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Abstract

IntroductIon

Classification and grading of gliomas have recently been 
updated to include molecular information in addition to 
histological information. In general, gliomas are Graded from I 
to IV. Grade II represents low-grade gliomas and Grades III and 
IV are progressively higher in malignancy status, as determined 
by the presence or absence of certain histological features, 
including mitotically active cells, endothelial proliferation, 

Background: Glioma, the most common primary brain neoplasm, describes a heterogeneous tumor of multiple histologic subtypes and cellular 
origins. At clinical presentation, gliomas are graded according to the World Health Organization guidelines (WHO), which reflect the malignant 
characteristics of the tumor based on histopathological and molecular features. Lower grade diffuse gliomas (LGGs) (WHO Grade II–III) have 
fewer malignant characteristics than high‑grade gliomas (WHO Grade IV), and a better clinical prognosis, however, accurate discrimination of 
overall survival (OS) remains a challenge. In this study, we aimed to identify tissue‑derived image features using a machine learning approach to 
predict OS in a mixed histology and grade cohort of lower grade glioma patients. To achieve this aim, we used H and E stained slides from the 
public LGG cohort of The Cancer Genome Atlas (TCGA) to create a machine learned dictionary of “image‑derived visual words” associated with 
OS. We then evaluated the combined efficacy of using these visual words in predicting short versus long OS by training a generalized machine 
learning model. Finally, we mapped these predictive visual words back to molecular signaling cascades to infer potential drivers of the machine 
learned survival‑associated phenotypes. Methods: We analyzed digitized histological sections downloaded from the LGG cohort of TCGA using a 
bag‑of‑words approach. This method identified a diverse set of histological patterns that were further correlated with OS, histology, and molecular 
signaling activity using Cox regression, analysis of variance, and Spearman correlation, respectively. A support vector machine (SVM) model was 
constructed to discriminate patients into short and long OS groups dichotomized at 24‑month. Results: This method identified disease‑relevant 
phenotypes associated with OS, some of which are correlated with disease‑associated molecular pathways. From these image‑derived phenotypes, 
a generalized SVM model which could discriminate 24‑month OS (area under the curve, 0.76) was obtained. Conclusion: Here, we demonstrated 
one potential strategy to incorporate image features derived from H and E stained slides into predictive models of OS. In addition, we showed 
how these image‑derived phenotypic characteristics correlate with molecular signaling activity underlying the etiology or behavior of LGG.
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nuclear atypia, microvascular proliferation, and presence of 
absence of necrosis.[1] Patients with this disease have highly 
variable overall survival (OS) ranging from a few months 
to several years.[2,3] Such variation in the disease evolution 
of lower grade diffuse gliomas (LGGs) creates significant 
challenges for prognostication and management.[4,5] The ability 
to accurately predict OS outcome would facilitate the design of 
appropriate surveillance and/or treatment strategies to assess 
disease aggressiveness.[2,6,7] Toward the construction of such 
models, it is essential to first identify tumor‑derived factors 
that have previously been associated with the likely course of 
the disease. To date, several tumor‑derived features have been 
reported to be associated OS; these include clinical variables, 
including patient age and extent of resection, whether the 
tumor crosses the midline, neurological deficits, and astrocytic 
histology; imaging variables, including enhancing fraction, 
tumor volume; and molecular alterations, such as isocitrate 
dehydrogenase (IDH1/2) mutation status (collectively 
referred to as IDH mutations), MGMT promoter methylation 
status, 1p and 19q chromosomal arm co-deletion, and TP53 
mutation.[8-10] More recently, studies by the LGG working 
group of The Cancer Genome Atlas (TCGA) have identified 
multiple molecular subtypes of LGG – predominantly IDH 
wild-type, IDH mutant with 1p and 19q co-deleted, and 
IDH mutant-only groups.[11,12] Using these groupings, it 
has been shown that IDH wild‑type LGGs have molecular 
characteristics and behavior such as glioblastoma and have 
been associated with shorter OS.[12,13] On the other hand, LGGs 
with astrocytic lineage (astrocytomas) are seen to be more 
aggressive relative to those with oligodendroglial origin. These 
have fairly diverse morphological characteristics (e.g., “fried 
egg” morphology for oligodendroglioma (OD) vs. highly 
pleomorphic, atypical nuclei for astrocytomas.[14] Therefore, 
morphological features that capture this information have 
been explored in the classification of this disease.[15,16] The 
availability of public domain Hematoxylin & Eosin (H and 
E) slide data from efforts such as the TCGA permits the use 
of such data for the inference of data‑derived phenotypic 
characteristics that might serve to complement the molecular 
markers for the diagnosis and prognosis of disease. Indeed, 
an integrated phenotypic‑genotypic classification systems are 
now being implemented to increase the prognostic value of the 
classifications.[17] Thus, there is a recognition that integrative 
features can better prognosticate disease outcome; however, the 
roles of machine learned visual dictionaries as complements 
to molecular characteristics and expert annotations remain to 
be explored in this classification system, specifically in the 
context of LGGs.

