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Abstract

Correctly identifying the true driver mutations in a patient’s tumor is a major challenge in precision oncology. Most efforts address
frequent mutations, leaving medium- and low-frequency variants mostly unaddressed. For TP53, this identification is crucial for both
somatic and germline mutations, with the latter associated with the Li-Fraumeni syndrome (LFS), a multiorgan cancer predisposition.
We present TP53_PROF (prediction of functionality), a gene specific machine learning model to predict the functional consequences of
every possible missense mutation in TP53, integrating human cell- and yeast-based functional assays scores along with computational
scores. Variants were labeled for the training set using well-defined criteria of prevalence in four cancer genomics databases. The
model’s predictions provided accuracy of 96.5%. They were validated experimentally, and were compared to population data, LFS
datasets, ClinVar annotations and to TCGA survival data. Very high accuracy was shown through all methods of validation. TP53_PROF
allows accurate classification of TP53 missense mutations applicable for clinical practice. Our gene specific approach integrated
machine learning, highly reliable features and biological knowledge, to create an unprecedented, thoroughly validated and clinically
oriented classification model. This approach currently addresses TP53 mutations and will be applied in the future to other important
cancer genes.
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Introduction

Cancer is caused by a sequence of acquired somatic
genomic aberrations [1]. Subset of tumors is familial
and occurs on a background of germline mutations [2].
Large-scale sequencing studies showed that individual
patients have unique mutations profiles, some of which
are druggable [3].

This personalized medicine approach already led to
major clinical achievements such as in targeting BRAF
V600E mutations in melanoma [4] and in targeting EGFR
mutations in lung cancer [5]. It was also shown in a
meta-analysis of phase II clinical trials that personalized
approach is more beneficial in clinical trials as com-
pared to non-personalized approach [6]. However, appli-
cation of personalized genomic medicine in cancer is still

limited and minority of cancer patients is assigned to this
approach [7, 8]. One of the major obstacles is that tumors
usually have many mutations, and it is difficult to define
the major drivers and accordingly to prioritize drug selec-
tions [3]. Two major approaches were proposed and are
being used to address this challenge: (i) predicting the
consequence of mutations based on biological reason-
ing such as appearance of mutations in active areas of
cancer genes or the occurrence of similar mutations in
other cancer patients [3, 9] and (ii) curating literature
and knowledge databases for clinical response of tumors
with similar mutations to candidate drugs [10, 11]. Nev-
ertheless, these approaches offer limited aid to frequent
mutations and not to intermediate frequency and rare
mutations. It was estimated that variants in cancer genes
in The Cancer Genome Atlas (TCGA) include 88% of
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variants of unknown significance (VUS) [12]. This limita-
tion can be overcome by the use of computational biol-
ogy prediction scores for mutations impact using evolu-
tionary conservations and 3D structural considerations.
A multitude of in silico predictors aimed at predicting
such effects has been proposed but they often do not
comprehensively provide similar effects. Furthermore,
the relation between the prediction of a deleterious effect
in a protein and the pathogenicity is far from being
straightforward. Such predictors vary widely by the con-
siderations and score assemblies they integrate, by the
type of models they use and by the level of analysis they
perform. Consequently, different scores present with dif-
ferent advantages and limitations, but some patterns
may be observed. For example, a recent examination
of 44 existing in silico tools revealed that, although the
majority of tools showed high sensitivity, most were also
substantially prone to overcalling deleteriousness, and
over two-thirds presented with specificity of under 50%
on the measured datasets [13]. In another comprehen-
sive assessment of 33 such predictive algorithms, it was
shown that cancer specific tools such as CHASM [14]
tend to outperform more general tools [15]. Even so,
the top performing algorithms performed more poorly
on a set with many low-frequency mutations. The fact
that cancer specific algorithms performed better in this
analysis strengthens the hypothesis that a simplification
of the predictive task is favorable. Focusing the algorithm
training method to a gene specific approach is another
potential way of simplification. The question of whether
such approaches will raise the prediction accuracy is an
open question that the work presented below attempts
to address.

In comparison to the in-silico tools, functional assays
specifically related to the phenotype of the disease
should be more accurate, but they are only available
for a small number of genes. Among the 27 criteria
defined by the American College of Medical Genetics and
Genomics (ACMG) to classify disease associated variants,
the PS3 criteria (functional studies) has a stronger weight
than PP3 (computational prediction) [16]. Whether or not
the combination of these two criteria improves variant
classification is unknown.

