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Abstract

Background: Compositional data comprise the parts of some whole, for which all parts

sum to that whole. They are prevalent in many epidemiological contexts. Although many

of the challenges associated with analysing compositional data have been discussed pre-

viously, we do so within a formal causal framework by utilizing directed acyclic graphs

(DAGs).

Methods: We depict compositional data using DAGs and identify two distinct effect esti-

mands in the generic case: (i) the total effect, and (ii) the relative effect. We consider each

in the context of three specific example scenarios involving compositional data: (1) the

relationship between the economically active population and area-level gross domestic

product; (2) the relationship between fat consumption and body weight; and (3) the rela-

tionship between time spent sedentary and body weight. For each, we consider the dis-

tinct interpretation of each effect, and the resulting implications for related analyses.

Results: For scenarios (1) and (2), both the total and relative effects may be identifiable

and causally meaningful, depending upon the specific question of interest. For scenario

(3), only the relative effect is identifiable. In all scenarios, the relative effect represents a

joint effect, and thus requires careful interpretation.

Conclusions: DAGs are useful for considering causal effects for compositional data. In all

analyses involving compositional data, researchers should explicitly consider and de-

clare which causal effect is sought and how it should be interpreted.
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graphs
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Introduction

Compositional data comprise the parts of some whole, for

which all parts sum to that whole;1 the whole itself may

vary across units of analysis (e.g. total energy intake) or re-

main fixed (e.g. total hours in a day). Almost all data are

potentially compositional—in the sense that most concepts

can be considered part of a greater whole and/or subdi-

vided into smaller parts—though data are often explicitly

conceptualized as compositional when there is interest in

understanding the role of one or more component(s) in re-

lation to the whole.

Many of the inherent challenges associated with analy-

sing compositional data have been widely discussed,1–3

though none have sought to explore these challenges

within a formal causal framework by utilizing directed acy-

clic graphs (DAGs). This is despite the fact that composi-

tional data are commonplace in health and social science

research and utilization of DAGs is becoming increasingly

widespread due to the insights they provide into historical

‘paradoxes’.4–6

In this paper, we use DAGs to consider the causal analy-

sis of compositional data and outline what we believe are

the benefits of doing so. We define two distinct effects that

may be of interest, and consider their utility and interpreta-

tion in the context of three specific example scenarios. Our

primary aim is to describe the nuances of identifying and

estimating causal effects in the context of compositional

data, and to provide a systematic approach to thinking

about the specific analytical and interpretational issues

that may arise.

Directed acyclic graphs

DAGs are nonparametric causal diagrams, in which varia-

bles are connected by unidirectional arrows. These arrows

represent hypothesized direct causal relationships, though

do not indicate the magnitude or functional form of such

relationships. Two variables may also be connected by in-

direct causal pathways, which are sequences of arrows that

all flow in the same direction and connect the variables

through other mediating variables. The only prohibition is

that a variable cannot be connected to itself by an indirect

causal pathway (i.e. a variable cannot indirectly cause

itself).7

The causal relationships for which DAGs are typically

used are probabilistic in nature. That is, they can be repre-

sented by statements like A affects the probability of B

(e.g. smoking affects the probability of lung cancer). A sim-

ple DAG illustrating this scenario is given in Figure 1A.

However, DAGs may also be used to represent deter-

ministic relationships—i.e. where A fully determines B

(e.g. how birthweight determines classification of macroso-

mia). A simple DAG illustrating this scenario is given in

Figure 1B, in which we introduce several notational

changes: (i) deterministic relationships are indicated by

double-lined arrows; and (ii) fully determined nodes are in-

dicated by double-outlined rectangles.8 DAGs in this con-

text are in some sense ‘semiparametric’ because there are

parametric constraints implied by the deterministic

relationships.

In the next section, we use the framework of DAGs to

depict and consider compositional data, which feature de-

terministic relationships.

Causal effects for compositional data

Consider three random variables—X, Y and Z—for which

XþY¼Z. The relationship among these variables is

depicted in the DAG in Figure 2A, which employs the pre-

viously introduced notation for deterministic relationships.

Although X and Y (the ‘components’) together determine

Z (the ‘whole’ or ‘total’), no time flow is indicated by the

double arcs from the components to the total.