In this study, we used a machine learning approach to identified 
tissue‑derived image features of LGGs capable of predicting 
patient OS. We hypothesized that the orientation of nuclei 
within a visual field will change depending on the malignant 
attributes of the tumor and that detection of these regional 
attributes can be quantified using a bag‑of‑words (BoWs) 
image analysis approach. Using these data, we could identify 

discriminative histology‑derived patterns of nuclei associated 
with OS to be used in the construction of a generalized 
prognostic model. Further, we compare the efficacy of 
prognostication using molecular information combined 
with histological annotations provided by TCGA, the 
visual dictionary alone and the visual dictionary combined 
with molecular information. Finally, we aimed to identify 
molecular correlates of these visual words by correlating their 
abundance in the images with the corresponding molecular 
data for these samples.

Methods

It was previously reported that astrocytic tumors [Figure 1] 
have worse prognosis than other histological subtypes[8,18] 
such as oligodendroglial tumors (which have a “fried 
egg” morphology and “chicken‑wire” capillary pattern on 
H and E stained slides [Figure 1]).[14] These findings indicate 
that image characteristics derived from H and E stained 
slides (morphology, spatial patterns of cellular organization) 
could be associated with OS. Thus, we investigated what 
image features might associate with OS using a machine 
learning approach. To this end, we developed a methodology 
for image feature extraction based on a “BoWs” approach[19] to 
create a regional representation of statistically distinguishable 
image‑derived phenotypes from whole‑tissue mounts.

General bag‑of‑words methodology
The BoWs workflow consists of four steps. These include 
(1) partitioning an image into smaller image patches and 
extracting statistical features for each patch; (2) inferring 
a visual dictionary (codebook) for representation, using a 
clustering approach, such as K‑means clustering, over the 
statistical features of the image patches; (3) performing 
frequency analysis on the dictionary for each tissue, i.e., how 
often each machine learned phenotype is encountered; and 
(4) correlating dictionary‑derived histograms with clinical 
outcomes, such as LGG with short OS and LGG with long 
OS. This approach has previously been applied successfully 
to various biomedical imaging questions; for example, in 
histology, it has been used to identify representative regions 

Figure 1: Representative H and E stained sections of the histological 
subtypes of glioma included in this study. Left, diffuse astrocytoma, 
characterized by relatively low cell density and highly pleomorphic nuclei. 
Middle, oligoastrocytoma, characterized by mixed features of astrocytoma 
and oligodendroglioma. Right, oligodendroglioma, characterized by a 
distinctive clear protoplasmic area, relatively round bland nuclei, and 
high cell density
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of larger tissues, automatically classify fundamental tissue 
lineages, and detect pathological malignancies in basal cell 
carcinoma.[20‑23] In the context of tumors of the central nervous 
system, similar BoW‑based approaches have been applied to 
discriminate medulloblastomas from normal tissue.[24] Others 
have shown that classification of distinct histological features, 
such as necrosis, could be robustly identified in glioblastoma 
multiforme (GBM) using sparse learning and that these features 
could be linked to disease outcome.[25] Other machine learning 
approaches which use image partitioning in combination with 
morphometric features of nuclei, but do not rely on the BoWs 
paradigm, have also been applied to grading gliomas.[26]

