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Simple Summary: Rapid and non-destructive methods play an important role in assessing forage
quality. This study is aimed at establishing a calibration model that predicts the moisture, CP, NDF,
ADF, and hemicellulose of corn stover and wheat straw by NIRS. In addition, we also intended
to compared the predictive accuracy of combined calibration models to the individual models of
chemical compositions for corn stover and wheat straw by NIRS. We show that accurately combining
calibrated models would be useful for a broad range of end users. Furthermore, the accuracy of the
calibration models was improved by increasing the sample numbers (the range of variability) of
different straw species.

Abstract: Rapid, non-destructive methods for determining the biochemical composition of straw are
crucial in ruminant diets. In this work, ground samples of corn stover (n = 156) and wheat straw
(n = 135) were scanned using near-infrared spectroscopy (instrument NIRS DS2500). Samples were
divided into two sets, with one set used for calibration (corn stover, n = 126; wheat straw, n = 108)
and the remaining set used for validation (corn stover, n = 30; wheat straw, n = 27). Calibration
models were developed utilizing modified partial least squares (MPLS) regression with internal cross
validation. Concentrations of moisture, crude protein (CP), and neutral detergent fiber (NDF) were
successfully predicted in corn stover, and CP and moisture were in wheat straw, but other nutritional
components were not predicted accurately when using single-crop samples. All samples were then
combined to form new calibration (n = 233) and validation (n = 58) sets comprised of both corn stover
and wheat straw. For these combined samples, the CP, NDF, and ADF were predicted successfully;
the coefficients of determination for calibration (RSQC) were 0.9625, 0.8349, and 0.8745, with ratios
of prediction to deviation (RPD) of 6.872, 2.210, and 2.751, respectively. The acid detergent lignin
(ADL) and moisture were classified as moderately useful, with RSQC values of 0.7939 (RPD = 2.259)
and 0.8342 (RPD = 1.868), respectively. Although the prediction of hemicellulose was only useful for
screening purposes (RSQC = 0.4388, RPD = 1.085), it was concluded that NIRS is a suitable technique
to rapidly evaluate the nutritional value of forage crops.

Keywords: near-infrared reflectance spectroscopy; modified partial least squares; corn stover; wheat
straw; nutritional value

1. Introduction

Cereal crops (namely corn and wheat) are major crops in China, with large amounts
of these forage straw materials serving as important roughage sources for ruminant pro-
duction. About 600 million tons of straw are produced every year in China [1]. However,
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there are also other uses of cereal straw, such as replacing fossil fuels in the energy sector
and chemical industry, and bedding [2]. He et al. demonstrated that basalt fiber addition is
an effective way to enhance biohydrogen production from corn straw [3]. H2-nanobubble
water addition can destroy the cellulose structure of corn straw, reduce the crystallinity of
cellulose, and promote hydrolysis [4]. The presence of beneficiary phytochemicals in straw,
such as NDF, are important to stimulate rumen fermentation in ruminants. Therefore,
an evaluation is required to understand straw sources and purposes [5]. Eastridge et al.
reported that feeding different forages (corn silage, alfalfa hay, wheat straw, and corn
stover) can result in similar animal performance and ruminal fermentation with adequate
formulations of dietary non-fiber carbohydrates and physically effective neutral detergent
fiber for dairy cows [6].

