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Abstract

Neuropsychiatric diseases are manifested by maladaptive behavioral plasticity. Despite the 

greater understanding of the neuroplasticity underlying behavioral adaptations, pinpointing precise 

cellular mediators has remained elusive. This has stymied the development of pharmacological 

interventions to combat these disorders both at the level of progression and relapse. With 

increased knowledge on the putative role of the transforming growth factor (TGF- β) family of 

proteins in mediating diverse neuroadaptations, the influence of TGF-β signaling in regulating 

maladaptive cellular and behavioral plasticity underlying neuropsychiatric disorders is being 

increasingly elucidated. The current review is focused on what is currently known about the 

TGF-β signaling in the central nervous system in mediating cellular and behavioral plasticity 

related to neuropsychiatric manifestations.
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1. Introduction

A range of public health problems is associated with the expression of persistent 

maladaptive behaviors. These persistent and aberrant behaviors form the pathological basis 

underlying several neuropsychiatric disorders such as Substance Use Disorder (SUD), 

Anxiety and stress-related disorders. On the surface, these maladaptive behaviors span 
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a diverse range of outward manifestations with underlying dysregulated neurobiological 

adaptations that are often distinct 1. There is a social stigma attached to such behavioral 

aberrations as ‘voluntary disorders of choice’ and often lacks understanding of the 

neurobiological mechanisms driving such behavioral anomaly 2, 3. There has been 

considerable effort in the search for treatments of these diseases necessitating an in-depth 

understanding of the brain mechanisms underlying these behavioral adaptations. However, 

the heterogeneous nature of these diseases that are tied to a complex interaction of genetic 

and environmental factors often makes it cumbersome to pinpoint a single cellular regulator. 

Here we discuss the role of a conserved family of proteins, transforming growth factor beta 

(TGF-β), in serving as an essential substrate underlying divergent forms of maladaptive 

behavioral plasticity. Learning and memory is integral to behavioral adaptations and there is 

conclusive evidence that TGF-β signaling is essential for neural plasticity underlying these 

plasticity events 4–7.

The TGF-β superfamily of proteins comprises regulatory polypeptides that perform a wide 

array of cellular functions encompassing, but not limited to, developmental programming, 

immune homeostasis, differentiation, translational changes, epigenetic regulation, and 

morphological plasticity 8, 9. Due to such ubiquitous role of the TGF-β family of 

proteins, they are continually being implicated in various diseases. There is a plethora 

of evidence describing the association of TGF-β pathways and nervous system disorders. 

Altered TGF-β1 and Activin expression have been reported in diseases such as autism, 

schizophrenia, Parkinson’s disease and Huntington’s disease 10–13. TGF-β pathways are 

being increasingly implicated in affective disorders making this extended family of proteins 

an essential target for next generation therapeutics. Further, recent studies have made 

significant strides in elucidating temporal and mechanistic roles for dysregulated TGF-β 
signaling following exposure to drugs of abuse such as cocaine, which may influence 

relapse vulnerability. Here we review and summarize findings in the last decade on how 

maladaptive behavioral plasticity usurp the TGF-β pathways to disrupt cellular contexts and 

mediate neuroadaptations that underlie pathological correlates of human psychiatric diseases 

in preclinical models (Table 1).

2. Receptors and mediators of the TGF-β pathways

TGF-β signal transduction diverges temporally and in the cellular context, which imparts 

a wide range of functional latitude to this family of proteins relevant to various 

pathophysiological conditions. The most common contextual and temporal determinants of 

TGF-β function are categorized into three main types: first, the abundance of TGF ligands 

and receptors; second, transcriptional regulators and histone modifiers; and finally, the 

epigenetic status of the cell 14. Broadly, the TGF-β superfamily consists of a group of bone 

morphogenetic proteins (BMP), activins (ACT), inhibins (INH), growth and differentiation 

factors (GDF), and TGF-β proteins 9. Members of the TGF-β family of proteins signal 

through dual-specificity kinase receptors that are localized on target cells and exhibit 

structural similarities with both serine/threonine and tyrosine kinases. Structurally, the 

receptors consist of: 1) extracellular domain, 2) transmembrane domain, 3) juxtamembrane 

domain, and 4) kinase domain 9. Upon activation, the receptor kinases phosphorylate 

downstream targets that are comprised of receptor-triggered SMAD (Caenorhabditis elegans 
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SMA (“small” worm phenotype) and MAD family (“Mothers Against Decapentaplegic”)) 

family members. TGF-β, activin, and nodal mechanisms involve SMAD2 and 3, whereas 

BMPs and GDFs target SMAD1, 5, and 8. The activated phosphorylated SMADs (R-

SMADs- receptor regulated SMADs) then associate with SMAD4, a common mediator 

that allows the complex to be translocated into the nucleus for cooperation with various 

transcription factors to regulate a wide array of gene expression profiles. SMAD-mediated 

signaling is referred to as the canonical pathway. TGF-β proteins also function through 

a SMAD-independent, non-canonical mechanism that triggers extracellular signal-related 

kinases involving actin dynamics and altered plasticity involving glutamatergic signaling 15.