The BoWs paradigm is commonly used in computer vision 
to obtain visual dictionaries that can be used to identify 
discriminant visual words for global classification of the 
source image. Such dictionaries are typically obtained by 
clustering similar images together using algorithms such 
as K-means.[20] Each cluster centroid represents an image 
subregion with distinct image features and is denoted a “visual 
word.” All the images can be described as histograms over 
such derived “visual words,” yielding a “BoWs” representation 
for the image. Detailed descriptions of this approach can 
be found elsewhere.[19,27] To train a robust BoWs model, a 
representative sampling of different tissue patterns must be 
obtained. In this study, we used histological sections from 
the TCGA‑LGG cohort, which includes Grade II–III tumors, 
as an input. Nuclei are then segmented, and the image is 
partitioned into smaller image patches. From these patches, 
image features (measurements of spatial cell organization) are 
extracted. Multiple feature spaces have been proposed to be 
used in BoW analysis, many of which are based on extraction of 
raw pixel‑based texture descriptors, referred to as texton‑based 
approaches.[24,28,29] However, in the context of this disease, the 
morphometric and contextual properties of nuclei have been 
associated with malignancy status. To capture this information, 
derivations of Zernike moments were calculated from binary 
nuclear masks, creating a computationally efficient feature set 
which simultaneously captures morphometric and contextual 
features of the tissue through quantifying spatial patterns.[30] 
The resulting feature vectors from all the patches are then 
clustered using the K-means algorithm. Following this step, a 
frequency histogram representation of each image in terms of 
the derived clusters is obtained. The histogram features for each 
tumor specimen are correlated to a response variable. Finally, 
the companion molecular data from the TCGA are used to 
map molecular pathway activity to the identified visual words.

Details of bag‑of‑words methodology for this study
We performed analysis of lower grade gliomas in the TCGA 
archive consisting of Grade II–III tumors, following TCGA 
notation/terminology.[31,32] The patient cohort used in this 
study was selected on the basis of available OS information 
in addition to companion histological sections. The cohort was 
then divided into terciles based on OS. Histological sections 
from the top (long OS) and bottom (short OS) terciles were then 
downloaded from the TCGA ftp site (https://www.tcga‑data.

nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/
tumor/lgg/) and subjected to subsequent analysis. There were 
27 patients in the short OS group and 26 in the long OS group. 
Patient demographics for these groups are summarized in 
Table 1. The median OS was 15 months in the short OS group, 
compared to 83.65 months in the long OS group. Further, 
many of the characteristics in the short OS group mirrored 
the clinical characteristics of poor prognosis LGGs reported 
in other studies[8,18,33] (mean age >40 years, predominantly 
astrocytic histology, and Karnofsky performance status (KPS) 
of ~80) suggesting suitability of this cohort as a representative 
dataset for analysis of disease outcome.

Image preprocessing
Histological sections from TCGA were downloaded in SVS 
format. These files were scaled to 1 pixel/µm, approximately 
equal to a standard ×10 objective, and entire sections were 
saved as png files using Fiji.[34‑36] Histological sections were 
analyzed using a custom algorithm developed using Pipeline 
Pilot 9.2 (Biovia, San Diego), illustrated in Figure 2. In 
this workflow, H and E components were separated using 
the color separation component in Pipeline Pilot. Next, a 
background correction (rolling ball and percentile filtering) 
was performed on the hematoxylin component image, followed 
by recontrasting of the image. Nuclear segmentation was 
performed on the corrected hematoxylin image using an edge 
touching algorithm to create a preliminary nuclear mask. This 
mask was further refined using binary operators, including 

Table 1: Patient demographic and clinical characteristics

Characteristic Short OS group Long OS group
Age (years)

Mean 51.07 38.81
Median 52 37.5
SD 13.89 10.77
Range 29-87 18‑62

Histologic subtype
Astrocytoma 11 5
OA 8 4
OD 8 17

Survival (months)
Mean 14.59 98.13
Median 15 83.65
SD 5.29 41.37
Range 5.85‑22.4 57.9‑211

Sex
Male 16 7
Female 11 19

Seizure
Yes 13 16
No 10 10
Do not know 4 0

Vital status at last follow-up
Dead 17 17
Alive 10 9

OS: Overall survival, SD: Standard deviation, OA: Oligoastrocytoma, 
OD: Oligodendroglioma
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opening, closing, and Gaussian smoothing. The quality of 
nuclear segmentation was visually evaluated on a panel of 
representative tissue sections with color‑overlaid nuclear 
masks [Supplementary Figure 1]. The image was then tiled 
into 256 × 256 pixel patches with a 50‑pixel overlap, and 
statistical image features were extracted. Next, the eosin 
component image was thresholded using a global value. The 
area of the thresholded object was then used to calculate a 
tile-based tissue area fraction, computed as the ratio of the 
masked eosin area to the total area of the tile. This feature was 
used to remove artifacts and define tissue areas for downstream 
image analysis (i.e., restrict image analysis to tiles with at least 
50% of the area occupied by tissue).