Mutations in TP53 occur in roughly 42% of tumors [17].
A germline mutation in TP53 causes the Li-Fraumeni syn-
drome (LFS) with severe genetic predisposition to cancer
[18]. Classification of TP53 variants from human cancer is
highly challenging [19]. Although, the coding sequence of
TP53 is small (1800 nucleotides for a 393 amino acid pro-
tein), distinguishing true driver variants from sequenc-
ing artifacts, passenger mutations and benign polymor-
phisms is particularly difficult as missense variants have
been found at nearly every TP53 codons albeit at various
frequencies with a high concentration in the 200 residues
of the DNA binding domain of the protein [17]. Multiple
studies have addressed the loss of function (LOF) of p53
variants using various predictive tools, but results are
heterogeneous. In addition, although LOF prediction for
hot spot variants and their strong association with a

pathogenic score is quite good, it is more heterogenous
for infrequent variants [20]. As the clinical relevance
of TP53 diagnostic is increasing for both somatic and
germline mutations, there is a dire need for an accurate
evaluation of p53 variants LOF [21].

The greatest advantage for the analysis of missense
mutations in TP53 is that the read-out of p53 functions
can be easily monitored. In a key paper published in 2003,
the group of C. Ishioka published the first large-scale
analysis of p53 using a transactivation assay developed in
yeast [22]. This functional data, unique for a cancer gene,
have been widely used to increase the prediction accu-
racy of p53 variants [23]. Nevertheless, multiple studies
have shown that the relation between the transcrip-
tional activity of p53 variants and the outcome of their
biological function such as growth arrest or apoptosis
is not straightforward [24]. The two recent large-scale
analysis performed in mammalian cells are a new step to
increase the accurate identification of p53 variants that
sustain a LOF [25, 26]. Taking together these three studies,
functional activity of more than 10 000 p53 variants from
12 different readouts are available (see Materials and
Methods).

In the present study, we have created TP53_PROF (pre-
diction of functionality), a machine learning model to
predict the functional consequences of every possible
missense mutation in TP53. The model has been val-
idated using multiple independent datasets of normal
and cancer patients and it allows a better predictive
value for survival analysis.

Materials and Methods
Databases
The UMD_TP53 database

The 2019_R1 release of UMD_TP53 was used for the
present study. It includes the TP53 status of more than
80 400 tumors, individuals with germline mutations and
cell lines analyzed both by conventional Sanger sequenc-
ing as well as NGS. A full description and validation of the
database in relation with TP53 mutations from the TCGA
has been recently published [27].

TP53 Mutant Loss of Activity Database, TP53MULT
LOAD, first released in 2012 and includes comprehensive
details on the properties of p53 variants based on 600
publications. TP53MULTLOAD includes multiple activity
fields, such as change of transactivation on various
promoters, apoptosis or growth arrest performed in
multiple experimental conditions [28]. For several hot
spot mutants, multiple gain of function activities are
also included. As of today, TP53MULTLOAD includes
more than 150 000 entries with multiple entries for
most variants. In this manuscript, we used the recom-
mended nomenclature and reference for TP53 mutations;
NM_000546 and NP_000537 for both cDNA and protein
variants respectively.

Cancer mutation databases

Data from the TCGA and MSKCC studies were down-
loaded from the cBioPortal (http://www.cbioportal.org/,
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October 2019). Data from ICGC portal were downloaded
from the ICGC website (https://dcc.icgc.org/, data release
26, 17 December 2017). In the first step, minimal genomic
data, such as genomic coordinates and genetic events,
were extracted from each dataset to define the correct
annotation according to HGVS recommendations [29]. In
a second step, variant annotation was validated by using
the Name Checker tool developed by Mutalyzer (https://
mutalyzer.nl/).

