP-specific proteins FB, FD, FH, FI and FP) attached to the

HUVEC-anchored ULVWF strings.

Small amounts of C3 are released from many cell types

(including HUVECs) and can be hydrated to an activated form

(C3-H2O) that initiates the conversion of C3 to C3b. Cleavage of

C3 releases the small C3a fragment and exposes a thioester in C3b

that covalently attaches to ‘‘activating surfaces’’ [10]. As shown by

our experiments, these include EC-anchored ULVWF strings.

Binding affinities of FH for C3b decrease as a result of the

structural changes that occur in C3b as it binds to an activating

surface [11,37]. The conformational changes in C3b after its

attachment to cell-anchored ULVWF strings may limit the

capacity of FH and FI to bind and inactivate C3b. This would

favor the assembly of C3 convertase (C3bBb) by FB, FD and FP,

and would allow amplification of C3 conversion to C3b and

promote additional C3b attachment to the strings.

The assembly and activation of HUVEC-released AP compo-

nents on EC-bound ULVWF strings would be associated with:

HUVEC-released functional FB and C3b binding to each other on

the ULVWF strings, followed by FB cleavage to Bb by HUVEC-

released FD; the formation of string-bound C3 convertase (C3bBb)

complexes; and amplification of C3b generation from C3. In the

presence of heated serum, which contains high concentrations of

functional C3 and non-functional FB, there was a decrease in C3b

binding to HUVEC-anchored ULVWF strings compared to

experiments when functional C3 and FB were released exclusively

from HUVECs. We conclude that a considerable quantity of C3b

binding to the strings, using HUVECs alone, was the result of

string-bound C3bBb (C3 convertase) assembly and amplification

of C3b generation from HUVEC-released C3. In the presence of

non-functioning FB in the heated serum, a poorly functioning C3

convertase assembled on the ULVWF strings.

Detection on the EC-anchored ULVWF strings of HUVEC-

released C3, FB and C5 implies that both the alternative pathway

C3 convertase and the C5 convertase assemble on EC-secreted/

anchored ULVWF strings. The attachment of HUVEC-released

C3 (after cleavage to C3b) on ULVWF strings was ,30% greater

than the attachment of HUVEC-released C5 to the strings. As the

number of C3b molecules attached to an activating surface

increases to form C3bBbC3b complexes, then C5 binds with

higher affinity to the accumulating C3b molecules [12,16]. These

data are compatible with the formation of some C3bBbC3b (C5

convertase) complexes capable of binding C5 on the ULVWF

strings. This was demonstrated conclusively in images of C3 and

C5 attached to the same points along HUVEC-secreted/anchored

ULVWF strings.