Feature extraction
From each image tile, the nuclear mask was used to obtain 
spatial, central, and normalized central moments in addition 
to calculation of statistical features of 3 × 3 intensity 
co‑occurrence. The rationale for using this feature set is 
outlined below.

Image moments are a well‑established tool in machine vision 
for pattern recognition tasks.[37] The most basic image moments 
are spatial or geometric moments. When applied to binary 
masks, these quantify a blob’s area, center of gravity, and 
relative orientation. Central moments can then be derived by 
reducing the spatial moments around the center of gravity, 

making them translationally invariant. However, both spatial 
and central moments are dependent on the scale of the binary 
object. To compensate for this, further normalization can be 
done by correcting for the blob’s area, these are known as 
normalized moments.[38] For the purpose of our work, all image 
moments were calculated using the region intensity statistics 
component in Pipeline Pilot. In addition to utilizing image 
moments, we obtained statistical parameters (energy, contrast, 
correlation, homogeneity, and entropy) of a co-occurrence 
matrix from the binary image. When these parameters are 
derived from a binary image, information regarding the 
transitional regions (edges) and object connectivity are 
obtained.[39]

Visual dictionary creation
The next step in the BoWs workflow is the creation of a 
visual dictionary. This was done by first removing artifacts 
(glass and tissue folds) based on the tissue area fraction 
(defined above). The visual dictionary was obtained through 
K‑means clustering performed on the feature vectors for each 
image tile, pooled from all the images across the patients. The 
optimal size of the dictionary was obtained using the Bayesian 
information criterion (BIC). For this image dataset, the optimal 
number of clusters was 100 [Figure 3a]. A visual dictionary 

Figure 2: Schematic of the analytical workflow. The overall workflow used 
in this study is broken into three major parts: image processing utilized 
to extract statistical features, construction of a bag‑of‑words model, and 
data mining. BIC: Bayesian information criterion, OS: Overall survival, 
SVM: Support vector machine, OD: Oligodendroglioma

Figure 3: Visual dictionary optimization and visualization. (a) To determine 
the optimal size of the dictionary, the Bayesian information criterion was 
calculated from a putative range of potential numbers of clusters and 
plotted. The knee point is at approximately 100 clusters; therefore, this 
was the dictionary size used in the subsequent analysis. (b) The visual 
dictionary was then compiled by selecting tiles that had the nearest 
Euclidean distance to the centroid of each cluster. Tiles are shown in 
cluster order (1–10, 11–20, etc.)

b

a
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was then obtained by identifying the image patch (tile) nearest 
to the corresponding cluster centroid [Figure 3b]. A histogram 
representation for each tissue was then constructed in terms of 
the obtained clusters (visual words from K‑means clustering), 
resulting in a “BoWs” representation for that image.

Statistical analysis
To identify visual words associated with OS, multivariate 
Cox regression analysis was performed after adjustment for 
clinical variables known to be associated with malignant 
transformation‑free survival[8] such as: age at disease onset; 
KPS, which is a standardized metric used to rate the level of 
impairment due to the disease; site of primary tumor resection 
or biopsy; and IDH mutation status. This approach identified 
visual words whose proportions are significantly associated 
with OS even after adjustment for these clinical factors. To 
further validate the combined utility of the identified visual 
words, another Cox regression was performed using the 
above‑mentioned clinical attributes, and the decision value 
obtained from a support vector machine (SVM) model based 
on the visual words.