3. TGF-β mediated neuroplasticity in affective behaviors

Anxiety, depression and stress-related diseases are predominant psychiatric disorders that 

have disabling effects on individuals and society 16–18. Currently available treatments for 

anxiety and depression, which are not effective for some individuals, include response time 

that range from 3–5 weeks with more than 50% requiring multi-treatment intervention to 

achieve remission19. An overt requirement for improved treatment modalities is therefore 

essential. However, there have been modest outcomes in terms of identifying predictive 

genes underlying the pathological basis of these disorders, which hinder alternative 

therapeutic strategies. Genetic correlation studies have revealed polymorphisms in the 

TGF-β family of proteins as determinants of antidepressant response 20. Further, studies 

in preclinical models described below corroborate the role of these family of proteins in 

mediating several aspects of neuroplasticity events underlying these maladaptive behaviors.

3.1 Hippocampal canonical TGF-β signaling

3.1.1 Depression—The hippocampus is a limbic structure associated with learning and 

memory 21, 22. Hippocampal sub-regions, more specifically, the dentate gyrus (DG) plays 

an essential role in mediating a balanced regulation of mood and antidepressant efficacy 23. 

There is clinical evidence of fewer DG granule cells in the brains of patients suffering from 

major depressive disorder 24, 25. This is complemented by studies on preclinical models 

where DG is established as a critical neural hub mediating the antidepressant response 26–28. 

Antidepressants alter the TGF-β family of proteins in the hippocampus of rodent models of 

depression. Activin, a member of the TGF-β superfamily that functions through type I and II 

receptor kinases and governs gene expression via SMAD2/3 translocation into the nucleus, 

is associated with several neuropsychiatric disorders 29. Chronic treatment with paroxetine 

upregulates activin A and its receptor Acvr1a in the DG, while SMAD2 phosphorylation is 

potentiated with fluoxetine 20, 30. Interestingly, SMAD2 and SMAD3 levels vary among 

drug responders in clinical cohorts. SMAD2 is increased in clinical responders while 

SMAD3 is increased in non-responders 31. Acute infusion of activin A in the DG potentiates 

the effect of anti-depressant in novelty suppressed feeding task effect in depression 

tasks, while inhibin A (endogenous inhibitor of activin signaling) infusion occludes the 

antidepressant-like effect in rodents 31. Electroconvulsive stimulation (ECS), an alternative 

treatment in patients with poor response to first-line antidepressant regimen, evokes elevated 

levels of activin A and downstream target SMAD2 in the hippocampus of rats 30. Similarly, 

environmental enrichment, an established method to combat depression-like behavior in 
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rodents, produces a pronounced elevation of activin A in the hippocampus 32. These studies 

point towards a role for canonical activin signaling pathway in the hippocampus involving 

SMAD2, possibly through SMAD2-dependent epigenetic plasticity, in depression (Fig 1). 

Indeed, in a mouse model of ECS, SMAD2 chromatin immunoprecipitation of hippocampal 

lysates reveal upregulation of chromatin remodeler JMJD3 and negative feedback regulator 

of TGF-β signaling, PMEPA1 32. Despite serving as a negative feedback inhibitor of the 

TGF-β pathway, PMEPA1 is thought to have an extended role in maintaining glial cellular 

signatures in the brain. There is emerging evidence that PMEPA1 is an important component 

of microglial homeostatic signature genes required for the central nervous system (CNS) 

microenvironment that is tightly regulated by neurons and astrocytes involving TGF- β 
signaling 33. Though JMJD3 is a histone demethylase, there was no overall reduction in 

histone 3 lysine 27 tri-methylation (considered as a permissible mark) reported in the 

hippocampus of the ECS rats. This could be largely due to the loss of tri-methylation on 

specific genes instead of global changes to tri-methylation patterns rendering these genes 

available for gene transcription. Conversely, a tri-methylation independent role of JMJD3 

cannot be ruled out. Studies have indicated that JMJD3 is essential for microglial plasticity 
34, 35 and inflammatory responses 36. Both microglial and inflammatory dysregulation are 

integral to psychiatric conditions 37, 38 possibly linking activin signaling to glial plasticity.