TCGA survival data were downloaded from cBioPor-
tal via “TCGA PanCancer Atlas Studies” quick select.
Samples with more than one mutation were excluded
from the analysis to prevent conflicting conclusions.
Patients with more than one sample were also removed
to prevent conflict. The rest of the tumors with their
TP53 mutational status and survival information were
used (n = 10 322). The four categories of TP53 mutational
status, as presented in the results section, each contain:
(i) no mutation in the TP53—6987 samples, (ii) missense
mutation in TP53 predicted by TP53_PROF to be non-
deleterious—58 samples, (iii) missense mutation in TP53
predicted by TP53_PROF to be deleterious—2126 sam-
ples and (iv) tumors with a truncating non-missense
mutation in TP53—1151 samples. Frameshift deletion
or insertion, nonsense, mutations in splice region or in
splice site were considered truncating. Tumors with other
non-missense mutations in TP53 were excluded from the
analysis.

Population database

The Genome Aggregation Database (gnomAD) is a
resource developed for aggregating and harmonizing
exome and genome sequencing from normal population
[30]. It is the largest source of SNP available and
includes data from 141 456 individuals. p53 variants
were extracted from version 2.1 (version no cancer) and
validated by using the Name Checker tool developed by
Mutalyzer (https://mutalyzer.nl/).

Predictive data

dbNSFP is a database that compiles prediction scores
from multiple algorithms, along with conservation
scores and other related information, for every potential
non-synonymous variant in the human genome [31].
Data for TP53 were extracted from version 3.5 and
manually curated to be specific to the full p53 protein
and 21 dbNSFP scores were retained for the analysis
(Supplementary Table S8 available online at http://bib.
oxfordjournals.org/). Scores originating from seven other
in silico predictive softwares were also included in the
present study leading to a total of 28 different scores
used for the training analysis (Supplementary Table S8
available online at http://bib.oxfordjournals.org/).

Functional data

The UMD TP53 database includes three sets of functional
data for p53 variants. The first set was described in detail
in a previous report [22, 32]. p53 transcriptional activity

that is essential for its tumor suppressive function was
tested on eight different promoter sequences in a yeast
assay. The average and median value of the eight activi-
ties were also included as readouts as they can improve
the training. The second set of functional data integrated
in the UMD_TP53 database corresponds to the analysis of
5300 p53 variants performed by Kotler et al. [26]. Cell cycle
arrest activity of all variants localized in the DNA-binding
domain of p53 was assessed in H1299 cells. The third set
corresponds to the study of Giacomelli et al. [25]. In this
study, dominant negative activity, LOF and response to
etoposide were analyzed in mammalian cells for 8258
p53 variants. Taken together, 14 different readouts for
p53 function were available. These functional data were
removed from TP53MULTLOAD to avoid circular analysis.

Although these three independent studies used dif-
ferent assays, correlation analysis and multidimensional
scaling showed excellent agreement between all these
variables [33]. In order to avoid any semantic confusion
between ‘pathogenicity’ that denote a clinical impact
and which is defined by using multiple independent
criteria, as recommended by Brnich et al., we will use
the terminology ‘functionally normal’ or ‘functionally
abnormal’ to describe the functional impact of a variant
as measured in a given assay [34].

The positive and negative training sets

As of yet, training sets used for defining p53 LOF used
either the whole set of mutations found in various
databases or via the selection of the most frequent
p53 variants using an arbitrary cutoff based on the
frequency of the variant [9, 35]. Both methods are
biased as the first one includes potential passenger
and artifactual variants that plagues the various cancer
databases and the second does not take into account
infrequent non-functional variants. The concept of
Cancer Shared Datasets (CSD) was developed to optimize
the representativeness of dysfunctional variants in the
training set and circumvent the issues described above.
TP53 mutations data were extracted from four non-
overlapping databases and variants found at least one
time in each dataset were included in the CSD [36]. The
four datasets were as follows (i) p53 variants from the
UMD database issued from studies that used exclusively
conventional Sanger sequencing for the diagnostic;
(ii and iii) data from the TCGA and MSKCC studies
respectively; (iv) data from ICGC portal. Two hundred
and ninety missense variants were found to be shared
by the four datasets hereafter named CSD_p53 variants
(Supplementary Table S1 available online at http://bib.
oxfordjournals.org/). As these four datasets are derived
from independent studies using different patients and
different methodologies, it is highly likely that these
290 shared variants are true recurrent cancer associated
variants. CSD includes both hot spot variants as well as
less frequent variants and is more representative of the
heterogenous frequency of TP53 mutations in human
cancer [36]. For the negative set, protein variants that
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were never found (693 variants) or found only once (323
variants) in human cancer have been selected (no_cancer
p53 variants) (Supplementary Table S1 available online
at http://bib.oxfordjournals.org/). In this analysis, only
missense variants have been included as they are the
most common alterations detected for TP53 and the most
difficult to classify.