To determine the molecular correlates of the derived visual 
words, a Spearman rank correlation was used. BoWs – derived 
cluster proportions values were correlated with molecular 
pathway activity scores based on PARADIGM,[40] from the 
portal.[41] (https://www.confluence.broadinstitute.org/display/
GDAC/Home). PARADIGM scores summarize pathway 
activity based on a combination of mutation and expression 
values for each gene in the pathway. P‑values were then 
adjusted for multiple testing using the false discovery rate 
method resulting in a q‑value.[42] A final list of significant 
correlations was obtained by retaining those correlations 

with a q < 0.05. To make this information more accessible, a 
representative tag cloud was constructed for each visual word. 
Here, the size of the pathway term represents the weighted 
prevalence of that pathway’s components (with weights 
determined using the reciprocal of the q‑value).

We also sought to determine if the clustering derived visual 
words were capable of discriminating histological categories. 
As previously mentioned, each histological section within 
the LGG cohort of TCGA was annotated for its histological 
category (astrocytoma, OD, or oligoastrocytoma). To determine 
if the visual word proportion was significantly different between 
histological subtypes, we used a one‑factor analysis of variance.

results

Identification of visual words correlated with overall 
survival
On Cox regression analysis, 14 of the 100 visual words were 
associated with OS after adjustment for clinical covariates 
[Table 2]. Likewise, the integrated predictive score from the 14 
significant visual words that resulted from the SVM classifier 
was highly associated with OS (p < 0.0001) in addition to age 
and KPS, which were also significant at the p = 0.05 level.

The 14 identified visual words represented diverse 
patterns of cellular organization, including vascularization, 
hypercellularity, cellular clustering, and spindle cell 
morphologies. In addition, other histological features such as 
regions with a high density of thin vasculature and calcifications 
are also detected. Some of these histological features were 
also encoded for by multiple visual words, which suggest the 
importance of these histological features associated with OS, 

Table 2: Visual words significantly correlated with overall survival on Cox regression after adjustment for clinical factors 
known to be associated with malignant transformation‑free survival

Visual 
word ID

Intercept Age Histology KPS Site of resection IDH status WHO grade Visual word

DA OA OD
9 5.1E‑07 4.2E‑03 9.2E‑01 8.5E‑01 8.2E‑01 8.6E‑03 2.5E‑01 2.1E‑02 7.0E‑02 3.6E‑03
15 2.1E‑05 2.2E‑03 5.2E‑01 7.9E‑01 5.0E‑01 1.5E‑02 8.0E‑01 2.2E‑02 4.0E‑01 2.5E‑02
19 5.8E‑06 1.2E‑02 9.8E‑01 9.8E‑01 7.9E‑01 1.3E‑02 3.4E‑01 3.6E‑02 2.8E‑01 5.1E‑02
31 1.7E‑06 8.3E‑03 7.5E‑01 7.5E‑01 9.8E‑01 1.5E‑02 2.0E‑01 1.9E‑02 1.7E‑01 1.6E‑02
32 9.4E‑06 2.1E‑03 7.0E‑01 8.5E‑01 4.9E‑01 1.4E‑02 7.8E‑01 5.9E‑02 4.7E‑01 5.6E‑02
33 8.2E‑07 1.5E‑02 7.5E‑01 5.5E‑01 7.7E‑01 2.2E‑02 3.0E‑01 1.1E‑02 9.0E‑02 2.9E‑03
34 1.5E‑05 4.0E‑03 8.4E‑01 7.1E‑01 4.1E‑01 1.0E‑02 5.3E‑01 6.8E‑03 7.2E‑01 5.1E‑03
41 1.0E‑06 2.9E‑03 9.6E‑01 6.5E‑01 8.3E‑01 3.0E‑02 5.8E‑01 2.4E‑02 1.3E‑01 4.0E‑02
47 4.5E‑06 7.6E‑03 9.6E‑01 7.2E‑01 8.2E‑01 2.3E‑02 3.6E‑01 2.0E‑02 2.0E‑01 4.4E‑02
57 6.9E‑06 2.9E‑03 6.8E‑01 7.1E‑01 4.5E‑01 7.6E‑03 6.5E‑01 2.2E‑02 5.2E‑01 4.4E‑02
75 5.5E‑06 1.3E‑02 9.1E‑01 8.2E‑01 8.8E‑01 4.1E‑02 5.5E‑01 1.3E‑02 1.7E‑01 2.8E‑02
77 3.5E‑06 1.1E‑03 8.2E‑01 9.5E‑01 5.4E‑01 1.5E‑02 7.0E‑01 1.3E‑02 4.8E‑01 3.2E‑02
83 2.8E‑06 9.5E‑04 6.8E‑01 8.8E‑01 6.6E‑01 2.8E‑02 8.0E‑01 8.5E‑02 2.4E‑01 3.7E‑02
92 2.5E‑06 7.8E‑04 6.3E‑01 7.9E‑01 7.2E‑01 1.1E‑02 5.8E‑01 6.8E‑02 2.7E‑01 1.6E‑02
To determine if a particular visual word had an effect on OS, Cox regression analysis was performed. We evaluated if there was an effect on overall 
survival after adjusting for age of onset, KPS, site of tumor resection or biopsy, histological subtype, IDH mutation status, and BoW frequency. P‑values 
are listed above. DA: Diffuse astrocytoma, OA: Oligoastrocytoma, OD: Oligodendroglioma, BoWs: Bag‑of‑words, KPS: Karnofsky performance status, 
IDH: Isocitrate dehydrogenase, WHO: World Health Organization, OS: Overall survival, ID: Identified
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and possibly, time‑to‑MT. Indeed, three of the 14 visual words 
identified were enriched for image patches containing elevated 
numbers of thin blood vessels. Interestingly, the analytical 
approach that we used considers only the arrangement 
of nuclei, suggesting that the microcosm around densely 
vascularized regions has predictive potential for OS. Indeed, 
it has been previously been reported that glioma cells collect 
around blood vessels at infiltrative margins of the tumor.[43] 
Consistently, we observed that visual words representing these 
dense‑vascularized margins were enriched in patients with 
relatively shorter OS [Supplementary Figure 2].