Unlike activin signaling that is potentiated due to antidepressant treatment, the BMP 

signaling is negatively regulated by antidepressants. BMP signaling is downregulated in 

mice treated with fluoxetine and overexpression of BMP4 in the hippocampus prevents the 

protective effects of fluoxetine on hippocampal neurogenesis and behavioral amelioration 

(Fig 1). Further, targeted inhibition and ablation of BMP signaling in the hippocampus 

and Ascl1 (Achaete-scute homolog 1) expressing progenitor cells produce similar effects of 

enhanced neurogenesis and attenuation of anxiety- and depression-like behaviors 39.

3.1.2 Stress and Anxiety—Anxiety and stress-related disorders are commonly 

occurring mental illnesses that have been attributed to an imbalance in hippocampal 

neurogenesis 40–42. Transgenic mice that exhibit overexpression of endogenous activin 

signaling inhibitor, Follistatin, in the forebrain display anxiety-related behavior, and is 

concomitant with neuronal loss in sub-granular zone of adult hippocampus 40. Continuous 

exposure to social defeat stress in the resident/intruder model induces anxiety-related and 

not anhedonia-like phenotypes. The dorsal hippocampus in these rats has elevated BMP4 

and phosphorylated SMAD1/5/9 expression, and decreased neurogenesis 43 (Fig 1).

Disruption of dorsal hippocampal neurogenesis catalyzes aberrant emotional behavior 

including, anxiety 44, 45, which results in a loss of efficient integration of novel information, 

amplification of negative associations and exaggerated response to aversive cues 46. Overall 

these findings indicate that the TGF-β family of proteins provide allostatic control of 

neurogenesis and affective behavior through a positive and negative feedback loop mediated 

by activin A and BMP signaling, respectively. Additionally, the role of TGF-β signaling 

and affective behaviors is increasingly being elucidated in other brain regions, such as 

the amygdala. Genetic variation in TGF-βR1 influences the association between amygdala 

volume and prenatal depression 47. A study in mice has recently demonstrated that stress 

dampens the expression of Erbin, a neuronal adaptor protein, in the parvalbumin neurons of 
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the amygdala that may compromise Erbb2 signaling 48, 49. Interestingly, Erbin interacts with 

TGF-β and could alter some of the resulting behavioral disturbances.

4. TGF-β signaling and Cocaine Use Disorder

Substance use disorder (SUD) such as cocaine use disorder (CUD) is a neuropsychiatric 

disease that is defined by a transition from voluntary recreational use of drugs of abuse 

to uncontrolled and compulsive drug-seeking habits 50–52. During drug abstinence, an 

individual with SUD undergoes the transition to a negative emotional state and motivational 

‘withdrawal,’ which are often characterized by persistent relapse vulnerability 51, 52. Acute 

or chronic exposure to drugs of abuse leads to discrete cellular and molecular events in 

specific brain regions. The mesolimbic dopamine system governs reward and motivation 

and is the primary brain target of drug-induced cellular plasticity events underlying the 

vulnerability to drug use, abuse, and addiction phenotypes 53. Such behavioral phenomena, 

characterized by a persistent craving for the drugs, is shared by both clinical populations, 

as well as preclinical models of substance use disorder. Preclinical models of addiction 

are generally based on motivated abstinence that allows for dissecting neuroadaptations 

underlying various endophenotypes, such as compulsive drug taking and perpetual relapse 

vulnerability 54. Despite recent efforts, there remain few effective treatments for SUD. As 

the toll of this disease continues, it incurs a huge cost to our society, both socially and 

economically, and warrants a greater understanding of the molecular events underlying these 

maladaptive behaviors.

Decades of research have demonstrated that numerous molecular and cellular mechanisms 

purportedly underlie both short and long-term neuronal neuroadaptations following exposure 

to cocaine 55. These discrete neuroplastic changes are mediated through dysregulated 

epigenetic 56, translational 57, ubiquitin proteasomal 58, 59, and spinogenetic 60 mechanisms.

4.1 TGF-β mediated neural adaptations in the Nucleus Accumbens

The nucleus accumbens (NAc) is a heterogeneous structure that forms the ventral striatum 

in the brain 61. The NAc is a key brain region that is thought to be responsible for 

the integration of information from cortical and limbic regions to mediate reward-related 

behaviors. Within this brain region, 90% to 95% of the cell types are comprised of 

GABAergic medium spiny neurons that either express dopamine receptors (D1/D2) or 

neuropeptides. The remaining 5% to 10% of the neurons are neuropeptide-expressing 

interneurons 61–64. Such topographical heterogeneity positions the NAc as a critical region 

for regulating appetitive and motivated behaviors 61, 65–67. Neuroadaptations in the NAc 

are thought to serve as the molecular basis of relapse vulnerability and pathological 

motivation for drug seeking 61. Prior studies have established that drugs of abuse produce 

constitutive changes in the NAc at the cellular and molecular levels that underlie addiction-

related behavioral plasticity such as sensitization, learned associations, reinforcement, and 

compulsive relapse following abstinence 58, 59, 68–72.