Variants for experimental validation

A large-scale analysis of 14 independent genomic
databases from the human population led to the
identification of multiple missense p53 variants with
a minor allele frequency ranging from 10−6 to 0.8 [37].
Forty-one of these variants (set 41) were suspected to
be either potential non deleterious SNP or pathogenic
variants from asymptomatic individuals. These variants
were kept aside for experimental validation including
seven and five variants from the positive and the
negative training datasets, respectively. The criteria used
for this selection include variants detected in three or
more population datasets at frequency above 5∗10−6 in
at least one dataset [37].

Scores

For this analysis, 42 different scores were used, and can
be divided to two classes: (i) the 28 computational scores
and (ii) the 14 functional scores from the three large-scale
mutagenesis analysis (Supplementary Table S8 available
online at http://bib.oxfordjournals.org/). For scores with
missing values, imputation was performed using the
median value of each such score.

GVS ratio and MMF

The UMD_TP53 database included p53 variants identified
in various types of tumors, but in most cases, as nor-
mal DNA is usually not available it is possible that rare
non-pathogenic SNPs are misclassified as somatic vari-
ants. Nevertheless, the large number of variants included
in TP53_UMD, allows some specific analysis to identify
potential constitutional SNPs. Two criteria have been
thus defined, i.e. the germinal to somatic (GVS) ratio
and the frequency of multiple mutations (MMF). As the
UMD_TP53 database includes both germline and somatic
mutations and since the distribution of variants is similar
in both, it is possible to define for each variant, the
GVS ratio. This will define if a p53 variant is found
at higher frequency as germline variants. Similarly, for
the MMF score, we investigate the frequency at which
each p53 variant is found associated with one or more
than one other p53 variant in the same tumor. This
score will detect variants that are frequently co-selected
because they are either benign passenger variants or low-
frequency SNPs. For all variants included in UMD_TP53,
the number of p53 variants per tumor has been fully
recorded. Although the majority of tumors (91%) express
a single p53 variant, 7% and 2% express either two or
more than two p53 variants, respectively.

LFS analysis

For the LFS validation, two independent datasets were
analyzed. The first one is issued from the IARC database
and includes 144 families with certified LFS [38]. The
second LFS dataset, described by Gao et al. [39] was
collected from four centers: the MD Anderson [40], The
National Cancer Institute (NCI) LFS dataset [41], the
Dana Farer Cancer Institute (DFCI) LFS dataset [42] and
the Children’s Hospital Of Philadelphia (CHOP) cancer
predisposition program. The dataset contains 324 LFS
families. The p53 founder variant LRG321t1:c. 1010G > A,
(p.R337H) found predominantly in Brazil and included at
high frequency in both datasets has been excluded.

ClinVar

ClinVar is a public database of variant interpretations
that has steadily grown to become the largest publicly
available genetic variant database and became a valu-
able resource to support clinical variant interpretations
[43]. ClinVar uses the five tier classification system
recommended by the ACMG: Pathogenic (P), Likely
pathogenic (LP), Uncertain significance (VUS), Likely
benign (LB) or Benign (B) [16]. For the analysis using the
confusion matrix, P and LP were grouped and defined as
D (deleterious), whereas LB and B were defined as ND
(Not deleterious).

As of February 2020, ClinVar included 778 missense
variant entries in p53. Thirty variants were removed from
the analysis including duplicate variants (22 with similar
labels and 8 variants issued for indel). Similar variants
with different prediction status or without prediction
were defined as VUS. Final analysis was performed on
748 missense p53 variants.

Functional analysis

Colony formation assay was performed as previously
described [44]. H1299 cells were plated into six-well
plates and transfected with various TP53 constructs.
Twenty-four hours after transfection, the cells were
dissociated and plated in six-well plates in selective
media (G418, 1 mg/ml.) Cells were then stained with
crystal violet after 2 weeks.