The assembled C3 convertase (C3bBb) and C5 convertase

(C3bBbC3b) complexes on EC-anchored ULVWF strings may

generate TCCs [C5b678(9)n]. The C5 convertase cleaves C5 to

C5b en route to the formation of C5b678 complexes, which can be

inserted into cell membranes to associate with multiple C9

molecules. HUVEC membranes have CD46, thrombomodulin

and DAF (decay-accelerating factor; CD55) to prevent surface C3

and C5 convertase assembly or persistence [18]. Endothelial cells

also have cell surface CD59 and secrete vitronectin (S-protein) and

clusterin to protect against TCC formation [18,38]. We could not

detect surface TCCs or soluble SC5b-9 complexes in our cell

experiments, and we did not observe HUVEC lysis. If terminal

complexes were generated during the short duration of our

experiments, the amounts may have been too low to be detected

by the polyclonal and monoclonal anti-SC5b-9 antibodies used in

our assays. EC regulatory proteins may have protected HUVECs

Figure 3. AP-specific components FB, FD and FP attach to ULVWF strings secreted by, and anchored to, stimulated HUVECs. HUVECs
were stimulated with 100 mM histamine and stained with rabbit anti-VWF plus secondary fluorescent anti-rabbit IgG-488 (green). Cells were then p-
formaldehyde-fixed and stained with goat IgG antibody to human FB (A), antibody to human FD (B), and antibody to human FP (C) plus secondary
fluorescent anti-goat IgG-594 (red). The HUVEC nuclei were labeled with DAPI (blue). In (A) are: (1) ULVWF (488-nm, green); (2) FB (594-nm, red); and
(3) ULVWF and FB combined image; (4) Graph of fluorescent intensities (y-axis) measured from identical locations in ULVWF string images (488-nm,
green) and in complement component proteins images (594-nm, red) are plotted against the ULVWF string length (in microns, x-axis). The black line
indicates the background intensities measured in the 594-nm images. (5) ULVWF intensities were measured along lines of ULVWF strings detected at
488-nm (shown by dotted line); (6) FB intensities were measured in 594-nm images along lines at identical locations (shown by lower dotted line) as
determined in (5). Background intensities were also measured in 594-nm (red) images at parallel locations (shown by upper dotted line) away from
the area of interest. Similar types of images are shown using antibody to human FD in (B) panels 1–6 and antibody to human FP in (C) panels 1–6 to
identify the complement component attached to the HUVEC-secreted/anchored ULVWF strings. In (C) panel 6, only the locations of the background
intensities are identified by the dotted line. The white arrows in (3) indicate FB (A), FD (B) and FP (C) attachment to the strings. Images were selected
from 5 (FB and FD) and 4 (FP) independent experiments.
doi:10.1371/journal.pone.0059372.g003
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Figure 4. AP-specific negative regulatory components FH and FI attach to ULVWF strings secreted by, and anchored to, stimulated
HUVECs. HUVECs were stimulated and stained as in the legend for Fig. 3, except that antibody to human FH was used in (A) and antibody to human
FI in (B) to identify complement component attachment to the ULVWF strings. In (A) panel 6, only the locations of the background intensities are
identified by the dotted line. In (B) panel 6, the upper dotted line shows the location of the FI intensity measurements and the lower dotted line
identifies the locations of background intensity measurements. The white arrows in (3) indicate FH (A) and FI (B) attachment to the strings. Images
were selected from 12 (FH) and 4 (FI) independent experiments.
doi:10.1371/journal.pone.0059372.g004
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against lysis by any small quantities of TCCs were generated

during our experiments.

Possible targets of any TCCs generated by activation of the

alternative complement pathway on endothelial cell secreted/

anchored ULVWF strings include microbes and injured or

defective tissue (including endothelial) cells. In addition to

histamine, calcium ionophore and phosphodiesterase inhibitors,

ULVWF strings are secreted from endothelial cells that have been

stimulated by cytokines (TNFa, IL-6, IL-8) associated with

infection and inflammation [6].

We have demonstrated the interaction and probable assembly/

activation of alternative complement components on endothelial

cell-secreted/anchored ULVWF strings. The findings may have

pathophysiological and potential therapeutic importance in

thrombotic and complement-mediated inflammatory disorders,

and provide one possible molecular mechanism for recent

observations suggesting clinical links between different types of

thrombotic microangiopathies. [39–42] Possible new therapy, in

addition to a monoclonal antibody to C5 currently available, [43]

includes blockade of the AP C3 convertase using heat-inactivated

FB that is described for the first time in our report.

Materials and Methods

Ethics Statement
All work on human VWF, human endothelial cells including

experiments in this study have been specifically approved by the

Rice Institutional Review Board (IRB). Human tissues and blood

samples were collected under a protocol approved by the Rice

IRB. Donors provided their written informed consent to

participate in the study. Protocol Name: Processing of Large von

Willebrand Factor (VWF) Multimers: VWF Cleavage, Thrombosis

and Platelet Aggregation, Protocol Number: 11-183E. The Rice

Figure 5. Complement components C3 and C5 attach to ULVWF strings secreted by, and anchored to, stimulated HUVECs. HUVECs
were stimulated and stained as in the legend for Fig. 3, except that antibody to human C3 was used in (A) and antibody to human C5 in (B) to identify
complement component attachment to the ULVWF strings. In (A) panel 6, the upper dotted line shows the location of the C3 intensity measurements
and the lower dotted line identifies the locations of background intensity measurements. In (B) panel 6, only the locations of the background
intensities are identified by the dotted line. The white arrows in (B) panel 3 indicate C5 attachment to the strings. Images were selected from 6 (C3)
and 5 (C5) independent experiments.
doi:10.1371/journal.pone.0059372.g005

