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Resonance states and beating 
pattern induced by quantum 
impurity scattering in Weyl/Dirac 
semimetals
Shi-Han Zheng, Rui-Qiang Wang, Min Zhong & Hou-Jian Duan

Currently, Weyl semimetals (WSMs) are drawing great interest as a new topological nontrivial phase. 
When most of the studies concentrated on the clean host WSMs, it is expected that the dirty WSM 
system would present rich physics due to the interplay between the WSM states and the impurities 
embedded inside these materials. We investigate theoretically the change of local density of states 
in three-dimensional Dirac and Weyl bulk states scattered off a quantum impurity. It is found that the 
quantum impurity scattering can create nodal resonance and Kondo peak/dip in the host bulk states, 
remarkably modifying the pristine spectrum structure. Moreover, the joint effect of the separation of 
Weyl nodes and the Friedel interference oscillation causes the unique battering feature. We in detail an- 
alyze the different contribution from the intra- and inter-node scattering processes and present various 
scenarios as a consequence of competition between them. Importantly, these behaviors are sensitive 
significantly to the displacement of Weyl nodes in energy or momentum, from which the distinctive 
fingerprints can be extracted to identify various semimetal materials experimentally by employing the 
scanning tunneling microscope.

Progress in material preparation and experimental techniques has led to a surge of interest in two-dimensional 
(2D) Dirac materials such as graphene and surface states of topological insulators. Very recently, this concept 
is extended to 3D systems, known as topological Dirac semimetals (DSMs), which are newly-discovered bulk 
analog of graphene as a new topological states of matter. Recent experiments have identified a class of materials1–3 
(Bi1−xInx)2Se3, Na3Bi, and Cd3As2 to be the DSMs. In these new Dirac materials, 3D massless Dirac fermions are 
excited around the doubly degenerate Dirac cones, which are protected by time-reversal symmetry (TRS) or 
inversion symmetry (IS).

Breaking either the TRS or the IS will drives the DSMs into a Weyl semimetal (WSM) phase, which is mani-
fested as the splitting of a pair of degenerate Weyl nodes with opposite chirality in momentum or energy space. 
As a new topological nontrivial phase, these massless WSM fermions are drawing great interest for their scien-
tific and technological importance. The WSM Fermion states have been predicted theoretically and observed 
experimentally in a family of the noncentrosymmetric transition-metal monosphides4–10 with preserving the 
TRS, e.g., TaAs, NbAs, NbP, and TaP. The nontrivial topology along with the node separation leads to many 
exotic phenomena and unique physical properties, such as the chiral anomaly11–13, the unique Fermi arc surface 
states6–10,14, the chiral Hall effect13,15, the chiral magnetic effects11,16, and the negative17–20 and extremely large 
magnetoresistance21.

When most of the previous studies concentrated on the clean host WSM bulk states, it is expected that the 
dirty WSM system would present rich physics due to the interplay between the WSM Fermion states and the 
impurities embedded inside these materials. On one hand, the unique 3D spin-momentum locking can medi-
ate the interaction between magnetic impurities in both Dirac and Weyl semimetals, leading to anisotropic 
Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling and rich spin textures22–24. On the other hand, the feedback 
effect of impurities on host bulk states can change the property of Weyl nodes, at which the differences between 
a Weyl phase and a normal metal are most pronounced. The stability of the nodal density of states (DOS) was 

Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and 
Telecommunication Engineering, South China Normal University, Guangzhou 510006, China. Correspondence and 
requests for materials should be addressed to R.-Q.W. (email: rqwanggz@163.com)

received: 12 July 2016

accepted: 10 October 2016

Published: 03 November 2016

OPEN

mailto:rqwanggz@163.com


www.nature.com/scientificreports/

2Scientific Reports | 6:36106 | DOI: 10.1038/srep36106

investigated in the presence of various types of local impurities25,26, and nonzero DOS at the degeneracy point was 
predicted for the disorder strength beyond a certain critical value27,28. We would like to mention that these discus-
sions, however, are limited to the classic impurity model and only the single node scattering is taken into account. 
The nodal resonance induced by impurities have also been extensively studied in graphene and topological insu-
lators29–33. As a representational feature of quantum impurities, the Kondo effect has been intensely discussed in 
three-dimensional Dirac and Weyl systems34–37 of dilute magnetic impurities. The results showed that the nature 
of the Kondo effect of impurity is only affected strongly by the linear dispersion of Dirac/Weyl host bulk states but 
it is in general blind to the momentum splitting of TRS-broken Weyl nodes. In ref. 35, they found that the spatial 
spin-spin correlation between the magnetic impurity and the conduction electron is sensitive to the displacement 
in the momentum splitting of Weyl nodes, where rich features are shown due to an extra phase factor. Even so, it 
is still challenging how to identify the TRS-broken WSM materials from the transport fingerprints.