Therefore, it is necessary to analyze the nutrient composition of corn stover and wheat
straw materials in a timely and accurate manner. The composition of roughage usually
varies by harvest time, storage condition, and processing method [7]. However, the analysis
of straw chemical composition is time-consuming and costly by conventional analytical
techniques, especially when a large number of samples are required. The near-infrared
reflectance spectroscopy (NIRS) method is rapid (1 to 2 min per test), non-destructive,
low-cost, and in real time [8]. In 1970s, NIRS technology was adopted for the analysis
of forages [9]. More importantly, the rapid determination of nutritional compositions
of roughage or total mixed ration (TMR) could support accurate nutrition for animal
production [10]. The NIRS process relates interactions between diffuse light reflectance
in the near-infrared region (750–2500 nm) and biochemical molecules in the forage [11].
Various nutritional components have been estimated in forage by using NIRS, including
cellulose, hemicellulose, and ADL in rice straw [12], alfalfa (Medicago sativa) [13], and tall
fescue (Festuca arundinacea) [9]. Research has also shown the potential of using NIRS to
evaluate the nutritive value (moisture, ash, ADL, and hemicellulose) of wheat straw, rice
straw, and barley straw [2,14,15]. Yet, to our knowledge, there are limited NIRS prediction
models for the analysis of corn stover and wheat straw.

The chemical composition of three or more plant materials combined might be pre-
dicted by NIRS [16]. Nie et al. improved the NIRS prediction statistics (RSQC, RPD, and
slope) by combining timothy and alfalfa in the sample sets, whereas many nutritional
fractions were not successfully predicted by separate NIRS equations for each species [17].
Starks and Brown noted that the combined model offered an advantage in improving
prediction accuracy for N concentrations of three special cultivars using hyperspectral
reflectance from 350 to 1125 nm [18]. Corn stover and wheat straw are likely to have similar
biochemical compositions (nutritional value), resulting in similar spectral signatures [19].
It is possible that the combined calibration models of corn stover and wheat straw is better
than each respective single-material calibration model.

Therefore, the objective of the present study was to develop a calibration model to use
NIRS to predict the moisture, CP, NDF, ADF, and hemicellulose of corn stover and wheat
straw collected across China. In addition, this study compared the predictive accuracy of
combined calibration models to that of the individual models for determining the chemical
composition of corn stover and wheat straw by NIRS.

2. Materials and Methods
2.1. Sample Collection and Preparation

Wheat straw (n = 135) and corn stover (n = 156) samples were collected in 2017 at
13 different sites within the provinces / autonomous regions of China, shown in Table 1.
The straw materials were cut into 3–5 cm segments and milled through a grinder (CM100,
Crinoer technology, Beijing, China) fit with a 1 mm screen prior to nutrient analysis and
scanning by a near-infrared spectrometer.
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Table 1. The geographic information of the provinces/autonomous regions from which samples
were collected.

Provinces/Autonomous Region Geographic Information

Gansu 32◦31′ to 42◦57′ N and 92◦13′ to 108◦46′ E
Henan 31◦23′ to 36◦22′ N and 110◦21′ to 116◦39′ E

Ningxia 35◦14′ to 39◦23′ N and 104◦17′ to 107◦39′ E
Shanxi 33◦42′ to 34◦45′ N and 107◦40′ to 109◦49′ E

Xinjiang 34◦25′ to 48◦10′ N and 73◦40′ to 96◦18′ E

2.2. Analyses of Samples by Laboratory Reference Methods

The moisture and CP were determined according to the Association of Official Agri-
cultural Chemists (AOAC) method [20]. Nitrogen was determined using the Kjeldhal
method (K9840, Hanon Instrument, Jinan, China) and calculated as CP using the factor
6.25 (AOAC, 1997). The moisture was determined by drying at 105 ◦C in a forced air oven
for 5 h. The NDF and ADF content was measured using a fiber analyzer (A200i, ANKOM
Technology, Fairport, NY, USA) according to the methods of Van Soest et al. (2001), which
uses sodium sulfite, α-amylase, and sulfuric acid. The ADL content in the ADF residue
were determined in accordance with the method described by Ankom Technology [21].
The NDF and ADF were expressed as dry matter percentages to calculate the content of
hemicellulose, calculated as follows:

Hemicellulose (%) = NDF% − ADF%

2.3. Packing and Scanning by Near-Infrared Spectrometer

All straw samples (n = 291) were scanned over 850 to 2500 nm at 0.5 nm intervals
using a FOSS NIR-Systems DS2500 (FOSS Electric A/S, Hillerød, Denmark). Before sample
scanning, the spectrometer was activated, and satisfactory instrument performance was
confirmed via instrument response, photometric repeatability, wavelength accuracy tests,
and a check-sample scan. Subsequently, the large ring cup (Foss NIR Systems #58374) was
overfilled, with an approximately 25 g sample scanned (approximately 10 mm in depth).
Triple scans were conducted for each sample, and spectra were averaged before spectra
analysis and calibration. Finally, the NIR system referenced the reflectance spectroscopy
energy readings for samples to the corresponding readings from the internal standard
and recorded the results as the logarithm of the reciprocal of reflectance (log1/R, in which
R = reflectance).

2.4. Development and Validation of NIRS Calibration Models

The principal component analysis (PCA) scores were calculated by using WinISI IV;
software (version4.6.11, Infrasoft International LLC, Silver Spring, MD, USA) for each
spectrum. We used PCA for scoring and selecting samples for spectral outliers before
calibration and validation. Subsequently, the selected sample sets remaining after the
elimination of spectral outliers for moisture, CP, NDF, ADF, ADL, and hemicellulose were
sorted and divided into two subsets by reference value: about four-fifths for calibration
model development and cross-validation and one-fifth for external validation to test model
performance. The corn stover (n = 156) and wheat straw (n = 135) samples were divided
into a calibration set (n = 126 of corn stover, n = 108 of wheat straw) and a validation
set (n = 30 of corn stover, n = 27 of wheat straw). To improve the accuracy of calibration
models, all samples (n = 291) were combined to form a new calibration set (n = 233)
and a new validation set (n = 58). Calibration model development for moisture, CP,
NDF, ADF, ADL, and hemicellulose used the absorption of diffuse reflection in the near-
infrared region (850–2500 nm). A regression method was based on a modification of the
partial least squares (MPLS) algorithm, where the spectral data show a higher correction
with the reference data and are reduced to variables that account for the main spectral
information [22]. In the MPLS regression, the NIR residuals at each wavelength, obtained



Animals 2021, 11, 3328 4 of 12

after each factor were standardized before calculating the next factor (each wavelength
was divided by the standard deviations of the residuals). Therefore, MPLS was more
stable and accurate than the PLS algorithm [23]. It was used to develop calibration models
with the full spectrum for chemical components [17]. To account for possible affecting
factors (noise and temperature), a repeatability spectrum was created by collecting three
spectra per straw sample. A total of 30 spectral pretreatments were tested to improve the
calibration models. The application of detrending to raw spectral data reduces spectral
differences related to physical characteristics such as particle size and environment noise.
The calibration models were optimized with different scattering correction, mathematical
treatment, and regression methods [12]. For scatter correction, we used pretreatments of
derivatives and detrending to optimize calibration models. To improve the accuracy of
calibration models, 30 spectral pretreatments were tested. The application of derivative
to raw spectra increases the complexity of spectra and creates a clear separation between
peaks, which overlapped in the information of raw spectra [24]. Mathematical treatments
are hereafter referred to using numerals, such as 1, 4, 4, 1, in which the numerals represent
the number of the derivative, the gap over which the derivative is calculated, the number
of data points in a running average or smoothing, and the number of secondary smoothing
points, respectively [23].

The calibration models of moisture, CP, NDF, ADF, ADL, and hemicellulose were
considered when it had a lower standard error of calibration (SEC) and the standard
error of cross-validation (SECV), a higher coefficient of determination for calibration
(RSQC), and a higher value of 1 minus the variance ratio (hereafter referred to as 1-VR).
Predicted results were compared with the corresponding reference values as described
below. The composition outlier samples were removed from the calibration set if the
difference between predicted and reference values exceeded 3 times the SECV, in which
case it was removed from the calibration as compositional outlier samples. The following
ratio of prediction to deviation (RPD) was utilized to evaluate model quality. Malley et al.
suggested this guideline for describing the performance of calibrations for environmen-
tal samples: calibrations were excellent when RSQC > 0.95 and RPD > 4.0, they were
successful when RSQC = 0.90–0.95 and RPD = 3.0–4.0, they were moderately success-
ful when RSQC = 0.80–0.90 and RPD = 2.25–3.0, and they were moderately useful when
RSQC = 0.70–0.80 and RPD = 1.75–2.25. Some calibrations were only useful for screening
purposes, i.e., when RSQC < 0.70 and RPD < 1.75 [25]. The RPD value was calculated
as follows:

RPD = SD/SEP (where SD is standard deviation of the validation sample set) [17].

3. Results and Discussion
3.1. Laboratory Reference Data

The descriptive statistics including the minimum, maximum, mean, SD, and CV for
reference chemical of the calibration set and validation set are shown in Table 2. All com-
ponent concentrations had wide ranges based on the laboratory analysis. This provided
sufficient range to construct prediction models between spectral data and laboratory analy-
ses for each nutrition component [26]. Typically, the mean concentrations of nutritional
components were greater in wheat straw than in corn stover, except for CP and moisture,
which were lower in wheat straw (3.36% vs. 5.18% and 4.62% vs. 5.35%, respectively)
(Table 1). The range of values for the two straw materials were similar, except for NDF,
which had a wider range in corn stover (43.73% to 80.71%) than in wheat straw (64.64% to
87.81%). The lower standard deviation values of nutritional components in wheat straw
confirmed they varied less than in corn stover, except for ADF and hemicellulose (standard
deviation was 46.79% in wheat straw and 36.28% in corn stover).
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Table 2. Descriptive statistics for the six constituents of straw used for the development of NIRS calibration and validation models (wet-chemical analysis, DM basis).

Items Species
Calibration Set Validation Set

n Min (%) Max (%) Mean (%) SD CV (%) n Min (%) Max (%) Mean (%) SD CV (%)

Moisture
Corn stover 121 3.01 7.41 5.35 1.14 21.31 31 3.12 7.31 5.36 1.15 21.43
Wheat straw 105 2.68 7.05 4.62 1.10 23.79 23 2.75 6.94 4.52 1.14 25.19

CP
Corn stover 123 2.15 10.15 5.18 1.34 25.88 28 2.63 7.19 4.91 1.16 23.52
Wheat straw 105 1.52 6.75 3.36 0.94 28.14 26 1.62 5.11 3.27 0.87 26.72

NDF
Corn stover 122 43.73 80.71 63.97 6.21 9.70 25 48.93 70.36 62.29 5.51 8.84
Wheat straw 105 64.64 87.81 77.27 5.94 7.69 21 67.86 86.83 78.52 5.02 6.40

ADF
Corn stover 122 23.36 66.57 36.28 4.71 12.99 29 26.69 42.54 35.54 3.71 10.45
Wheat straw 105 35.73 58.72 46.79 4.98 10.64 20 39.49 56.78 48.22 4.61 9.56

ADL
Corn stover 121 1.17 10.70 3.26 1.61 49.46 29 1.35 5.79 2.94 1.12 38.12
Wheat straw 105 4.34 9.93 6.92 1.55 22.34 26 4.40 9.59 6.93 1.56 22.47

Hemicellulose
Corn stover 122 13.53 37.47 27.78 3.58 12.90 26 16.26 30.55 27.29 2.87 10.51
Wheat straw 105 23.34 44.91 30.58 3.67 12.00 24 25.81 36.26 30.28 2.94 9.70

n, number of samples of calibration set; Min, minimum; Max, maximum; SD, standard deviation; CV, coefficient of variation.
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3.2. Spectroscopic Analysis