Identification of visual words correlated with histological 
subtype
Given that histological subtype is associated with OS, we 
wished to identify visual words that discriminate between 
histological subtypes. We identified 11 such visual words 
using the previously described method. To visually assess these 
observations, box plots of the BoWs frequency for each patient 
were plotted by histological subtype [Supplementary Figure 3]. 
Interestingly, there was no overlap between the visual words 
significantly associated with histological subtype and those 
significantly associated with OS.

Visual words significantly associated with overall survival 
also predict dichotomized overall survival
Once visual words significantly associated with OS were 
identified, we wanted to determine if the combination of these 
visual words could be used to create a generalized model 
capable of discriminating 24‑month OS. This would not only 
serve as a validation of the identified visual correlates but also 
provide a pathway toward a clinically relevant, predictive 
prognostic tool. A SVM was used to model 24‑month OS as a 
function of the visual words. To evaluate the generalizability 
of this model, a 10‑fold cross‑validation was performed, and 
a receiver operator characteristic curve was constructed from 
these results [Figure 4a].

This method was used to identify tissue‑derived image features 
capable of discriminating the short and long OS groups 
(dichotomized at the 24‑month point) in the LGG cohort. The 
recovered image‑derived dictionary is presented in Figure 4c. 
The SVM classifier area under the curve (AUC) was 0.76. 
A confusion matrix was derived from the point on the receiver 
operating characteristic curve with optimal model predictive 
values [Figure 4b]. We also calculated an F‑score, which is 
a commonly used metric of the overall accuracy of a binary 
model. This metric ranges from 0 to 1, where 0 reflects a very 
inaccurate classification and 1 reflects a fully accurate model. 
The F‑score for this classifier was 0.78.

We next studied how prognostication performance would 
be effected by utilizing a combination of genomic and 
image‑derived phenotypic attributes. To do so, we implemented 
a similar workflow to the one described above where 
histological classifications provided by the TCGA or the 
tissue‑derived dictionary in addition to clinical factors and 
IDH status are used as inputs in a SVM model. This resulted 

in a 10‑fold cross‑validated AUC of 0.67 for the model based 
on TCGA histology‑annotated and IDH status, an AUC of 0.82 
for the machine-learned dictionary with IDH status, and an 
AUC of 0.89 for the model based on the TCGA annotations, 
machine learned dictionary, age, tumor location, grade, KPS, 
and IDH status (data not shown). These data demonstrate the 
feasibility and value of combining machine‑learned visual 
dictionary with established clinical and molecular biomarkers 
to improve prognostication.