In this paper, we study how the local density of states (LDOSs) in host WSM/DSM bulk states are modulated 
by the embedded quantum impurity in the resonance regime and in the Kondo regime. We specially pay atten-
tion to the response of nodal behavior to impurity scattering processes. It is found that the quantum impurity 
scattering can create a LDOS resonance or Kondo peak/dip in the host bulk states exactly at the Dirac point and 
thus remarkably destroy the pristine spectrum structure, which are sensitive to the degree of the splitting of two 
WSMs nodes. Compared with the single node scattering, the internode scattering possesses more information 
about the unique properties. Interestingly, by taking the intranode scattering into account, we find the unique 
battering feature for the TRS-broken WSMs, which is long-range measurable in real space with current scanning 
tunneling microscope technologies.

The rest of the paper is organized as follows. In Sec. II we present a general interaction model of Weyl fermions 
with Anderson quantum impurity and treat it by employing the standard equations of motion for Green’s func-
tions. The low-energy resonance, Kondo signature, and Friedel oscillation in host materials are discussed in Sec. 
III, and a short summary is given in the last section.

Model and Theory
Consider a 3D WSM with a pair of chirality-opposite Weyl nodes, whose low-energy Hamiltonian can be 
described as22,34 = ∑ ⊕

+ −




ˆ ˆ ˆ†H c H H c( )k k kw w w , with

χ σ χ σ= ⋅ − +
χ � �� � ��

Ĥ k v k Q Q( ) [ ( ) ] (1)fw 0 0

and the annihilation operator of electrons = +↑ +↓ −↑ −↓
    c c c c c( , , , )k k k k k

T acting on the spin and chirality spaces. 
Here, χ =​ ±​1 represents the pair of weyl nodes with the opposite chirality, vf is the Fermi velocity, =



k k k k( ), ,x y z  
is the effective wave vector measured from the Weyl nodes, and σ�� denotes the vector of Pauli matrices, For 
= =
��

Q Q 00 ,  Ĥw  reduces to the Hamiltonian of degenerate DSM, possessing both the TRS 
= −− ˆ ˆTH k T H k( ) ( )w

1
w  and the IS = −− ˆ ˆPH k P H k( ) ( )w

1
w , where τ σ= ⊗T i K( )y0  with complex conjugation 

operation K is the time-reversal operator, P =​ τx ⊗​ σ0 is the inversion operator, and τ is the Pauli matrix on the 
chirality space. Breaking either TRS ≠

��
Q 0 or IS Q0 ≠​ 0 transforms a DSM into a Weyl system, the former splitting 

the two degenerate weyl points separately at different momentum = ±
� ��
k Q v/node f  but with the same energy while 

the latter shifting two Weyl nodes at different energy ωnode =​ ±​Q0 but with the same momentum. This can be seen 
from the dispersion spectrum of Ĥw,

χ χ= ± − + .χ
± � ��

E v k Q Q (2)f 0

We utilize the typical Anderson impurity model to study the quantum impurity effect and spin-1/2 Kondo 
screening in 3D Dirac and Weyl semimetals. The full Hamiltonian can be written as = + +ˆ ˆ ˆ ˆH H H Him hyw . The 
impurity Hamiltonian

∑ε= +
σ

σ σ σ σ σ σ
ˆ † † †H d d U d d d d

2 (3)im 0

is characterized by a single-orbital energy ε0 and the on-site Coulomb repulsion U. σ σ
†d d( ) is the creation (anni-

hilation) operator for impurity electrons. = ∑ + . .