4.1.1 Role of TGF-β in contingent versus non-contingent cocaine exposure
—Neurochemical determinants underlying addictive behavior vary based on the animal 

model employed. Neuroadaptations as a result of the motivational and cognitive processes 
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underlying active self-administration (contingent) differ when compared to animals 

receiving passive drug injections (non-contingent) 73. Studies have demonstrated that 

contingent, when compared to non-contingent, cocaine exposure, mediates aberrant TGF-β 
signaling in the NAc. TGF-β receptor 1 (TGF-β R1) protein expression is potentiated in the 

NAc following abstinence from active, but not passive, cocaine exposure following 7 days 

of abstinence (AD7). This altered expression of TGF-β R1 in the NAc is not observed on 

AD7 after cocaine behavioral sensitization 74. Though sensitization and self-administration 

involve overlapping neural circuitries, the precise neuroadaptations that drive persistent 

maladaptive plasticity underlying relapse from contingent versus non-contingent drug 

exposure vary 75. The sensitization of incentive motivation is pivotal in dissecting addiction 

when compared to the sensitization of locomotion. Thus non-contingent cocaine exposure 

could sensitize the motor circuits, but not the neural substrates underlying motivation that 

is achieved through a more contingent self-administered paradigm 75. Prior studies have 

demonstrated that non-contingent and contingent cocaine exposure elicits discrete long-term 

potentiation in the ventral tegmental area (VTA), a brain region central to motivational 

behaviors 76. Similarly, calcium-permeable AMPA receptors and acetylcholine release are 

upregulated in the NAc following prolonged abstinence from active, and not passive, cocaine 

exposure, 77, 78 suggesting an analogous mechanism of action for drug-induced TGF-β 
signaling in the NAc.

4.1.2. Activin signaling promotes enduring behavioral plasticity—Activin 

signaling is augmented in the NAc on AD7 compared to AD1 following cocaine self-

administration. Such temporal activation in activin signaling is characterized by increased 

levels of phosphorylated activin receptor 2a and SMAD3 79. At the pharmacological level, 

intra-NAc microinjection of activin A potentiates within-session cocaine dose-response, 

whereas activin receptor antagonist SB-431542 attenuates this behavior 79. Further, viral-

mediated overexpression of the dominant-negative form of SMAD3 blocks both within-

session cocaine self-administration and cocaine-induced reinstatement. These findings 

suggest that SMAD3 signaling regulates both the rewarding properties of cocaine and 

associated relapse behavior (Fig 2).

Although extended access self-administration is typically utilized to model compulsive-

intake behaviors, loss of controlled drug use can be better represented through a cocaine 

binge test during abstinence from self-administration 80. The use of long-access cocaine 

taking in combination with a binge paradigm in animal models recapitulates the escalating 

dose binge cocaine phenomenon in human addicts and provides an additional model to 

understand the neurobiology of addiction 80–82. Following a binge test on AD14, there is 

an upregulation of activin A levels in the NAc 83. In such cases, the upregulated activin 

levels appear to be specific to microglia, the resident macrophages of the brain. Activin has 

been reported in multiple cell types 84, and the observed increase in activin A following 

a cocaine binge is only with respect to the microglial cell population when compared to 

neurons and astrocytes. Interestingly, there is accruing evidence of glia-mediated synaptic 

alterations following exposure to drugs of abuse 84–91. Studies have identified that activin 

signaling upregulates the production of inflammatory cytokine, IL-10 92 and TNF-α triggers 

activin production in return 93. Both TNF-α and IL-10 have a microglial origin and 
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are potentiated during cocaine exposure, 94 possibly explaining the role of activin in 

mediating synaptic reorganization and behavioral plasticity through cytokine programming. 

Additionally, activin interplays with brain derived neurotrophic factor (BDNF) in controlling 

the delicate balance between extra-synaptic and synaptic NMDARs that is essential for 

neuronal plasticity95. Recent studies have shown alcohol-induced over-representation of 

genes pertaining to TGF-β/SMAD3 receptor signaling in the brain 96 and a potentiated 

microglial NF-kB signaling 97 indicating overlapping inflammatory gene networks possibly 

linked with TGF-β pathways in the glial cells 98. Thus, it can be presumed that perturbing 

activin signaling can dysregulate the intricate balance between cytokines and neurotrophic 

factors leading to changes in synaptic architecture attributed to drug-induced enduring 

behavioral adaptations.