In silico tools comparison
The comparison with in silico tools shown in Sup-
plementary Table S7B, available online at http://bib.
oxfordjournals.org/, was performed using annotations
derived from three experimental assays performed on
the set of 41 variants, as described in Supplementary
Table S7A available online at http://bib.oxfordjournals.
org/. The validation and test set’s labels were taken
from the training data. For TP53_PROF’s performance
on the validation set, we used the accuracy score
obtained during the validation stage, after training only
on the training set. ClinVar’s 190 variants with non
VUS annotations were considered as another cohort for
comparison.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
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The six tools derived from TP53_UMD were obtained
with their classifications. For polyphen, ‘probably
damaging’ and ‘possibly damaging’ were considered D.
for Mutassessor, ‘low’ and ‘neutral’ were considered ND
and ‘medium’ was considered D. Two cutoffs were used
for the Revel score, Revel_b (cutoff at 0.5) and Revel_c
(cutoff at 0.7), as described in the analysis performed
by Cubuk et al. [13]. Two thresholds were also used
for the CHASM score, CHASM threshold (0.768) and a
gene-specific cutoff calculated for TP53, CHASM TP53
truthset threshold (0.892) [14]. For EVE, annotations were
used for EVE90pct and EVE75pct, which account for the
percentage of certainty. The EVE90pct sets 10% of the
variants as ‘uncertain,’ and EVE75pct sets 25% of the
variants as ‘uncertain’ [45].

Data analysis
All data analysis was performed in R, a statistical pro-
gramming language [46].

The data went through simple pre-processing before
transmission to the machine learning models. Prepro-
cessing included replacing non-available (NA) values
with the median of all mutations that did have a value
for that certain feature.

Machine learning analysis
Machine learning analysis was performed using two
algorithms: Random forests (RF) and gradient boosting
machine (GBM). The R Caret [47] package was used
to run the machine learning algorithms, to perform
hyperparameter tuning, to validate and to test the
models. We used a design of 60:20:20 as follows: 60%
of the samples used for training and for hyperparameter
tuning with 10-fold cross validation. 20% for validation
and for choosing the best performing algorithm. The last
20% was reserved for a final test set examination of the
model’s performance. Unsupervised multidimensional
scaling was done using Euclidean distance.

Random forests

We ran the RF algorithm using the ‘rf’ method of the
CARET [47] package. ‘RF’ is an ensemble learning method,
used in our case for binary classification. This is done by
using the bagging technique on decision trees. Bagging
means to repeatedly select n (a hyperparameter) random
samples from the training set, before fitting a decision
tree for those samples. In addition to bagging, ‘RF’ also
randomly selects a subset of features. The decision tree
is thus trained on a subset of samples and on a subset
of features from the original data. Each tree is trained as
a binary classifier, and the algorithm chooses the class
according to a majority tree votes.

Gradient boosting machine

The model ran using the ‘xgbTree’ method of the
CARET [47] package. GBM is an approach for improving
predictions resulting from decision trees. It fits decision
trees in sequential order. The first trees are fit to parts

of the original data, and trees are than fit to information
from previously grown trees. This allows a slow process
of improving the model’s residuals. The loss function is
slightly improved by each tree, and thus different areas
of poor performance can be improved independently
[48]. Hyperparameter tuning was performed via random
search, i.e. performance was tested under randomly
picked hyperparameter values. The random search
approach was proven to be better, both empirically
and theoretically, than the (non-random) grid search
approach [49].

Survival analysis
Survival plots and statistical distinction analysis were
done using the functions Survfit and coxph (both are
from the Survival package).

Multivariable analysis was performed with the coxph
function in R. Only TCGA samples with missense muta-
tion in TP53 were included in the analysis. The tumor
types PCPG (n = 1 samples with missense mutation in
TP53), TGCT (n = 1) and DLBC (n = 3) were considered out-
liers due to extreme survival values coupled with very
small sample sizes. They were therefore excluded from
this analysis.