Identifying gene pathways underlying overall 
survival ‑ associated visual words
Exploration of machine‑learned phenotype‑genotype 
interactions can reveal mechanistically interesting pathways 
associated with grade or disease progression. Indeed, 
these types of analysis have shown significant associations 
between the oligodendroglioma component of GBM and 
PDGFRA amplification.[15] To understand the biological 
basis of the identified visual words in our system, we 
studied the relationship between the discriminative visual 
words (classifier‑associated features) and activity of molecular 
signaling cascades. Using the tag cloud representation for 
PARADIGM pathway‑activity levels significantly associated 
with visual words, Figure 5, we identified multiple interesting 

Figure 4: Validation of parameters of the constructed support vector 
machine model. To determine the generalizability of the trained support 
vector machine model, 10‑fold cross‑validation was used. (a) These 
data were subsequently used to create a receiver operating characteristic 
plot. (b) From this, a confusion matrix and accompanying statistical 
parameters were also derived. (c) A visual dictionary of representative 
recovered tiles for the 14 significant visual words was also constructed 
by taking a sampling of the tiles nearest to the centroid of the visual word

c

ba
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molecular signaling motifs which have previously been 
associated with OS [Figure 5].

One of the pathways identified through this method 
was centered around retinoic acid signaling [Figure 5a]. 
Upregulation of this cascade signals for differentiation and 
regulation of cellular proliferation and death. Retinoic acid 
receptor and retinoic acid X receptor signaling were both 
negatively correlated with their respective visual word which 
has a lower frequency in patients with shorter OS, i.e., those 
with more malignant phenotype. This observation is consistent 
with other studies that have demonstrated this paradoxical 
upregulation of retinoic acid receptor signaling with higher 
grade gliomas.[44] While a mechanistic explanation of this 
observation has yet to be elucidated, it has been proposed 
that elevated retinoic acid signaling has an alternate function 
in glioma that may involve providing a prosurvival signal to 
a population of poorly differentiated cells.[44]

Another cascade identified by this method was centered 
around IKK: Nuclear factor‑κB (NF‑κB) signaling [Figure 5b]. 
When stimulated, this pathway promotes a Pro-oncogenic 

environment by modulating the expression of a large number 
of genes involved in: cell survival, differentiation, and 
proliferation.[45] Likewise, activation of this pathway has been 
positively associated with the grade of gliomas.[46] Consistent 
with this observation, we report a negative correlation between 
this signaling cascade and its respective visual word which is 
elevated in long OS group, indicated that NF‑κB signaling is 
increased in the short OS group.

Another set signaling of cascades that has an association was 
ceramide [Figure 5c]. This pathway is a regulator of proliferation, 
differentiation, and death. It has been shown in human gliomas 
that this signaling pathway is negatively correlated with 
grade and patient survival.[47] Consistently, we see that the 
corresponding visual word to this is also depleted in short OS 
cases. Other similar cell death pathways, such as  Fas‑associated 
death domain-containing Protein (FADD) and caspase-8, were 
also identified to be significant with this visual word. It was 
also noted that this visual word also had significant correlations 
with pathways previously identified, but with a different sign 
suggesting, these pathways may have a context‑dependent role.

Figure 5: (a‑c) Tag clouds representing key words in signaling pathways correlated to bag‑of‑words features. Molecular signaling cascades were 
mapped back to bag‑of‑words features identified by Cox regression. To simplify the visualization of these data, a tag cloud was constructed. This was 
done by first weighting the prevalence of each molecular signaling cascade by multiplying it by inverse of the q value from the Spearman rank correlation 
test. Naturalistic and short words were then filtered out and piped into the “Tag Cloud” component in Pipeline Pilot. The tag cloud is accompanied by 
the top ten signaling cascades correlating with that visual word

c

b

a
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Collectively, these data provide potentially interesting insights 
into the molecular correlates of the identified visual words; 
however, detailed experiments to confirm these associations 
are required but outside the scope of this paper.

dIscussIon

In this work, we have provided a method to cluster the 
patterns of cellular spatial organization in LGGs using the 
BoWs paradigm. From this representation, we constructed a 
predictive model to prognosticate patient OS. The visual words 
used in the predictive model were visually interpretable and 
showed disease‑relevant phenotypes. This analysis provides 
rationale for the use of phenotypic information retrieved from 
histological tissue to supplement histology grade information. 
In addition, these data can also be integrated with molecular 
information to provide a stronger prognostic model.