Figure 6. Complement components C3 and C5 attach to the same positions along HUVEC secreted/anchored ULVWF strings.
HUVECs were stimulated and stained as in the legend for Fig. 3, except that the cells were simultaneously stained for C3 and C5 (in addition to VWF
and DAPI). Individual fluorescent channels detected: (A) rabbit anti-VWF plus anti-rabbit IgG-488 (turquoise); (B) a combination of two mouse
monoclonal antibodies to human C3 (clone 755 against C3b and clone 10A1 against C3) plus anti-mouse IgG-647 (red); and (C) goat anti-human C5
plus anti-goat IgG-594 (green). (D) Simultaneous detection of C3 (red) and C5 (green) is colored yellow in the combined image from 647- and 594-nm
channels. White arrows indicate points along the ULVWF strings where high intensity levels of C3 and C5 were detected. (E) Graph of fluorescent
intensities (y-axis) along the ULVWF string (488-nm, turquoise), C3 (647-nm, red) and C5 (594-nm, green) are plotted against the ULVWF string length
(in microns, x-axis). The black numbered arrows correspond to the white numbered arrows in (D) and point to the C3 and C5 peak intensity locations.
Images were selected from 9 experiments with simultaneous VWF, C3 and C5 staining.
doi:10.1371/journal.pone.0059372.g006
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Figure 7. C4, a component of the classical and lectin pathways, does not attach to ULVWF strings secreted by, and anchored to,
stimulated HUVECs. HUVECs were stimulated and stained as in the legend for Fig. 3, except the antibody to human C4 was used to identify
complement component attachment to the ULVWF strings. In panel 6, the upper dotted line shows the location of the C4 intensity measurements
and the lower dotted line identifies the locations of background intensity measurements. Images were selected from 4 experiments.
doi:10.1371/journal.pone.0059372.g007

Figure 8. Quantification of HUVEC-released complement components attached to HUVEC-secreted/anchored ULVWF strings.
Intensities of each HUVEC-released complement proteins were measured along histamine-stimulated HUVEC-secreted/anchored ULVWF strings, as
described in the legend for Fig. 3. Shown are the complement component fluorescent intensities per micron of ULVWF string length after
background subtraction. Values are means plus SD; N = 7–12 strings for each complement component from 4 to 12 experiments and were compiled
from 130 fluorescent images. Some data were collected from images within the same experiment at a different location on the coverslip.
doi:10.1371/journal.pone.0059372.g008
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IRB reviews protocols annually and has approved of this consent

procedure and study through 5/13/2013.

Complement Components and Antibodies
Goat polyclonal antibodies to individual human complement

components, purified human complement proteins, and human

sera depleted of each specific complement factor were obtained

from Complement Technology (Tyler, TX). Monospecific reac-

tivity of each complement antibody was verified by Western

blotting using sets of purified complement proteins, normal sera

and component-specific depleted sera. Each polyclonal comple-

ment antibody was reactive against the intact component protein

and the corresponding cleavage fragments. Complement C3 was

also identified using a combination of mouse anti-human C3b

(clone 755) and anti-human C3 (clone 10A1) monoclonal

antibodies (Pierce/Thermo Scientific) in the fluorescent micro-

scope experiments. The average serum concentrations of comple-

ment proteins in this study are: C3 1300 mg/ml; C4 400 mg/ml;

C5 75 mg/ml; FB 200 mg/ml; FD 2 mg/ml; FH 500 mg/ml; FI

35 mg/ml; and FP 5 mg/ml.

Western Immunoblots
Denatured, non-reduced samples in sodium dodecyl sulfate

(SDS) were electrophoresed into 4–15% polyacrylamide gels

(BioRad), stained with Bio-Safe Coomassie G-250 and transferred

to PVDF membranes. Membranes were overlaid separately with

monospecific polyclonal goat antibodies to each complement

component, followed by secondary rabbit anti-goat IgG-HRP plus

StrepTactin-HRP conjugate and chemiluminescent reagents

(WesternC, BioRad), before digital imaging (ChemiDoc XRS,

BioRad). Each blot in Figure 2A contains lanes with: 50 ng of a

purified complement protein (Std), normal serum (NS) containing

50 ng of the specific complement component, an equal volume of

specific complement component-depleted sera and StrepTactin-

labeled protein standards. Goat antibody to FD was pre-adsorbed

with FD-depleted sera using a 1:4 ratio.