The average raw reflectance spectrum recorded on air-dried samples is presented in
Figure 1. The peaks and valleys present in the spectra demonstrated the different chemical
component characteristics of corn stover and wheat straw samples. Typically, near-infrared
spectra data can be represented as a function of the wavelength (nm) of diffuse reflection.
In the wavelength region 850–2500 nm, there were five main absorption peaks, which were
located at wavelengths of approximately 1450, 1900, 2100, 2300, and 2500 nm, respectively.
The most groups are O-H (water and carbohydrates), N-H (crude protein), and C-H (ether
extract) bands [27].
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3.3. Development of Calibration Models for Two Straw Materials

The descriptive statistics of the sample number, mathematical treatment, spectrum
pretreatment, RSQC, SEC, SECV, and 1-VR for the optimal calibration models are presented
in Table 3. As expected, the calibration and cross-validation statistics were different for
each component. The first and second derivatives of the spectral data yielded better results
than the original spectra for nearly all nutritional components. Generally, the calibration
equations from the first or second derivatives generated higher RSQC and 1-VR and lower
SEC and SECV values, especially for the mathematical treatments 1, 4, 4, 1 and 2, 4, 4, 1 [28].

Table 3. Optimal NIRS prediction models of corn stover and wheat straw.

Items Species n Mathematical Treatment Spectrum Treatment RSQC SEC SECV 1-VR

Moisture
Corn stover 117 2, 4, 4, 1 none 0.8671 0.4131 0.5019 0.8020
Wheat straw 98 1, 4, 4, 1 Detrend only 0.8569 0.4075 0.4575 0.8177

CP
Corn stover 117 1, 4, 4, 1 SNV only 0.9572 0.2543 0.3162 0.9332
Wheat straw 100 1, 4, 4, 1 SNV only 0.9368 0.2368 0.3151 0.8870

NDF
Corn stover 114 1, 4, 4, 1 Weighted MSC 0.7861 2.7075 2.8284 0.7645
Wheat straw 104 1, 4, 4, 1 Scale and liner 0.4422 4.6916 4.6249 0.3753

ADF
Corn stover 118 1, 4, 4, 1 Detrend only 0.8701 1.3924 1.6805 0.8092
Wheat straw 103 2, 4, 4, 1 Standard MSC 0.4266 3.7226 3.8597 0.3776

ADL
Corn stover 118 2, 4, 4, 1 Scale and liner 0.7301 0.6784 1.0306 0.3717
Wheat straw 102 2, 4, 4, 1 none 0.4829 1.0754 1.1456 0.4074

Hemicellulose
Corn stover 110 0, 0, 1, 1 Scale and Quadratic 0.5735 1.6110 1.6434 0.5521
Wheat straw 101 1, 4, 4, 1 Scale and Quadratic 0.1387 2.7950 2.9161 0.0531

n, number of samples in the calibration set; RSQc, coefficient of determination for calibration; SEC, standard error of calibration;
SECV, standard error of cross validation; 1-VR, coefficient of determination for the cross-validation.
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For the moisture of corn stover, the best calibration equation was developed when the
mathematical treatment was 2, 4, 4, 1 and when there was no spectrum treatment. However,
the mathematical and spectrum treatment settings were different for the moisture of wheat
straw (1, 4, 4, 1 and Detrend only, respectively, in Table 2). For the CP, NDF, and ADF of
the corn stover, the first derivative yielded the highest RSQC (0.9572, 0.7861, and 0.8701)
and 1-VR (0.9332, 0.7645, and 0.8092), respectively. For the ADL and hemicellulose of corn
stover, the best calibration equations were developed when the mathematical treatments
were 2, 4, 4, 1 and 0, 0, 1, 1. The two nutritional components of the spectrum treatment
were scale and liner. For the CP, NDF, hemicellulose, and moisture of wheat straw, the first
derivative (1, 4, 4, 1) produced the highest RSQC (0.9368, 0.4422, 0.1387, and 0.8569) and
1-VR (0.8870, 0.3753, 0.0531, and 0.8177). The second derivative had a larger RSQC and
1-VR for the ADF and ADL of the wheat straw.