While the data presented above are promising that the 
current implementation offers sufficient scope for further 
investigation, specifically the availability of a larger training 
set with an independent validation set would strongly enable 
establishing the robustness of these conclusions. While this is 
currently limiting, an estimate of the model’s generalizability 
is obtained through cross‑validation. We also observe that the 
current workflow suggests some limitations. One limitation 
is that it is dependent on the quality of nuclear segmentation 
used to infer spatial patterns of nuclei. Likewise, the ease 
of segmentation is a function of color (spectral) separation, 
which can vary with the quality of staining. To overcome this 
limitation, we manually reviewed the training data to partially 
standardize the quality of the dataset and remove samples that 
contained high amounts of staining or mounting artifacts. 
We also applied a background correction on the hematoxylin 
component, which increased the contrast between the nuclei 
to the background and provided better edges used during 
segmentation. This is one method that can be used to increase 
the robustness of segmentation; there are also multiple other 
approaches that can be used to achieve a similar goal. These 
include utilization of image normalization specifically applied 
to H and E stained sections as described by Macenko et al.[32] 
A detailed comparison of how these methods increase the 
precision of segmentation across different staining conditions 
compared to expert human segmentation in the context 
of this question is a subject of future study. Similarly, the 
effects of staining, scanning and acquisition protocols, 
image magnification, and tile size need to be examined more 
systematically in the context of the question.

The pipeline presented here is one possible paradigm to derive 
visually relevant information in H and E stained tissue and 
integrate it with molecular and clinical information. However, 
it is also important to think of how such techniques can be 
practically implemented in a clinical setting. The most apparent 
hurdle to this is the requirement of powerful computers which can 
run the computationally complex tasks required both in feature 
extraction and data mining steps. The availability of large‑scale 

cloud‑based storage and analytic infrastructure (TCGA, 
Genomic Data Commons, The Cancer Digital Slide Archive[48] 
[http://cancer.digitalslidearchive.net/], etc.,) might provide a 
possible solution to overcome these resource challenges. Such 
infrastructure contains standardized software and accompanying 
analytical pipelines in addition to having the computational 
power to perform the subsequent analysis at scale.

conclusIon

In this paper, we have described the construction, visualization, 
and interpretation of a machine-learned model that uses the 
bag‑of‑visual‑words paradigm to stratify TCGA‑LGG patient 
into short and long OS groups. This approach was able to 
discriminate OS (dichotomized at 24 months) with a predictive 
AUC of 0.76 using the machine learned dictionary alone, 
0.82 when supplemented with molecular biomarkers, and 
0.89 when further supplemented with other clinical factors. 
Further correlative analysis of the BoWs image representation 
resulted in identification of molecular signaling motifs that have 
previously been associated with patient OS and malignancy. 
Collectively, these data show the utility of an imaging genomic 
association approach to map phenotypes from histological 
sections to answer clinically relevant questions and stratify 
patients based on OS. These matched datasets also provide a 
method to study the biological underpinnings of the machine-
learned visual words by mapping molecular signaling activity to 
them. This provides a potential route to discover signaling nodes 
underlying malignancy-associated phenotypic measurements.
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Supplementary Figure 1:  Visualization of nuclear segmentation quality. 
A randomized panel of histological patches with color‑coded nuclear 
overlay masks. Gray regions represent negative space

Supplementary Figure 2:  Box plots of bag‑of‑words histogram values 
versus dichotomized overall survival. The box extremes represent the 
25th and 75th percentiles; the median is denoted by the line in the middle. 
The dot represents the mean, and whiskers were calculated using the 
Tukey method. Graphs were made using Pipeline Pilot

Supplementary Figure 3: Box plots of bag‑of‑word histogram values 
versus histological subtype. The box extremes represent the 25th and 
75th percentiles; the median is denoted by the line in the middle. The 
dot represents the mean, and whiskers were calculated using the Tukey 
method. Graphs were made using Pipeline Pilot