ˆ ˆ†H d Vc h c( )hy k k  represents the hybridization between the 
impurity and the host material with the hybridization matrix

=












+ −

+ −
V̂

V V
V V
0 0

0 0
,

(4)

T

where the spinor = ↑ ↓d d d( , )T and the coupling strength Vx is assumed to be dependent on the Weyl node χ but 
regardless of 



k and σ�� under the assumed wide-band approximation and spin-conserved hoping. Here, we also 
assume that the magnetic impurities are embedded inside the WSM such that the effect of Fermi arc surface states 
can be neglected safely.

Using the method of standard equations of motion, the retarded Green’s function of Weyl electrons  
with respect to the full Hamiltonian Ĥ  can be derived as ω ω δ′ = − ′ ++ +    

G k k G k k k( , , ) ( , ) ( )0  
ω ω ω′+ + + 

G k T G k( , ) ( ) ( , )0 0 , where ω+ =​ ω +​ i0+ and all qualities are 4 ×​ 4 matrix in the spin ⊗​ chirality space. 
When performing the Fourier transform to the real space, its block matrix in chirality space is
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ω ω δ ω ω ω′ = − ′ + − ′ .χχ χ χχ χ χχ χ′
+ +

′
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′
+

′
+     G r r G r r G r T G r( , , ) ( , ) ( , ) ( ) ( , ) (5)

0 0 0

The Green’s function ω′χχ′
+ G r r( , , ) is still 2 ×​ 2 matrix in subspace of the electron spin and r  is measured 

from the impurity as a scattering center, whose position is chosen to be the origin of coordinates. The expression 
in Eq. (5) recalls the extensively applied T-matrix approach30,31, but here ω ω=χχ χ χ′

+ +
′

⁎T V G V( ) ( )d  is expressed 
in terms of the Green’s function of magnetic impurity, defined as ω = 〈〈 | 〉〉σσ σ σ ω′

+
′ +

†G d d( )d , , which is the Fourier 
transform of τ θ τ〈〈 〉〉 = − 〈 〉σ σ σ σ′ ′

† †d d i t d d( ) (0) ( ) { ( ), (0)} . Similar relation can be found in Anderson impurities 
interacting with topological insulator29,33,38,39 or graphene40. In Eq. (5), ∫ω ω± =χ π χ

+ ± ⋅ +






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0
3  is 

the bare Green’s function of Weyl fermions with ω ω= −χ
χ+ + − ˆG k H k( , ) [ ( )]0
w

1
. At the impurity position =r 0, 

the bare Green’s function is given by
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with the cutoff energy D, unitstep function Θ​(x), and ωχ =​ ω+ −​ χQ0. Note that even for STR-broken case due to 
finite 

��
Q, ωχ

+G (0, )0  is diagonal in spin space and independent of 
��
Q, remarkably different from the case of 2D top-

ological insulator or graphene33,41. For ≠r 0, we can calculate ω±χ
+G r( , )0  by expanding the ± ⋅





e ik r  in terms of 
spherical harmonics according to the Rayleigh equation24,42, and finally arrive at a simple analytical expression for 
D ≫​ ω as
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4
/
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 and = .
r r

The next task is to calculate the impurity Green’s function ωσσ′
+G ( )d , . Carrying out the equations of motion, 

we find

ω ε ω ω− − Σ = +σσ σ σ σ σ
+

′
+ † †G U d d d d( ( )) ( ) 1 , (8)d0 0 ,

with the retarded self-energies ω ωΣ = ∑ | |χ χ χ
+ +V G( ) (0, )0

2 0 . Further calculation gives
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k
k

k k

0
,

where three high-order Green’s functions emerge. Performing the same procedure with the equation of motion, 
we obtain all high-order Green’s functions and in the following take 〈〈 | 〉〉σ σ χσ σ′



† †d d c dk  as an example,
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and χ= −
χ� � ��

k k Q, where we denote χ σ( ) opposite to χ(σ). To form a set of close iterative equations, we truncate 
them following the standard method43, for example, 〈〈 | 〉〉 ≈ 〈 〉〈〈 〉〉σ σ σ σ σ σ σ σ′ ′






† † † †d c c d c c d d
k k k k , where the operator 

pair with the same spin indices can be pulled out of the Green’s function as an average and is calculated with the 
Fluctuation dissipation theory

∫π
ω ω= − ′ ′ ′ω +ab Im d f b a1 ( ) , (12)

where f(ω) is the fermi distribution function. After carrying out lengthy but straightforward calculations, we finally 
derive the expression for the impurity Green’s function in the deep Coulomb blockade regime, i.e., U →​ ∞​, as
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where the coefficient Γ =χ π

χV

v(2 )f

2

2
. By comparison with the normal metals44 or 2D Dirac materials33, the most 

distinction is the specific expressions of self-energies ∑​0(ω+) and ∑​1(ω+).