Compositional data are unique in that the component parts

and the total—which denote the same variable at different

levels of aggregation—occur simultaneously. To reinforce

this point, we place a dashed box around all compositional

variables to indicate they represent the same event in time.

Key Messages

• Directed acyclic graphs (DAGs) provide a useful conceptual tool to consider causal effects for compositional data.

• In the case of compositional data, two distinct causal effect estimands may be of interest—the total (‘unconditional’)

effect and the relative (‘collider-conditional’) effect.

• For compositional data with variable totals, both the total and relative effects may be identifiable and causally mean-

ingful, depending upon context. For compositional data with fixed totals, only the relative effect can be identified.

• Where both the total and relative effects are identifiable, researchers must be clear about which effect is being sought

and estimated, as the two effects represent distinct (and possibly radically different) quantities with distinct

interpretations.
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The benefit of depicting compositional data as we have

done in Figure 2A is that the causal structure immediately

becomes apparent as a ‘collider’ structure.7 This structure

implies that the components are (unconditionally) indepen-

dent but become dependent when conditioning on the total

(i.e. the ‘collider’). The reason for this is simple—condi-

tioning on Z may be thought of as ‘filtering’ by Z or hold-

ing Z constant; therefore, any change in one of the

components (X or Y) must be accompanied by an equal

and opposite change in the other.7 For example, in the ab-

sence of conditioning on Z, increasing X by one unit also

increases Z by one unit, but crucially does not affect Y. In

contrast, increasing X by one unit while holding Z con-

stant means Y must decrease by one unit.

The dependency that arises between X and Y when con-

ditioning on Z has implications for causal analyses.

Suppose we consider X, Y and Z in relation to a subse-

quent outcome O (Figure 2B). In the absence of condition-

ing on Z, changing either X or Y can be thought to affect

changes in O by changing Z. However, conditioning on Z

blocks these indirect paths, such that changes in X or Y

must affect changes in O directly. This indicates the exis-

tence of two distinct effects for the effect of each compo-

nent on the outcome.

Without loss of generality, suppose we are interested in

the causal effect of the component X on the outcome O.

The two effects are:

i. The total (‘unconditional’) effect of X on O: this esti-

mand captures the effect on O of increasing X (and

thereby increasing Z), regardless of Y. [Note that we re-

fer to this effect as ‘unconditional’ because it represents

the effect in which the total Z is not conditioned upon;

it does not imply that no other conditioning (e.g. for

confounders) may be made.]

ii. The relative (‘collider-conditional’) effect of X on O:

this estimand captures the effect on O of increasing X

while simultaneously decreasing Y. [Note that the iden-

tifiability conditions9 for the relative effect of X on O

may be stronger than those for the total effect of X on

O. We have omitted confounders from consideration

for simplicity of illustration, but it is theoretically possi-

ble that confounders of the X–O relationship differ

from those of the Y–O relationship. In such a scenario,

the relative effect would require conditioning on the

confounders of both the X–O and Y–O relationships,

whereas the total effect would require conditioning

only on the confounders of the X–O relationship.]

In the setting of compositional data, in which Z is fully

determined by its component parts, both effects may be of

interest depending upon the context; this is contrary to per-

ceived wisdom in the generic (i.e. probabilistic) case, in

which conditioning on a collider is considered to be unde-

sirable. Indeed, the dependency induced between two inde-

pendent events when conditioning on a common

Figure 2. Directed acyclic graphs (DAGs) depicting three random variables X, Y and Z, for which XþY¼Z. Deterministic relationships are indicated

by double-lined arrows, and fully determined nodes are indicated by double-outlined rectangles. A dashed box around variables indicates that those

variables occur at an instantaneous point in time. (A) X and Y are unconditionally independent. (B) X and Y are unconditionally independent, and

may affect a subsequent outcome O via their influence on Z. We note that, due to the deterministic nature of X, Y and Z, it is not possible to parame-

terize all arrows simultaneously.

Figure 1. Directed acyclic graphs (DAGs) depicting two random varia-

bles A and B. (A) A causes B probabilistically; this is indicated by a sin-

gle-lined arrow. (B) A causes B deterministically; this is indicated by a

double-lined arrow and double-outlined rectangle.
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descendant is often referred to as ‘collider bias’ as it has the

potential to cause serious interpretational problems for

causal analyses (see, e.g. the ‘birthweight paradox’10).