3.4. External Validation of the Calibration Models for Two Straw Materials

The external validation process aims to judge the predictability of the NIRS calibration
models [22]. The statistics of external validation (Table 4) were evaluated against the
equations developed from the best mathematical treatments and spectrum pretreatments.
As could be expected from calibration models (Table 3), the results of validation confirmed
that the CP content of corn stover and wheat straw could be accurately predicted by NIRS
because the RSQC was higher than 0.90 and the RPD was larger than 3.0. The CP, as a
result of the prediction model, was consistent with previous studies; CP was the best in all
models [29]. For NDF and moisture of corn stover, the RSQC values were 0.7861 and 0.8671,
respectively, but the RPD was higher than 2.25. These values confirm that the equations
were moderately successful. It was reported that moisture content affects hydrogen content
within the sample and that, as a result, band width and position can change [7]. Moreover,
the moisture content perhaps changed during sample preparation and scanning from
external factors such as temperature, and the humidity of the environment was previously
reported to affect the accuracy of moisture determination [30].

Table 4. Monitoring statistics for the NIR spectroscopic prediction equation for six constituents of corn stover and wheat straw.

Constituent Species n Bias SEP SEPC Slope RSQV RPD

Moisture
Corn stover 31 −0.048 0.435 0.439 0.984 0.854 2.644
Wheat straw 23 0.028 0.377 0.385 0.903 0.896 3.024

CP
Corn stover 28 −0.102 0.342 0.333 1.037 0.918 3.392
Wheat straw 26 −0.034 0.235 0.237 1.018 0.927 3.702

NDF
Corn stover 25 −0.426 2.103 2.102 0.925 0.860 2.620
Wheat straw 21 1.275 2.423 2.112 0.931 0.828 2.072

ADF
Corn stover 29 −0.213 1.739 1.756 0.944 0.779 2.133
Wheat straw 20 0.781 2.772 2.729 1.252 0.677 1.663

ADL
Corn stover 29 −0.566 1.254 1.139 0.471 0.125 0.893
Wheat straw 26 0.392 1.299 1.263 0.841 0.355 1.201

Hemicellulose
Corn stover 26 −0.519 1.643 1.590 1.073 0.696 1.747
Wheat straw 24 0.364 2.550 2.578 1.134 0.232 1.153

n, number of samples in validation set; SEP, standard error of prediction; SEPc, standard error of prediction for the bias; RSQv, coefficient of
determination of validation; RPD, ratio of prediction to deviation.

A number of researchers have noted that the NDF and ADF of forage could be well
predicted by the NIRS technique [11,31,32]. In our study, the equations were moderately
useful because the RSQC values were 0.8701 and 0.5735, but the RPD for the ADF and hemi-
cellulose of the corn stover was higher than 1.75. The equation for ADL was only useful for
screening purposes. A poor relationship was similarly noted when silage and barley hay
were included within the straw samples [33]. The NIRS method of ADL quantification is
related to the spectral changes associated with other components (e.g., CP and NDF) and is
thus subject to the accumulated imprecision from multiple components [34]. The literature
noted that the 72% sulfuric acid procedure destroys lignin and yields crude lignin, which
includes Maillard-type browning products and cutin [35]. Furthermore, the wet chemistry
of ADL has low precision, and this polymer is not easily quantified in various types of
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forages [36]. For wheat straw, the equation could be predicted, but it was less precise than
the corn stover for all constituents except for the ADL and moisture models.

3.5. Best Calibration Models for Pooled Spectra of Both Corn and Wheat Straw

Dunn et al. and Cozzolino et al. suggested that there was a method for improving cal-
ibration model performance by increasing plant species composition [37,38]. The samples
from the calibration and validation sets were re-sorted for all straw samples. Corn stover
and wheat straw samples were combined for final best calibration model development.
The descriptive statistics including the minimum, maximum, mean, SD, and CV of the
reference chemicals of the calibration set and the validation set are presented in Table 5.