Results and Discussion
Resonance states in LDOS.  Our purpose is to explore the unique local properties of the WSM when the 
conducting elections are scattered off a quantum impurity. As the Weyl nodes are separated in energy or momen-
tum, a very interesting question is whether 

��
Q or Q0 leads to some especial spectrum structures locally around the 

quantum impurity. Next, we focus on the LDOS in WSMs, which is defined as

∑ρ ω ρ ω δρ ω
π

ω≡ + = −
χ

χ
+   r r Tr G r r( , ) ( ) ( , ) 1 Im [ ( , , )],

(15)
0

where ρ ω ω= − ∑
π χ χ

+Tr G( ) Im [ (0, )]0 1 0  is the unperturbed LDOS, and δρ ωr( , ) contributed by the second 
term in Eq. (5), reflects the substantial modification of the LDOS by the doping impurity. Beyond the  
usual single-node treatments, we here emphasize the impurity scatter processes between two Weyl nodes.  
We find that the introduce of quantum impurity not only scatters the electrons within the same Weyl  
node but also between two nodes. Specifically, we can split LDOS as δρ ω δρ ω δρ ω= +

  r r r( , ) ( , ) ( , )intra inter , 
where δρ ω ω ω ω= − ∑ − ′

π χ χ χχ χ
+ + +r Tr G r T G r( , ) Im [ [ ( , ) ( ) ( , )]intra

1 0 0  collects the contribution from the  
i nt r ano d e  s c at te r i ng  pro c e ss ,  e qu iv a l e nt  to  s i ng l e - no d e  s i tu at i on ,  w h i l e  δρ ω =r( , )inter  

ω ω ω− ∑ − ′
π χ χ χχ χ

+ + +Tr G r T G rIm [ [ ( , ) ( ) ( , )]1 0 0  collects the contribution from scattering process between two 
nodes. After proceeding the calculations, we obtain readily the following analytical expressions
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2
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Equations (16) and (17) are our central results. In order to understand them deep, we in the following limit our 
discussions to the symmetrical coupling Γ​+ =​ Γ​−, and first discuss the impurity effect in the DSMs, i.e., setting 
= =
��

Q Q 0,0  whose LDOS ρ(ω) for a fixed r  is illustrated in Fig. 1. Without the internode scattering (i.e., 
single-node case), seeing Fig. 1(a), there a pronounced resonance structure, whose position depends on the impu-
rity level ε0. This resonance is a consequence of the backaction of the resonance in the impurity DOS, which is 
defined as ρ ω ω= −

π
+Tr G( ) Im [ ( )]d d

1  and depicted in the corresponding inset, indicating the single-level res-
onance tunneling between the impurity and the reservoirs. In Fig. 1(a), with the increase of ε0 from −​0.2 to 0.2 in 
step of 0.1 the low-energy resonance is first shifted close to the Dirac point, accompanied with increasing magni-
tude, and then passes over the Dirac point into its other side, on whole exhibiting a symmetry with respect to the 
Dirac point. Intriguingly, a sharp pronounced resonance for ε0 =​ 0 can be located exactly at the Dirac point, 
completely destroying the 3D typical ω2 Dirac spectrum. Similar Dirac-point resonance appears in doping surface 
of topological insulators with quantum impurities33 or quantum magnets44,45. Our further calculations confirm 
that the scenario of Dirac-point resonance cannot emerge for classic impurity model, i.e., replacing ωχχ′

+T ( ) in 
Eq. (5) with ω ω= −χχ χχ χχ χ′

+
′ ′

+ −T V V G( ) (1 ( ))pot pot 0 1, where σ=χχ′V Upot
0 0 stands for a classic impurity potential. If 

the internode scattering is taken into account, the scenario is very different from the single-node case. We plot the 
LDOS ρ(ω) including both intra- and inter-node scattering in Fig. 1(b). By comparison with single-node case, 
most interesting in double-node case is that the resonance peak becomes weaker and weaker when close to the 
Dirac point and is completely smoothed away at the Dirac point, in which ρ(ω) ∝​ ω2 recovers the typical square 
dependence on energy. To understand it, we plot the change of DOS δρinter(ω) and δρintra(ω) for ε0 =​ 0 in the inset 
of Fig. 1(b), from which we know that the negative δρinter(ω) tends to suppress the resonance in δρintra(ω) and, at 
Dirac point ω =​ 0 they have the same amplitude but opposite sign and thus cancel each other exactly. This point 
also can be seen from Eqs (16) and (17).