4.1.3 Activin signaling influence cocaine-induced morphological plasticity—
Dendritic spines are multifunctional integrative units that form the basis of neuronal 

connectivity in the central nervous system 99. The dynamic nature of the spines allows 

them to transition between several morphological and structural states in a short period of 

time 99. Morphologically, dendritic spines are classified into stubby, thin, and mushroom 

spines 100. In particular, the ratio of thin to mushroom spines is an indicator of dendritic 

plasticity. Increased numbers of mushroom-shaped spines are often suggestive of increased 

spine maturation, a mechanism underlying the strengthening of memories 101, 102. Studies 

have indicated that exposure to drugs of abuse alters dendritic spine across various brain 

regions 69, 70, 103–106, and spine plasticity correlates with exposure to drug-associated cues 

and regulates relapse behaviors 106.

Activin signaling has been shown to modulate spine dynamics and influence synaptic 

plasticity 107–109. Viral-mediated downregulation of SMAD3 results in modulation of 

nascent spines during abstinence in NAc medium spiny neurons characterized by alterations 

in the mushroom head diameter that correlate with cocaine-seeking behavior. These findings 

indicate that NAc canonical activin signaling fosters morphological and cellular plasticity 

underlying persistent relapse vulnerability 79. Cocaine induced spine adaptations can 

selectively occur in D1 and D2 MSNs 110. It is however unknown if SMAD-regulated 

transcriptional events influence spine dynamics in a cell-type specific manner and remains a 

key question under investigation.

4.2 TGF-β-mediated epigenetic programming underlying persistent neuroadaptations

4.2.1 Direct transcriptional control—Vulnerability to the relapse-like state is 

modulated by convergent biological, environmental, and genetic factors. Epigenetics is 

defined as the regulation of heritable and reversible alterations in gene expression without 

direct changes to the DNA sequence 111. Studies have demonstrated that epigenetic 

regulation is an integral component of TGF-β signaling via SMAD elements that have 

direct access to genomic components 29. The upregulated R-SMADs (receptor regulated 

SMADs) comprise of two globular domains (referred to as the MHI and MHII) that are 

coupled through an unstructured linker. The hairpin structure of the MHI domain allows the 

R-SMADs to recognize specific nucleotide motifs, while the MHII domain recruits partner 

Mitra et al. Page 7

Mol Psychiatry. Author manuscript; available in PMC 2022 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



proteins such as activators and epigenetic regulators, allowing spatio-temporal expression of 

target genes 29, 112, 113.

Upregulation of activin signaling in the NAc following abstinence to cocaine self-

administration activates SMAD3 translocation to the nucleus 79. This increased access 

to genomic elements allows augmentation of SMAD3 binding to promoters of Ctnnb1 (β-

catenin), Grin2a (Glutamate receptor subunit epsilon-1), Mef2D (Myocyte specific Enhancer 

Factor 2D), Cap2 (Cyclase associated protein 2), and Dbn1 (Drebrin) genes for regulating 

cocaine-induced neuroadaptations 79. Studies have indicated that behavioral manifestations 

of cocaine-mediated neuroadaptations are the result of functional dysregulation of the 

β-catenin pathway in the NAc 114–118 (Fig 1). β-catenin is the transcriptional coactivator 

associated with the canonical Wnt signaling 119. The non-canonical pathway involves 

activation of β-catenin independent Wnt signaling 120. Wnt upregulation results in 

nuclear stabilization of β-catenin and its subsequent association, mainly with TCF/LEF 

family of transcription factors 121. Such association allows β-catenin direct access to the 

chromatin remodeling machinery, enabling activation of a wide array of genes through 

histone acetylation 119, 122. Several of these genes involve Wnt targets that have critical 

functionality in driving cellular homeostasis at morphological and structural levels 123–126. 

Abstinence following cocaine challenge disrupts glutamate signaling in the NAc that is often 

characterized by a shift in AMPA and NMDA receptor ratios 68, 127–131. The enhanced 

SMAD3 binding to the promoter for Grin2b following abstinence from cocaine exposure 

could explain the transcriptional relationship between activin signaling and glutamate 

receptor expression. Changes in glutamate signaling alter spine plasticity, possibly involving 

the actin cytoskeleton 69, 132, 133. Actin dynamics are central to spine plasticity commonly 

observed with drugs of abuse 104, 134, 135. Drebrin is an actin-binding protein that controls 

actin cycling and thereby influences dendritic spine plasticity positively, 136 which is a 

process tightly associated with robust transcriptional and epigenetic regulation 137, 138. 