In the following sections, we discuss the previously de-

fined total and relative effects in the context of several ex-

ample scenarios involving compositional data, and the

resulting implications for causal analyses involving data of

this kind. We note that in certain situations these effects

may not be considered sufficiently ‘well-defined’, since

they do not correspond to unique interventions and there-

fore represent unknown combinations of all possible expo-

sure mechanisms.11 Our focus, however, is not on debating

the validity of causal inference in the absence of well-

defined interventions, but on demonstrating the conceptual

issues that arise in the analysis of compositional data.

Compositional data with variable totals

We first consider causal inference for compositional data

with variable totals, which are compositional data for

which the ‘total’ can vary across units of analysis.

Examples include:

• total height (decomposed into leg length and trunk

length);

• total fat mass (decomposed into brown fat mass and

white fat mass);

• total population (decomposed into 0–18, 19–35, 36–60

and >61 year-olds).

We consider the total and relative effects for two spe-

cific example scenarios, and the resulting implications for

compositional data with variable totals.

Scenario 1: economically active population and

gross domestic product

Suppose we are interested in the causal effect of the total

number of economically active individuals within a geo-

graphical area on the area-level gross domestic product

(GDP). The DAG in Figure 3 represents this scenario,

which also explicitly depicts the compositional nature of

the exposure (i.e. economically active population þ eco-

nomically inactive population ¼ total population); con-

founders are omitted for ease of illustration. In this

scenario, both total and relative effects of the economically

active population on GDP are obtainable, and both may

have utility depending on the context.

The total effect of the economically active population

represents the average change in GDP that results from

adding economically active individuals to the area, thereby

increasing both the number of economically active individ-

uals and the total number of individuals, while doing noth-

ing to the population of economically inactive individuals.

An estimate of this effect may be of interest if, e.g. the gov-

ernment were considering policies aimed at increasing eco-

nomic immigration.

In contrast, the relative effect of the economically active

population represents the average change in GDP achieved

by swapping economically inactive individuals for eco-

nomically active individuals—either by adding economi-

cally active individuals and removing an equal number of

economically inactive individuals, or by effectively con-

verting economically inactive individuals into economi-

cally active individuals (or some combination thereof). The

relative effect is therefore a joint effect—it is the combined

effect of simultaneously increasing the economically active

population while decreasing the economically inactive

population by equal numbers, thereby retaining the same

total population. An estimate of this effect may be of inter-

est if, e.g. the government were considering job-training

programmes for currently unemployed individuals.

In this scenario, both the total and relative effects reflect

the population-level average effects of changing the relative

numbers (i.e. the proportions) of economically active indi-

viduals to alter GDP, but by different means. We may

therefore derive two distinct causal quantities, each of

which may be of interest depending on the context or hy-

pothetical intervention.

Scenario 2: fat consumption and body weight

Now, suppose we are interested in the causal effect of fat con-

sumption on body weight. The DAG in Figure 4 represents

this scenario, which also explicitly depicts the compositional

nature of diet (i.e. fat consumption þ protein consumption þ
carbohydrate consumption¼ total energy intake).

Figure 3. Directed acyclic graph (DAG) depicting total population in rela-

tion to gross domestic product (GDP), in which total population is subdi-

vided into economic activity and inactivity (i.e. total population ¼
economically active population þ economically inactive population).

Deterministic relationships are indicated by double-lined arrows, and

fully determined nodes are indicated by double-outlined rectangles. A

dashed box around variables indicates that those variables occur at an

instantaneous point in time.

1310 International Journal of Epidemiology, 2020, Vol. 49, No. 4



The total effect of fat consumption represents the average

change in weight that results from adding fat to an individu-

al’s diet, irrespective of the consumption for all other macro-

nutrients, which consequently increases total energy intake

without altering other consumption behaviours. An estimate

of this effect may be of interest if, e.g. individuals were con-

sidering a diet that advocated reducing and/or eliminating

fat and not replacing it with other macronutrients (e.g. by

reducing or eliminating cooking oil).