Table 5. Descriptive statistics for the six constituents of straw used for the development of NIRS calibration and
validation models.

Items
Calibration Set Validation Set

n Min (%) Max (%) Mean (%) SD CV (%) n Min (%) Max (%) Mean (%) SD CV (%)

Moisture 225 2.68 7.41 5.00 1.18 23.60 56 2.75 7.31 4.98 1.16 23.69
CP 225 1.52 10.15 4.30 1.47 34.19 55 1.62 7.19 4.16 1.34 35.34

NDF 223 43.73 87.81 70.20 8.99 12.81 56 48.93 86.47 70.01 9.07 12.84
ADF 224 23.36 66.57 41.10 7.18 17.47 55 26.69 56.85 40.86 7.05 17.57
ADL 227 1.17 10.70 4.93 2.42 49.09 58 1.35 9.59 4.92 2.41 49.19

Hemicellulose 226 13.53 44.91 29.07 3.87 13.31 52 21.93 36.28 28.59 2.84 13.54

n, number of samples of calibration set; Min, minimum; Max, maximum; SD, standard deviation; CV, coefficient of variation.

Compared with the calibration set for each straw material, the range of value for all
components, such as moisture, CP, NDF, and ADF, were greatly increased in the combined
calibration set. The moisture content ranged from 3.01% to 7.41% in the corn stover and
from 2.68% to 7.05% in the wheat straw (Table 2). By combining these two straw materials,
the range of values varied from 2.68% to 7.41% (Table 5). The standard deviation values of
all components in the combined calibration set were also greater than in the calibration set
of each straw.

Based on statistics of NIRS calibration, in which cross-validation (Tables 3 and 6), and
validation (Tables 4 and 7) used a combined sample set of both corn stover and wheat
straw, there were successful equations obtained for CP, ADF, and ADL and moderately
useful equations obtained for NDF and moisture, except in regard to hemicellulose. This is
because hemicellulose content was obtained by the difference between NDF and ADF, the
errors of which accumulated and resulted in poor accuracy for hemicellulose calibration.

Table 6. Optimal NIRS prediction models of straw materials.

Items Sample Number Mathematical Treatment Spectrum Treatment RSQC SEC SECV 1-VR

Moisture 219 1, 4, 4, 1 Detrend only 0.8342 0.4759 0.5421 0.7839
CP 210 1, 4, 4, 1 Weighted MSC 0.9625 0.2708 0.3022 0.9530

NDF 215 1, 4, 4, 1 none 0.8349 3.6973 4.1753 0.7884
ADF 216 2, 4, 4, 1 Scale and Quadratic 0.8745 2.4250 2.9351 0.8154
ADL 215 0, 0, 1, 1 Scale and Linear 0.7939 1.0788 1.1377 0.7697

Hemicellulose 206 0, 0, 1, 1 Standard MSC 0.4388 2.2946 2.3247 0.4212

n, number of samples in the calibration set; RSQc, the coefficient of determination for calibration; SEC, standard error of calibration; SECV,
standard error of cross validation; 1-VR, coefficient of determination for the cross-validation.

For the combined sample set of both corn stover and wheat straw, the content of
CP was excellently and successfully predicted by NIRS with a high degree of accuracy
(RSQC = 0.9625 (Table 6), RPD = 6.872 (Table 7)). In the NIR spectrum, the major absorption
bands of protein (combination of C–N stretch, N–H in-plane bend, and C–O stretch; com-
bination of C=O stretch and C–H stretch; N–H bend second overtone) could be observed
between 2148 and 2200 nm [39,40]. The CP prediction for the combined set was improved
compared with the NIRS equation for each straw, which was due to the increased vari-
ability (34.19% vs. 23.52% of corn stover, 26.72% of wheat straw) of this component in the
combined calibration set [41].
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Table 7. Monitoring statistics for the NIR spectroscopic prediction equation for six constituents of
straw materials.