From the above discussions for DSMs, we are known that the competition between intra- and inter-node 
scatterings is crucial for the development of the Dirac-point resonance. In Fig. 2(a) we depict the change of LDOS 
δρ(ω) for the TRS-broken WSMs, i.e., Q0 =​ 0 but ≠

��
Q 0. Here, we just choose 

��
Q along z-axis and so the degenerate 

Weyl nodes are shifted by ±​Qz in the direction of 


kz but Qx/y =​ 0. Obviously, the Dirac-point resonance for finite 
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Qz recovers since δρinter only partly offsets δρintra, as shown in Fig. 2(a). From Eqs (16) and (17), one can notice that 
δρ ωr( , )intra  is independent of 

��
Q  but δρ ω δρ ω= = = − ⋅

� � �� �r r Q r( , 0)/ ( , 0) cos(2 )inter intra  is less than −​1 for the 
chosen parameter. The variation of LDOS δρ ωr( , ) for different Qz is plotted in Fig. 2(b), in which the Dirac-point 
resonance peak increases first for small Qz ∈​ (0, π/2r) and then exhibits a periodic function of Qz, seeing the inset. 
For Qz =​ (2n +​ 1)π/4r (n =​ 0, 1 …​) or ⊥�

��
r Q, the internode scattering is prohibited due to destructive interference 

and thus δρ ωr( , )intra  dominates. Therefore, to probe the feature of TRS-broken WSMs, it is necessary to consider 
the impurity-induced scattering between Weyl nodes since 

��
Q  only enters δρinter but not δρintra.

For noncentrosymmetric WSMs, i.e., Q0 ≠​ 0 and =
��
Q 0, we from Eqs (16) and (17) see that Q0 contributes to 

both δρ ωr( , )intra  and δρ ωr( , )inter  but with different ways, thus their zero-energy resonances cannot be com-
pletely compensated. Another most interesting effect for noncentrosymmetric WSMs is the emergence of Kondo 
resonance, which is expected to occur because of the nonzero LDOS at ω =​ 0 when two Weyl nodes are split to 
ωnode =​ ±​Q0. If we choose the proper parameters in Kondo regime, the impurity DOS presents a remarkable sharp 
Kondo resonance at ω =​ 0 as shown in the inset. The Kondo resonance is mainly attributed to the self-energy 
ω∑ +( )1  in Eq. (14), which depends on Q0

2 rather than linear Q0, distinct from graphene40 and topological insula-
tor41. The results are in agreement with those obtained by number renormalization group34. Suffering from the 
scattering off the impurity potential, the electronic LDOS in the host semimetal material also exhibits the feed-
back of Kondo resonance in both δρ ω

r( , )inter  and δρ ω
r( , )intra . They have opposite sign but cannot compensate 

each other and so the total δρ ωr( , ) exhibits a dip structure as depicted in Fig. 3(a). We plot the evolution of the 
total LDOS ρ ω

r( , ) with Q0 in Fig. 3(b), where the Kondo dip becomes more and more prominent with the 
increase of Q0, companied by overall lift upwards due to the Weyl node pair shifting away from the zero energy. 
Interestingly, if we further consider a finite Qz, it will significantly reverse the Kondo structure from a dip to a 
peak, as illustrated in Fig. 3(c), as a consequence of the competition between two types of scattering processes. 
Similar to the Dirac-point resonance in Fig. 2(b), the evolution of Kondo peak from a dip to a peak is a periodic 
function of Qz, greatly different from the monotonously-increasing dependence on Q0. Note that the Kondo res-
onance develops only in the inverse-broken case with Q0 ≠​ 0, which is a feature of the linear dispersion, similar 
scenarios appearing in TI or graphene40,41.