Interestingly, drugs of abuse can alter cellular mediators disparately thereby regulating the 

neuroadaptations essential for establishing enduring behavioral plasticity. Thus, the role of 

TGF-β pathways in the regulation of addiction-like behaviors across multiple drug classes 

remains an ongoing area of investigation.

TGF-β mediated transcriptional responses require chromatin remodeling, which can be 

governed by the association of ATP-dependent SWI/SNF chromatin remodeler, BRG1 

on promoter sites. BRG1 forms a complex with SMAD3 139, and recruitment of BRG1-

SMAD complexes on gene promoters mediate TGF-β-dependent transcriptional events 
139. Following prolonged abstinence from cocaine self-administration, the interaction 

of BRG1 and SMAD3 is increased in the NAc in parallel with increased binding of 

BRG1 to promoters of SMAD3 target genes 83. Intra-NAc microinjection of BRG1 

inhibitor PFI3 decreases the interaction of BRG1 and SMAD3 and attenuates cue-induced 

reinstatement of cocaine-seeking. These behavioral and molecular events are replicated 

with the viral-mediated expression of a dominant-negative form of SMAD3 in the NAc, 

implying a concerted action of chromatin remodeling and SMADs for transcriptional 

programming underlying drug-induced neuroadaptations (Fig 1, 2). Dysregulation in 

chromatin remodeling complexes has been implicated in several psychiatric disorders. 

Mutations in matrix-associated, actin-dependent modulators of SWI/SNF chromatin proteins 
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are linked to schizophrenia, addiction, and autism 58, 140–142, whereas the ACF chromatin 

remodeling complex is involved in susceptibility to stress and addiction 143. Further, there 

is emerging evidence for the role of chromatin remodeling in mediating drug-induced 

maladaptive neuroadaptations 58, 144–146. The reporting of BRG1 in regulating cocaine-

induced relapse behaviors bolsters further evidence for the role of TGF-β in modulating 

epigenetic plasticity underlying the addicted state.

4.2.2 Ubiquitin-mediated epigenetic control—The ubiquitin-proteasome system 

(UPS) is comprised of ubiquitin ligases and proteasome structures governing synaptic 

and epigenetic plasticity 147, 148 events that are integral to memory consolidation and 

substance use disorder 149–151. The UPS conjugates polyubiquitin tags to target proteins 

for identification and proteolysis through the 26S proteasome complex 147, 152. E3 ubiquitin 

ligases (E3s) are a class of enzymes within the UPS system that coordinate ubiquitin 

conjugation 147, 152 and have gathered significant therapeutic interest for a variety of 

psychiatric disorders, 153 mainly due to their specificity for target proteins 154. Disruption 

in the UPS mechanisms following exposure to cocaine has been demonstrated previously 
155, 156. SMAD ubiquitination-related factor 1 (Smurf1), Smurf2, and SCF/Roc1 are E3 

ligases that are known to degrade SMADs. The Smurfs are of particular importance because 

SMADs recruit the Smurfs as part of their adaptor functions to various pathway mediators 

including the TGF- β receptor complex and the transcriptional components, and thereby 

mediate the degradation of these SMAD-associating proteins. Thus, Smurfs promote the 

fine control of signaling output by regulating the level of SMADs and other pathway 

mediators 157. However, there is a limited understanding as to how ubiquitin mechanisms 

specific to TGF-β signaling are altered following exposure to drugs of abuse such as 

cocaine. Following prolonged, and not acute, abstinence from cocaine self-administration, 

BMP pathway intermediates SMAD 1/5 and pSMAD1/5 are upregulated along with the 

downregulation of their E3 ligase Smurf1 in the NAc. A reduction in Smurf1 reduces 

the degradation of SMAD1/5 leading to an increase in protein expression 59. Activated 

pSMAD1/5 translocate into the nucleus for enhanced binding to promoters of Egr3 (Early 

growth response 3), Dnml1 (Dynamin-1 like protein) and BRG1 genes, which have 

been shown to modulate cocaine-induced cellular and behavioral plasticity 59, 83, 158–160. 

Moreover, overexpression of Smurf1 through viral-mediated gene transfer attenuates cue-

induced cocaine-seeking, whereas expression of the catalytically inactive form potentiates it, 

establishing a bidirectional control of the TGF-β UPS system on cocaine-related behaviors. 

Hence, cocaine-induced neuroadaptations can involve hijacking ubiquitin mechanisms to 

control TGF-β pathways and associated transcriptional machinery (Fig 1, 2).

5. Hippocampal plasticity and TGF-β signaling

Studies have established that the physiological effects of drugs of abuse are associated 

with contextual information 161, 162. This association of drug-paired environmental stimuli 

forms maladaptive memories that are critical for the expression of relapse vulnerability. 