Human Umbilical Vein Endothelial Cells (HUVECs)
Primary HUVECs were isolated from umbilical veins as

previously described [5]. Cells were seeded in flasks or on glass

coverslips for microscopy experiments and grown in Endothelial

Basal Medium (EBM, Lonza, Hopkinton, MA), supplemented

with 3% penicillin-streptomycin (P/S), 0.2 mM L-glutamine and

Low Serum Growth Supplement (Invitrogen). HUVECs used for

RNA isolation were incubated for 24 hours in serum-free EBM

plus insulin-transferrin-selenium (ITS, Invitrogen). HUVEC RNA

isolated to calculate efficiencies for CFD and CFP were incubated

for 24 hours 6100 mM histamine followed by 24 hours in serum-

free EBM plus ITS.

Figure 9. Complement components C3 and C5 do not attach to unstimulated HUVECs. HUVECs were washed once with PBS, incubated in
25% heated serum/PBS for 5 min, and washed 4X with PBS before staining with rabbit anti-VWF plus anti-rabbit IgG-488 (green), goat antibodies
either to (A) C3 or (B) C5 and anti-goat IgG-594 (red). Combined images with DAPI-stained nuclei are shown at 600X and are representative of 3–4
experiments.
doi:10.1371/journal.pone.0059372.g009

Figure 10. Attachment to HUVEC-secreted/anchored ULVWF
strings of C3, FB and C5 released from HUVECs +/2 added in
heated normal serum. Intensities of C3, FB and C5 were measured
along histamine-stimulated HUVEC-secreted/anchored ULVWF strings
as described in the legend for Fig. 3. Light gray bars represent the
binding of exclusively HUVEC-released C3, FB and C5 to ULVWF strings
(shown for comparison from Fig. 8), and dark gray bars show the
binding of the same components per micron of ULVWF string length in
the presence of normal heated serum. Values are means plus SD; N = 8–
11 strings for each complement component from 5 to 7 experiments for
each of C3, FB and C5 and data were compiled from 46 fluorescent
images.
doi:10.1371/journal.pone.0059372.g010
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Fibroblasts
Human adult dermal fibroblasts were purchased from American

Type Culture Collection (Manassas, VA) and maintained in

Dulbecco’s Modified Eagle’s Medium (DMEM) plus 3% P/S,

glutamine and 10% fetal bovine serum (Atlanta Biological). Prior

to RNA extraction, fibroblasts were incubated for 24 hours

6100 ng/ml lipopolysaccharide (LPS, Sigma) followed by 24

hours in serum-free DMEM plus ITS 6100 ng/ml LPS.

Relative Quantitative Gene Expression
HUVEC and fibroblast RNA was isolated using TRIzol

(Invitrogen), chloroform extraction and isopropanol precipitation.

RNA integrity was verified by 260/280 optical density ratios and

1%-agarose-formaldehyde electrophoresis, and was reverse tran-

scribed using SuperScript III Supermix (Invitrogen). Samples

(100 ng cDNA) were amplified in quadruplicate by real-time

polymerase chain reaction (PCR) under conditions: 95uC for

3 min, 40 cycles of (10 sec at 95uC, 10 sec at 55uC, 30 sec at

72uC), and 95u for 10 sec followed by melting curves from 65u to

95uC (CFX96, BioRad). Amplified products were detected using

TaqMan Gene Expression Assays (with 6-carboxyfluorescein-

labeled probes that span target exon junctions) and Fast Advanced

Master Mix (Life Technologies, Carlsbad, CA). Efficiencies (E)

were determined by amplification of 100 ng–0.01 ng of cDNA,

calculating the slope of the line after plotting the threshold cycle

(CT) versus ng of cDNA and using equation (1) [44].