Constituent n Bias SEP SEPC Slope RSQV RPD

Moisture 56 −0.035 0.621 0.626 0.769 0.780 1.868
CP 55 −0.004 0.195 0.197 1.017 0.979 6.872

NDF 56 0.464 4.104 4.114 0.977 0.795 2.210
ADF 55 −0.042 2.563 2.586 1.092 0.871 2.751
ADL 58 0.079 1.067 1.074 1.018 0.801 2.259

Hemicellulose 52 −0.484 2.618 2.598 0.634 0.242 1.085
n, number of samples in validation set; SEP, standard error of prediction; SEPc, standard error of prediction for
the bias; RSQv, coefficient of determination of validation; RPD, ratio of prediction to deviation.

The NIRS prediction of ADF for the combined set of both straw materials outper-
formed (RSQC = 0.8745 (Table 6), RPD = 2.751 (Table 7)) the moderately useful NIRS
equation for corn stover and the only-useful-for-screening-purposes NIRS equation for
wheat straw (Table 3). The ADL NIRS prediction based on the combined species was better
(RSQC = 0.7939 (Table 6), RPD = 2.259 (Table 7)) than the ADL prediction in corn stover
and wheat straw (Table 3). The moisture NIRS prediction with the combined set was worse
(RSQC = 0.8342, RPD = 1.868) than those for corn stover (RSQC = 0.8671, RPD = 2.644) or
wheat straw (RSQC = 0.8569, RPD = 3.024). Although there was an increase in variability
(23.60 vs. 21.31 of corn stover and 23.79 of wheat straw) that occurred by expanding the
sample numbers, it suggests an overlap of information from the spectroscopy. This result
is similar to the outcome from the NDF NIRS prediction.

In the present study, the worst NIRS calibration equation using the combined set was
obtained for hemicellulose, with an RSQC of 0.4388 (Table 6) and an RPD of 1.085 (Table 7).
It was determined that the accuracy needed to be improved. The RPD value of hemicellu-
lose was lower than the previous results because the concentration of hemicellulose was
calculated as the difference between NDF and ADF from all straw materials [12].

Scatter plots of laboratory reference values versus predicted values of calibration
models for a selected set of six nutritional constituents (CP, NDF, ADF, ADL, and hemi-
cellulose) are presented in Figure 2. These results of external validation indicate that the
slope regression of the measured vs. predicted values for three nutritional constituents
(CP, NDF, and ADF) are close to 1.00 (0.8506–0.9476); the exceptions were ADL (0.7422),
hemicellulose (0.2417), and moisture (0.7804). Given the observations of 1-VR, SEC, and
SECV, the literature suggests they should be considered with more emphasis and be based
on external validation statistics to evaluate the performance of calibration models [23].
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4. Conclusions

In summary, the descriptive statistics obtained for calibration, cross-validation, and
external validation in this research demonstrated that NIRS has a potential for a rapid
assessment of forage quality (moisture, CP, NDF, ADF, ADL, and hemicellulose) in corn
stover and wheat straw. For corn stover, most of the calibration models had prediction
abilities with acceptable accuracy; four of them (moisture, CP, NDF, and ADF) were
suitable for quantitative prediction, and the other two (ADL and hemicellulose) were
useful for screening purposes. For wheat straw, two of six calibration models (moisture
and CP) were adaptable to quantitative prediction, and the other four (NDF, ADF, ADL,
and hemicellulose) were useful for screening purposes.

To our knowledge, this is original research aiming to develop NIRS calibration models
that might be used to rapidly analyze the nutritional content of corn stover and wheat
straw for use as forages. The application of accurate calibrated models combining these
straw materials would be greatly useful for a broad range of end users. Increasing sample
numbers (variability) by using different straw species improved calibration accuracy. Addi-
tionally, it is good for developing precision livestock farming by predicting the components
of straw.
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