The hippocampus is the hub of synaptic reorganizations that play an essential role in 

facilitating contextual and declarative memories towards drug-induced behavioral outcomes 
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21. However, the role of the dorsal hippocampus in mediating relapse vulnerability during 

prolonged abstinence inflicted by drugs of abuse is sparsely explored.

The dorsal hippocampus activin A signals through the SMAD-independent non-canonical 

mechanism, rather than the SMAD-dependent canonical mechanism identified in the 

NAc, during prolonged abstinence (AD30), and activin signaling bidirectionally mediates 

cue-induced cocaine-seeking 163. Activin A, which typically exhibits lower expression 

under basal conditions, is known to upregulate in response to increased neuronal activity 
164, a phenomenon often integral to drug-induced neuroadaptations during incubation. 

Interestingly, activin A immunopositive microglial cells are upregulated in the NAc of 

the cocaine binge animals 83. A similar expression profile for activin A is seen in both 

neuronal and microglial fractions obtained from the dorsal hippocampus in AD30 cocaine 

animals without any overall changes in neuronal and microglial immunoreactivity. This 

indicates that activin A signaling is steered exogenously by cocaine in both neurons and 

microglia in the dorsal hippocampus. Elevated activin A expression in microglia and 

neurons have been implicated in promoting synaptic reconfiguration through mechanisms 

shown to be regulated by addictive drugs such as cocaine 165. These processes involve, 

and are not limited to, proliferation, oligodendrocyte differentiation, and myelination 166. 

Pharmacological manipulation by endogenous activin signaling inhibitor, follistatin, or 

activin A antibody significantly reduces cue-induced seeking behavior. Conversely, viral-

mediated overexpression of activin receptor 2A in the dorsal hippocampus potentiates 

cue-induced cocaine-seeking, thereby demonstrating bidirectional regulation of activin A 

in the dorsal hippocampus 163. Prior research has reported that activin signaling impinges 

on conditioned responses that involve synaptic plasticity in the brain regions responsible 

for memory processing and execution 164. Forebrain-specific overexpression of activin A 

following training for contextual fear conditioning in a transgenic mouse model results in 

strengthened reconsolidation of fear memory, whereas follistatin overexpression abrogates 

this effect 107. Similarly, overexpression of the dominant-negative form of activin receptor 

2a in forebrain neurons triggers low-anxiety behavioral phenotypes in exploration paradigms 

of anxiety behaviors 167. This activin-mediated behavioral modulation involves synaptic 

organizations in brain regions such as the hippocampus leading to memory reconfiguration 

via altered glutamatergic signaling and long-term potentiation (LTP). Further, studies 

have also established SMAD-independent moderate long-term potentiation (LTP) via 

phosphorylation of GluN2B (p-GluN2B) 109. Indeed, TGF-β promotes synaptic plasticity in 

rat hippocampal neurons 6, whereas activin is required for hippocampal LTP, consolidation 

of long-term memory, and induction of moderate LTP upon weak theta-burst stimulation by 

acting on NMDA receptor currents and spine density 109. Increases in both p-GluN2B and 

LTP in the dorsal hippocampus of cocaine-treated rats compared with saline controls suggest 

that cocaine-induced activin A signaling in the dorsal hippocampus functions through 

GluN2B phosphorylation and altered synaptic plasticity. 163. These findings further the 

understanding of the role of DH TGF-β signaling in cocaine-induced plasticity, establishing 

the importance of TGF-β proteins in memory reconsolidation and cellular plasticity required 

for augmented cocaine craving following prolonged abstinence (Fig 1, 2).
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6. Future perspective

TGF-β family of proteins have diverse cellular and temporal functionality, making them 

an obvious choice for investigation in various diseases including addiction and affective 

conditions 47, 168, 169. However, the current knowledge on TGF-β signaling and psychiatric 

disorders is largely unexplored. There is supportive evidence from clinical studies of the 

role of Activin signaling in modulating antidepressant response 20 and cross-sectional 

study on CUD patients exhibit altered TGF-β plasma levels when compared to control 

group 169. Further, sex differences in TGF-β signaling with respect to various pathological 

domains of psychiatric and inflammatory conditions have been reported 170, 171. Studies 

in peripheral systems have revealed that sex hormones can influence TGF-β signaling. 