The relative effect of fat consumption represents the

average change in weight that results from replacing all

‘other’ macronutrient consumption (i.e. protein and car-

bohydrate consumption, in their relative proportions)

with fat consumption such that fat consumption is in-

creased without increasing total energy. This is again a

joint effect that incorporates both the effects of increasing

fat consumption and reducing the consumption of other

macronutrients. An estimate of this effect may be of inter-

est if, e.g. individuals were considering a diet that advo-

cated replacing fat from their diet with ‘other’

macronutrients (e.g. replacing high-fat foods with their

lower-fat counterparts).

Similar to scenario 1, each effect captures a different ap-

proach to increasing the relative amount of fat intake, and

each may yield radically different estimates according to

different contextual interpretations. Whereas each causal

effect may arguably have a meaningful interpretation, each

must be considered carefully, and its interpretation made

explicit according to the context sought.

Implications

For analyses involving compositional data with variable

totals, both the total and relative effects of a particular

component may be identifiable and interpretable, depend-

ing upon context. However, care must be taken when re-

ferring to the relative causal effect of one component, as in

reality the estimate captures the joint effect of this compo-

nent and all other components that have not been condi-

tioned upon.

In the instance that only two components are consid-

ered (e.g. scenario 1), conditioning on the total uses one

degree of freedom, meaning that the two components

share only one degree of freedom and thus represent just

one single (binary) variable (i.e. economically active and

not economically active). In such a scenario, the relative

effect of the component of interest is unavoidably inter-

connected with the effect of the other component; it rep-

resents the effect of replacing the first component with

the second, which is equal and opposite to the effect of

replacing the second component with the first. The causal

effect of each component only has meaning relative to

the other, and therefore they are fundamentally a single

joint effect.

Where three or more components are considered (e.g.

scenario 2), this means that the relative effect represents

the influence of one component in relation to the average

influence of all other components that have not been con-

ditioned upon. Whether this reference provides a meaning-

ful comparison is largely subjective and will depend

strongly on context. More specific comparisons can be

achieved by conditioning on additional components,

thereby restricting the number of components comprising

the joint effect. Where the relative effect is estimated, the

contribution of all unconditioned reference components

should be carefully considered.

Compositional data with fixed totals

Next, we consider compositional data with fixed totals,

which are compositional data for which the ‘total’ is fixed

to the same value for every unit of analysis. These types of

data usually involve some standard unit of measurement

(e.g. time or space) that is fixed by nature or convention.

Examples include:

• hours per week (decomposed into time spent commuting,

time spent working, time spent sleeping, and ‘other’);

• Boeing 747 capacity (decomposed into adult passengers,

child passengers and vacant seats);

• child benefit block grant (decomposed into money spent

directly on the child and money not directly spent on the

child).

We consider one specific example scenario and discuss

the resulting implications for compositional data with

fixed totals.

Figure 4. Directed acyclic graph (DAG) depicting total energy intake in

relation to body weight, in which total energy intake is subdivided into

macronutrient consumption (i.e. total energy intake ¼ fat consumption

þ protein consumption þ carbohydrate consumption). Deterministic

relationships are indicated by double-lined arrows, and fully deter-

mined nodes are indicated by double-outlined rectangles. A dashed

box around variables indicates that those variables occur at an instanta-

neous point in time.
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Scenario 3: time spent sedentary and body weight

Imagine we are interested in the causal effect of time spent

sedentary (i.e. not moving, including sleeping, sitting

and standing) per day on body weight. Because total

hours per day is fixed at 24 for every individual, there is

an inherent constraint imposed upon time spent sedentary

and time spent physically active (i.e. time spent sedentary

þ time spent physically active ¼ 24 h). It is nevertheless

useful to consider this constraint—length of day—within

a causal framework, since it helps to illustrate many

of the same challenges. The DAG in Figure 5 describes

this scenario, with confounders omitted for ease of

illustration.

Total hours is depicted as a deterministic function of

time spent sedentary and time spent physically active.

What differentiates this scenario from those considered

previously (i.e. in Figures 2–4) is that the total cannot

vary, and thus we have depicted it as having no identifi-

able causal effect. Nevertheless, explicitly including total

hours in the DAG is useful for demonstrating the struc-

tural constraints that exist for compositional data with

fixed totals, and how this implies the existence of relative

effects only.