Results
Data assembly
The open reading frame of the major transcript of TP53
(NM_000546.6) can sustain 3546 single nucleotide sub-
stitutions leading to 2569 different cDNA variants (c-
variants) and the synthesis of 2314 potential protein vari-
ants (p-variants) (Supplementary Figure S1A available
online at http://bib.oxfordjournals.org/). Among the 1750
c-variants (1624 p-variants) that have been described in
the 2019 release of UMD_TP53 database, 103 c-variants
(102 p-variants) were described in more than 100 cases
corresponding to 70% of missense variants detected in
human tumors with eight protein variants described
more than 1000 times and corresponding to 29% of the
patients (Supplementary Figure S1B available online at
http://bib.oxfordjournals.org/). On the other hand, 1158
c-variants (1077 p-variants) were described at low fre-
quency (1–9 times) and correspond to 6% of patients
in the database. Four hundred eighty nine c-variants
(470 p-variants) are found at intermediate frequency
(10–99 times) and correspond to 24% of the patients.
Although for a few hot spot variants oncogenic activity
was profusely validated in multiple cellular or mouse
models, information related to less frequent p53 variants
is scarce.

Despite the fact that the spectrum of mutation types
may vary across tissues, it remains comparable for dif-
ferent tumor types, and missense mutations are con-
sistently predominant. (Supplementary Figure S1C avail-
able online at http://bib.oxfordjournals.org/).

The number of novel missense variants has not
increased significantly for several years now [50],

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
http://bib.oxfordjournals.org/
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indicating that a saturation plateau has been reached
with the discovery of all potential p53 variants that
sustain a loss of their tumor suppressor functions
(Supplementary Figure S2 available online at http://
bib.oxfordjournals.org/). Among all different missense
p-variants that can be issued from single nucleotide
substitutions in the coding region of TP53, one third
(693 out of 2314, 29.9%) have never been described in
human cancer and thus can be considered as non-
oncogenic [17]. This assumption is supported by the
observation that these variants did not display a LOF in
multiple large-scale analyses [33]. This unique situation
for a tumor suppressor gene provided the opportunity to
define innovative positive and negative training datasets
for our analysis. Therefore, the functional part of the
training set was defined using rare (described once in
only one cancer database) or absent variants whereas
the non-functional variants used for the training set
were issued from the CSD, that includes p53 variants
coexisting in four major independent cancer mutation
databases [36] (see Materials and Methods) (Figure 1
and Supplementary Table S1 available online at http://
bib.oxfordjournals.org/). The high redundancy of these
cancer associated p53 variants in multiple large-scale
datasets gave us the opportunity to alleviate all possible
bias associated with variants selected according to any
specific predefined thresholds. Overall, the negative set
contains 1016 variants (1011 after removing variants
kept for experimental validation) and the positive set
contains 290 variants (283 after removing variants kept
for experimental validation). The final curated dataset
of 1294 variants, their labels and the 42 possible features
is given in Supplementary Table S2 available online at
http://bib.oxfordjournals.org/.

Model development
The training dataset was randomly divided into 60:20:20%
groups. Sixty percent of the selected variants for
training. Twenty percent of the variants were used for
validation, hyperparameter tuning and model selection
(Supplementary Table S3 available online at http://
bib.oxfordjournals.org/). About 20% were left for final
testing. Models were trained using three combinations
of feature sets: [1] all features and then separately on
the [2] computational and the [3] functional variables.
The models were constructed in accordance with the
ACMG criteria for p53 variant interpretation, a guideline
developed for clinical interpretation of sequence variants
for genetic consultation. Under these criteria, functional
assays are considered as strong criteria to indicate
pathogenicity and computational biology-based scores
are considered as moderate ones [16]. Accordingly,
three models were created: based on all the features,
based solely on functional scores, and based solely on
computational scores. The functional model and the
computational model each correspond to the type of fea-
tures used for learning and can fit the respective ACMG

criteria. The third model integrates both computational
and functional features into one learning model. Training
was done using 60% of the training set. Two machine
learning algorithms, RF and GBM, were used to analyze
the above-mentioned combinations. The accuracy of
these different runs was tested on the validation (unused
20%) data.