Female sex hormone estrogen can induce BMP2/6 transcription and Smad2/3 degradation 

through proteasomal pathways 172, 173. Male sex hormone testosterone has also been shown 

to modulate the expression of several TGF-β pathway mediators 174. The role of sex 

hormones in influencing TGF-β signaling that may underlie neuropsychiatric disorders 

remains to be determined and remains under investigated. Clearly, the relative dearth 

of studies using female subjects has hindered a more complete understanding of the 

neurobiology of neuropsychiatric disorders 175. Understanding how sex hormones modulate 

the neuroadaptations will be critical in revealing sex specific effects underlying these 

disorders.

Further, region specific changes in TGF-β pathways discretely influence neuroadaptations. 

For example, repeated cocaine exposure results in dynamic changes in the prefrontal cortex 

transcriptome with differentially enriched TGF-β pathways 176. Moreover, the TGF-β family 

of proteins are produced in various cell types and can function distantly from their site of 

release, making them an ideal cross-talk candidate across diverse cells and brain regions. 

There is also little to no understanding of the discrete mediators within the canonical 

(different SMAD types) and non-canonical (various kinases) signaling cascades and how 

they can shape a diverse set of plasticity events. Overall, there remains a huge scope of 

investigating as to how these pathways diverge based on sex, cell type and region differences 

in the brain to regulate cellular plasticity underlying psychiatric disorders. Here we provide 

a detailed understanding of various components of the TGF-β signaling pathways rewiring 

critical neural substrates underlying behavioral plasticity through epigenetic, translational, 

and morphological adaptations. We also summarize how the loss of intricate balance in the 

TGF-β pathways can lead to affective behaviors. We believe this will promote novel avenues 

for effective therapeutic intervention targeted at combating these disorders.
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Figure 1: 
The TGF-β family of proteins mediates brain region-specific divergent neuroadaptations 

involving dysregulated ubiquitin proteasomal system, abnormal chromatin remodeling, 

and altered transcriptional and synaptic mechanisms underlying cocaine-induced plasticity. 

At abstinent day 7 from extended access cocaine self-administration the canonical 

transcriptional activin A signaling is elevated in the nucleus accumbens that results in 

potentiated SMAD3 phosphorylation. Increased phosphorylation leads to altered SMAD3-

mediated spine remodeling and transcriptional programs that is thought to be mediated 

through recruitment of chromatin remodeler BRG1. On the contrary, a similar abstinent 

time point following short access to cocaine potentiates the BMP pathway in the 

nucleus accumbens through increase in SMAD1/5 phosphorylation. An elevated SMAD1/5 

level is attributed to reduced expression of its proteasomal regulator SMURF1 and 

increased expression of transcription factor RUNX2 that initiates unique transcriptional 

changes. At AD30 from cocaine self-administration, activin A non-canonical signaling 

is increased in the dorsal hippocampus where RAS-GRF1 is increased concomitant 

with increased levels of p-GluN2B and altered synaptic plasticity. Canonical activin A 

pathway via SMAD2 is elevated while BMP pathway intermediates SMAD1/5 is decreased 

in hippocampus of rodents treated with anti-depressants, environmental enrichment and 

electroconvulsive stimulation. This potentiated activin A signaling in the hippocampus 

leads to altered neurogenesis and transcriptional plasticity involving PMEPA1 and histone 

demethylase, JMJD3. Exposure to stress activates the BMP pathway through SMAD 

1/5/9 that morphologically blocks neurogenesis. Abbreviations: TGF-β: Transforming 

growth factor β; SMAD: ((Caenorhabditis elegans SMA (“small” worm phenotype) and 

MAD family (“Mothers Against Decapentaplegic”)); BMPr: Bone morphogenetic protein 

receptor; Acvr2a: Activin receptor 2a; Acvr1a: Activin receptor 1a; RUNX2: Runt-related 
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transcription factor 2; RhoA: Ras homology family member A; Ras GRF-1: Ras-specific 

guanine nucleotide-releasing factor 1; GluN2B: Glutamate [NMDA] receptor subunit 

epsilon-2; BRG1: Brahma-related gene-1; PMEPA1: Prostate Transmembrane Protein, 

Androgen Induced 1; JMJD3: Jumonji Domain Containing 3; BMP4: Bone morphogenetic 

protein 4.
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Figure 2: 
Temporal functionality of TGF-β family of proteins across neural substrates underlying 

cocaine-induced plasticity. Activin-mediated canonical SMAD signaling is potentiated in the 

nucleus accumbens at AD07 when compared with AD01 in animals that undergo extended 

access cocaine self-administration. On the contrary, extended access regimen elevates 

activin-mediated non-canonical signaling in the dorsal hippocampus. A short-access cocaine 

self-administration potentiates the bone morphogenetic protein (BMP) pathway at AD07 

when compared with AD01. Abbreviations: AD07: Abstinence day 7; AD01: Abstinence 

day 1.
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