E~10
{1

slope

� �
ð1Þ

Ratio~
(ETarget)

DCT(control{treated)

(ERef )
DCT(control{treated)

ð2Þ

To calculate primer efficiencies, CT detection of at least three

10-fold dilutions of cDNA are required for each probe. PCR

amplicon for HUVEC C3 was detected within 40 cycles with

100 ng of cDNA, but was below detection with initial amounts of

10 ng cDNA or lower. To alleviate this problem, RNA from

cultured human dermal fibroblasts with/without exposure to LPS

was isolated and the cDNA was used to calculate the probe

efficiency for C3. Fibroblast expression of C3 was 39-fold higher

than in HUVECs. The addition of 100 ng/ml LPS to fibroblast

cultures increased C3 levels 19-fold further, resulting in sufficient

mRNA to calculate C3 probe efficiencies. Although HUVEC

mRNA levels for CFD and CFP were comparably as low as C3, the

transcripts for CFD and CFP increased 2- and 3-fold, respectively,

in HUVECs exposed to histamine. The RNA isolated from the

histamine stimulated HUVECs was used to calculate efficiencies

for the CFD and CFP probes. The fold-changes in HUVEC

mRNA gene expression with exposure to histamine (treated) and

without histamine (control) were calculated with equation (2) using

GAPDH as the reference gene. The standard deviation in gene

expression assays (S) was determined by the equation:

s~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2

1
zs 2

2

q
where S1 and S2 are the standard deviations of

quadruplicate CT measurements for the reference and target

genes.

Fluorescent Microscopy Studies
Fluorescent images were acquired using IP Lab software version

3.9.4r4 (Scanalytics, Inc., Fairfax, VA) on a Nikon Diaphot TE300

microscope equipped with a CFI Plan Fluor 606 oil N.A. 1.4

objective plus 10X projection lens (Nikon, Garden City, NY),

SensiCamQE CCD camera (Cooke Corp., Romulus, MI),

motorized stage and dual filter wheels (Prior) with single band

excitation and emission filters for FITC/TRITC/CY5/DAPI

(Chroma, Rockingham, VT). VWF and complement proteins

were imaged using the following primary antibody and fluorescent

secondary antibody pairs: polyclonal rabbit anti-human VWF

(Ramco Laboratories, Sugarland TX) plus Alexa Fluor 488 (green)

chicken anti-rabbit IgG (Invitrogen); goat polyclonal antibodies to

individual human complement components plus Alexa Fluor 594

(red) donkey anti-goat IgG (Invitrogen). Complement C3 was also

imaged using a combination of mouse anti-human C3b (clone 755)

and anti-human C3 (clone 10A1) monoclonal antibodies (Pierce/

Thermo Scientific) plus Alexa Fluor 647 goat anti-mouse F(ab’)2

Figure 11. Fluorescent emission ‘‘bleed-through’’ controls: Weibel-Palade bodies (WPBs) contain a high concentration of VWF but
are devoid of complement components. Unstimulated HUVECs were fixed with p-formaldehyde and treated with Triton-X to allow intracellular
fluorescent staining. VWF in WPBs was detected with rabbit anti-VWF plus anti-rabbit IgG-488; and FB was detected with goat anti-FB plus anti-goat
IgG-594. (A) The merged image was combined from 488-nm (green) and 594-nm (red) channels at 600X magnification. Single channel emissions of
the circled area are shown in the inset images: (a) 488-nm and (b) 594-nm. (B) Graph of fluorescent intensities measured at points along the white
lines in inset images (a) and (b) shows that extremely low intensities at 594-nm were measured at the same locations as high intensities were
measured in the 488-nm channel, i.e., there was little or no green-to-red ‘‘bleed-through’’.
doi:10.1371/journal.pone.0059372.g011
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IgG (Invitrogen). Cell nuclei (blue) were detected with 1 nM 4,6

diamidino-2-phenylindole (DAPI).

Normal Serum
Sera from normal consenting donors collected under a protocol

approved by the Rice University Institutional Review Board were

pooled and stored at 280uC until use. Before cell experiments,

pooled serum was heated to 56uC for 15 min (heated serum) and

diluted to 25% in PBS.