Spatial Friedel oscillation of LDOS.  In this section, we discuss the characteristics of Friedel oscillation, 
namely, the oscillation behavior of LDOS with the spatial distance r  measured from the impurity position. This is 
caused by the interference of incoming and outgoing waves when conducting electrons are scattered off a local 
impurity potention. Since the dependence of LDOS ρ ωr( , ) on r  stems completely from the impurity scattering 
correction δρ ω

r( , ), in following analysis we only focus on δρ ω
r( , ).

Figure 4(a) shows the variation of δρ ω
r( , ) with r  for the DSM materials (Q0 =​ Qz =​ 0). Obviously, a typical 

pattern of Friedel oscillations is presented for both δρ ωr( , )intra  and δρ ωr( , )inter . By comparison, the oscillation 
of δρ ω

r( , )inter  dominates in long distance while the oscillation of δρ ω
r( , )intra  is in short distance. The reason is 

Figure 1.  The low-energy resonance near the quantum impurity in LDOS for DSM materials (Q0 = Qz = 0). 
The total LDOS ρ ωr( , ) (a) without and (b) with the internode scattering for different impurity levels ε0 as 
indicated. Inset in (a) is the impurity DOS and inset in (b) is the correction of LDOS δρ ωr( , )intra  and 
δρ ωr( , )intra . The chosen other parameters are Γ​+ =​ Γ​− =​ 0.05, r =​ 4, T =​ 10−5, vf =​ 1. All energies are in unit of 
the cutoff energy D.
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that the former decays as an inverse-square r−2 law and the latter as r−3 law, which can be seen from Fig. 4(b) 
where δρ ωr r( , )inter

2  and δρ ωr r( , )intra
3  exhibit the equal amplitude oscillation. Figure 4(c,d) correspond to the 

case of noncentrosymmetric WSMs (Q0 =​ 2 and Qz =​ 0). When δρ ωr( , )intra  and δρ ωr( , )inter  display a damped 
oscillatory behavior similar to Q0 =​ 0, there appears an interesting beating pattern in δρ ωr( , )intra . This beating 
feature is originated from the combination effect of the energy separation of Weyl nodes by ±​Q0 and the Friedel 
oscillation, manifesting itself by the factors cos (2Q0r/vf)exp (2iωr/vf) and sin (2Q0r/vf)Exp (2iωr/vf), derived from 
Eq. (16). For ωQ0 , the beating feature vanishes and both δρ ωr( , )intra  and δρ ωr( , )inter  show 1/r3-law decaying 
oscillation. When two oscillating frequencies have distinct difference, the beating effect emerges, as illustrated in 
Fig. 4(c,d) where we choose Q0 ≫​ ω and the length of beating is determined by 2ω. Inversely, the beating length is 
determined by 2Q0 for ω ≫​ Q0. In real materials, it is reported Q0 =​ 23 meV for TaAs in ref. 6 and 36 meV for 
NbAs in ref. 7, which is within the range of low-energy spectrum due to usually ħvF ≈​ 0.37 eV and D ≈​ 300 meV. 
Experimentally, the electron energy can be set to be larger or smaller than Q0 to observation both beating scenar-
ios as discussed above. One, however, can notice that for r ≫​ vf/ω, the long-range δρ ωr( , )inter  quickly dominates 
and is larger than the short-range δρ ωr( , )intra  by at least one order in magnitude, which easily overwhelms this 
beat frequency in measurement of total LDOS. Therefore, to measure the Q0-induced beating structure, the elec-
tron scattering off the impurities must be limited to the same Weyl node.

In contrast to the noncentrosymmetric WSMs, the nonzero 
��
Q in TRS-broking WSMs adds an extra phase 

factor ⋅
�� �Q rcos(2 ) in δρ ωr( , )inter  but has nothing to do with δρ ωr( , ),intra  seeing Eqs (16) and (17). The displace-

ment of the Weyl nodes in the momentum will further induce complexity to the Friedel oscillation behavior of 
δρ ωr( , )inter . Similarly, there are two periods associated with ⋅

�� �Q rcos(2 ) and ωe i r v2 / f , exhibiting a batter pattern 
for large difference ω− Q 0z , where we choose 