It is impossible to identify or estimate the causal effect

on weight of time spent sedentary without also consider-

ing the effect of time spent physically active (i.e. the total

effect), since any increase in one must be accompanied

by an equal and opposite decrease in the other. The

constraint imposed by the fixed length of a day demands

that the components be considered jointly. Thus, the

relative effect is the only effect that can possibly be

obtained.

Implications

For analyses involving compositional data with fixed

totals, only the relative causal effect of a particular compo-

nent is identifiable. The inherent constraint upon a fixed

total operates in a similar fashion to conditioning on a var-

iable total, and results in an estimate that represents the ef-

fect of one component relative to all other components

omitted from the analysis.

In the instance that only two components are consid-

ered (e.g. scenario 3), the total constraint (i.e. exactly 24 h

in a day for everyone) means that the two components

share one degree of freedom and are therefore implicitly a

single binary variable (i.e. time spent sedentary and time

spent not sedentary). It makes little sense to even conceptu-

alize the two components as having separate effects, since

each variable may only be defined and estimated relative to

the other. This is important for discussions regarding the

relative merits of decreasing one component vs increasing

another (e.g. decreasing sedentary behaviour vs increasing

physical activity12–14), as the two are not distinct entities

from a causal perspective. Where more than two compo-

nents are considered (e.g. where time spent physically ac-

tive is further subdivided into light, moderate and vigorous

exercise), care should be taken to select the most meaning-

ful and/or appropriate joint effect.

Conclusion

The analysis of compositional data is challenging from a

causal inference perspective, where conditioning on the to-

tal (a ‘collider’) creates a dependency between the compo-

nents. This dependency does not preclude meaningful

causal interpretation, but it does require careful consider-

ation of the joint nature of causal effects in such situations.

Where only two components exist, as in scenario 1, the

meaning of the joint (or relative) effect is straightforward,

as it represents the effect of swapping one component for

the other. However, where more than two components ex-

ist, as in scenario 2, the joint effect instead represents the

effect of swapping one component for a combination of

the other components. In such situations, the total effect

likely represents a more important estimand, although con-

ditioning on additional component(s) can be implemented

to identify more specific substitution effects.

Inherent constraints on the total are also present for some

situations involving compositional data, as in scenario 3;

such constraints function similarly to conditioning and re-

strict interpretation. The relative effects that characterize

data of this type are well-recognised in other contexts. For in-

stance, categorical data may be conceptualized as a trivial

case of compositional data, in which the total is fixed at one.

Indeed, this notion is implicit in the coding of such variables

Figure 5. Directed acyclic graph (DAG) depicting total hours in relation

to body weight, in which total hours is subdivided into activity category

(i.e. total hours ¼ time spent sedentary þ time spent physically active).

Deterministic relationships are indicated by double-lined arrows, and

fully determined nodes are indicated by double-outlined rectangles. A

dashed box around variables indicates that those variables occur at an

instantaneous point in time. Total hours is inherently constrained (i.e.

total hours ¼ 24) and thus has no identifiable causal effect on body

weight.
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for statistical analysis—each category is treated as a bi-

nary variable with value zero or one, and the sum of all

categories for every individual equals one (i.e. each indi-

vidual may belong to one and only one category). In such

situations, one category must be specified as the reference

category and all other effect estimates must be interpreted

relative to this category. These issues are also recognised

in the context of age–period–cohort analyses, where data

are tabularized into intervals such that three concepts are

perceived with only two degrees of freedom (i.e. age þ co-

hort ¼ period).15

In all situations involving compositional data, it is para-

mount that researchers explicitly consider and declare

which causal effect is sought and how it should be inter-

preted, since the total and relative effects have the potential

to be radically different, even if both are causally meaning-

ful. For example, the effect on cardiovascular disease of

eating red meat on top of an otherwise healthy diet may be

drastically different to the effect of replacing ‘healthy’ die-

tary components with red meat. Insufficient clarity regard-

ing the distinction between these two effects likely

contributes to ongoing confusion due to apparently contra-

dictory results.16,17 Across all contexts, careful attention

must be paid to recognising these issues and reporting

results consistent with the analyses undertaken.
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