Interaction of HUVEC-secreted/anchored ULVWF Strings
with Complement Components Released from HUVECs
or Present in Heated Normal Serum

HUVECs seeded on 4.8 cm2 glass coverslips were washed with

PBS and stimulated with 100 mM histamine in 1 ml of PBS for

2 min followed directly by immunostaining; or with 100 mM

histamine in 25% heated serum/PBS for 5 min followed by 4 PBS

washes before staining. The cytokines TNFa, IL-8 and IL-6 (+
receptor), shiga toxins-1 and -2 and histamine stimulate ECs to

secrete surface-anchored ULVWF strings [5,6]. Histamine was

used in this study to stimulate the HUVECs. Followed histamine

stimulation under both conditions, cells were immunostained with

rabbit anti-VWF plus anti-rabbit IgG-488 for 15 min and fixed for

10 min with 1% p-formaldehyde. The fixed HUVECs were then

stained separately with goat anti-human complement component

antibodies plus anti-goat IgG-594 for 10 min. Cell nuclei were

detected with DAPI. For unstimulated control experiments,

HUVECs on coverslips were treated and stained as the heated

serum-incubated cells except the histamine was omitted.

Evaluation of HUVEC-secreted/anchored ULVWF Strings
and Complement Component Interaction

HUVEC-anchored ULVWF strings detected with rabbit anti-

VWF plus fluorescent anti-rabbit IgG-488 were electronically

traced in 488-nm (green)-captured images at 600X magnification,

and the emitted fluorescent intensity was measured and integrated

along the line. The x- and y-coordinates of the traced ULVWF

line were transferred to the corresponding 594-nm (red)-captured

images obtained using specific polyclonal goat antibodies against

single complement components plus fluorescent anti-goat IgG-

594. The fluorescent intensity at 594-nm from each detected

complement component was measured and integrated along the

transferred line coordinates. In order to determine background

594-nm intensity, the line coordinates were trans-located ,20

pixels (,2.3 mm) parallel to its original position within this same

image and the fluorescent intensity was measured. The quantity of

each complement component (C protein) attached to the ULVWF

strings was expressed as complement component intensity at 594-

nm, minus the background intensity at 594-nm, divided by the

ULVWF string length in microns. Image dimensions:

78 mm658 mm, or 688 pixels6512 pixels (1 pixel = 0.113 mm).

C protein binding~
Intensity594{Background Intensity594

ULVWF length, microns

Fluorescent Emission ‘‘Bleed-through’’ Controls
We did not detect any of the complement components in

HUVEC Weibel-Palade bodies. For C3, this is in agreement with

Misumi, et al., who previously showed that precursor C3 protein,

after furin cleavage, is not sorted to a storage vesicle [45].

Unstimulated HUVECs were fixed and treated with Triton-X to

allow intracellular staining, and then immunostained with anti-

VWF antibody plus 488-secondary antibody. VWF staining was

followed by addition of each complement antibody plus 594-

secondary antibody in separate experiments. Because WPBs

contain a high concentration of VWF and are devoid of

complement components, these organelles were used to demon-

strate the separation of fluorescent signals obtained at 488 and

594 nm in our microscope system. The fluorescent intensity at

594 nm (red), used for detection of the complement proteins

attached to HUVEC-anchored ULVWF strings, was not a result

of fluorescent ‘‘bleed through’’ from the 488-nm channel (green)

used for VWF detection. This was demonstrated by the following

experiments. Non-stimulated HUVECs were treated with 0.02%

Triton-X to allow internal WPB staining, followed by: (1) staining

with rabbit antibodies to VWF plus secondary anti-rabbit IgG-

488; and (2) goat antibodies to AP components plus secondary

anti-goat IgG-594. Intensities were measured across WPBs located

by high levels (up to 2500 fluorescence intensity units) of VWF-

positive fluorescence in 488-nm images (green), and in identical

locations in 594-nm (red) images. The levels measured in the 594-

nm channel were ,100 fluorescence intensity units per micron,

confirming that there was little or no fluorescent ‘‘bleed through’’

during image acquisition for the experiments with ULVWF strings

(green) and the different complement components (red) (Fig. 11).
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