��
Q  along z-axis and denote rz =​ rsin θr with respect to the 

z-axis. Obviously, the beating characteristics is dependent on the spatial direction θr but independent of the azi-
muthal angle ϕr, which is a consequence of the azimuthal symmetry around the correcting line of a pair of Weyl 
nodes (i.e., chosen z-axis). The spatial direction dependence of δρ ω

r( , )inter  is plotted in Fig. 5(a–c) for θr =​ 0, π/4, 
and π/2, respectively. Figures (a) and (b) exhibit a prominent beating behavior, where the number and length of 
batter frequency are changed with θr. For θr =​ π/2 (i.e., ⊥�

��
r Q), the beat frequency of δρ ωr( , )inter  dies away and 

recovers the typical decaying oscillation, as shown in Fig. 5(c). Importantly, the decaying rate of all oscillations in 
δρ ω

r( , )inter , abiding by 1/r2 law regardless of θr as illustrated in the insets, always dominates over 1/r3-law decay-
ing δρ ωr( , )intra  for sufficiently large r ≫​ 1. Therefore, the battering feature in the TRS-broken WSMs is accessible 
in measurement of the scattering between nodes, moreover unaffected by the intranode scattering, which is 
important for identifying the TRS-broken WSM in the real space. Notice that this beating structure does not 
occur in the typical surface state of topological insulators. As far as we know, the WSM phase by breaking of 
time-reversal symmetry has not been yet experimentally reported and the beating feature maybe provide an 
alternative route to identify this new type of materials, e.g., YbMnBi2.

Finally, we want to remark the influence of asymmetric coupling Γ ≠ Γ+ − of the impurity to two Weyl nodes. 
From Eqs (16) and (17), one can find that the asymmetric coupling only changes quantitatively the weight 

Figure 2.  The low-energy resonance in LDOS for TRS-broken WSMs (Qz ≠ 0, Q0 = 0). (a) The correction of 
LDOS δρ ωr( , )intra  and δρ ωr( , )inter  as a function of energy ω, and (b) the evolution of δρ ωr( , ) for different Qz 
values. Inset: the periodic oscillation of δρ ωr( , ) with Qz. The other parameters are the same as in Fig. 1.
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between intranode scattering and internode scattering. Thus, the above obtained results are qualitatively suitable 
as long as we properly reset other parameters.

Figure 3.  The Kondo resonance in LDOS for noncentrosymmetric WSMs (Q0 ≠ 0, Qz = 0). (a) δρ ωr( , )intra , 
δρ ωr( , )inter , and δρ ωr( , ) versus ω for Q0 =​ 0.3 and Qz =​ 0, and the inset is the impurity DOS. The variation of 
the total ρ ωr( , ) (b) for different Q0 =​ 0.2–0.5 in step 0.1 with Qz =​ 0, and (c) for Qz =​ 0, π/5, π/4, π/2 with 
Q0 =​ 0.3. Here ε0 =​ −​0.01 and the others parameters are the same as in Fig. 1.

Figure 4.  (a,b) The Friedel oscillations of ρ ωr( , )inter  and ρ ωr( , )intra  with distance r for the DSMs with Q0 =​ 0, 
and (c,d) the beating pattern for the noncentrosymmetric WSMs with Q0 =​ 2. In panels (b,d), ρ ωr( , )inter  and 
ρ ωr( , )intra  are scaled by r2 and r3, respectively. Here, ε0 =​ −​0.01, Qz =​ 0, ω =​ 0.1, and the others parameters are 
the same as in Fig. 1.
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Conclusions
On conclusions, we have investigated the influence of quantum impurity on the DSM and WSM materials by 
looking at the modification of LDOS around the impurity. It is found that the quantum impurity scattering can 
create the LDOS low-energy resonance, the Kondo signature, and the Friedel oscillation, all of which are sensitive 
to the displacement of Weyl nodes in energy or momentum. We in detail analyze the different contribution from 
the intra- and inter-node scattering processes and present different scenarios as a consequence of competition 
between them. We further study the spatial dependence of LDOS and find that the separation of Weyl nodes 
along with the Friedel interference oscillation leads to the unique battering feature, which arises in the intranode 
scattering for the IS-broken WSMs but in internode scattering for the TRS-broken WSMs. Especially, the beat-
ing feature for the TRS-broken WSMs is remarkably dependent on the spatial direction of the probing position, 
which is long-range measurable in real space by employing current scanning tunneling microscope technologies.
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