The analysis performed using GBM and RF showed
similar performances. GBM performed with 99.66%
AUC for both functional and all feature models, and
with 97.64% AUC for the computational model (Sup-
plementary Table S4A available online at http://bib.
oxfordjournals.org/). RF performed with 99.76% AUC for
the functional model, 99.56% AUC for all the features
model and with 97.62% for the computational model
(Supplementary Table S4B available online at http://
bib.oxfordjournals.org/). The computational model
performed worse both for RF and GBM. To determine
the best model for further testing, 10 tuned runs were
performed for each algorithm on both functional and
all feature models and the mean AUC was compared
(Supplementary Table S4C available online at http://
bib.oxfordjournals.org/). The GBM models performed
better according to this analysis, by 1.2% for all features
model and by 0.02% for the functional model, with the
functional model again outperforming the model using
all the features. GBM also performed better than RF in
terms of accuracy, by 1.17% for all features models and
by 3.1% for the functional models (Supplementary Table
S4A and B available online at http://bib.oxfordjournals.
org/). Hence, at the end of the validation process, the
GBM algorithm was chosen over RF, and specifically the
functional features GBM model is chosen at the front for
deep further analysis. Since the other two models have
relevance in matching the different ACMG criteria, they
were further tested as well, as presented below. For the
final step, each model was trained on 80% of the data
(train and validation sets combined) and tested on the
test set of 20% that was kept aside for this purpose. As
shown in Figure 2, the functional features model had
an AUC of 96.8% and an accuracy of 96.5% (Figure 2A,
ROC curve in Supplementary Figure S3A available online
at http://bib.oxfordjournals.org/). The sensitivity was
92.8% and specificity was 97.5%. The performance of
the other two algorithms is presented in Figure 2B and C,
ROC curves in Supplementary Figure S3B and C available
online at http://bib.oxfordjournals.org/. A table of the
2314 missense variants with their TP53_PROF functional
model predictions is provided in Supplementary Table
S5 available online at http://bib.oxfordjournals.org/.
Variable importance scores of the functional features
for the functional model’s predictions were calculated,
indicating that features from the Giacomelli (0.44) and
Kotler (0.36) papers were most dominant in the model’s
predictions process (Supplementary Table S6 available
online at http://bib.oxfordjournals.org/).

We examined the discrepancy variants issued from the
algorithm’s predictions on the test set (Figure 2D and E).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
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http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
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Figure 1. A workflow diagram illustrates the strategy used for the development of the algorithm. Step 1 diagram outlines the various datasets that
were used for the development and the validation of the predictor algorithm. It also outlines the analytical outline. Step 2 depicts the training and the
validation processes used in this study. Step 3 describes the various datasets used to validate the analysis.

The best algorithm (based on functional features) pre-
dicted four variants to be functionally active although
they are included in the non-functional training set. A
close examination of these four variants shows that they
are indeed functionally impaired cancer associated vari-
ants (Supplementary document TP53 variants update).
Two of these variants (p.E224D and p.Q331H) are local-
ized at the vicinity of exon/intron junction sequences
and are well known to be associated with dysfunctional
splicing and nonsense-mediated mRNA decay [33, 51]. As
all functional scores are issued from experimental data
based on forced expression of protein variants, functional
data as well as in silico protein function predictors used
for these null variants will not be accurate thus causing
false negative scores. The third variant is localized in
codon 181 (p.R181C) that have been shown to be essen-
tial with codon 180 for dimer stability [52, 53]. Variants
at codon 181 such as p.R181C or p.R181H do not fully
abolish p53 function and have differential LOF depending
on the TP53 target genes (see also experimental valida-
tion in the next section and Supplementary document
TP53 variants update). Germline variants of the form
p.R181C were found to be a founder mutation associated
with an increased risk of breast cancer in Arab families

and is the only p53 variant that can be identified in a
situation of homozygosity, suggesting a low penetrance
associated with a partial loss of the tumor suppressive
function [54]. The fourth variant, p.G334V, is located in
the tetramerization domain and is well known to dis-
rupt p53 oligomerization [55–57]. Variants in this domain
are difficult to interrogate in cellular assay as artificial
overexpression alleviate this defect with forced oligomer-
ization and a potent activity (see next section). Taken
together, these four false negative variants are included
in the CSD and are indeed non-functional but cannot
be accurately assessed via the current algorithms. On
the other hand, five variants labeled as functional (never
detected in human cancer) were predicted to be func-
tionally impaired. Although multiple explanations can be
considered such as no sufficient loss of activity to impair
the tumor suppressive effect of p53, it is also possible that
these variants are counter selected in normal cells due to
a toxic effect.

Similarity between the training set
and the whole mutations space
The algorithm for TP53_PROF was trained on selected
variants rather than on randomly chosen ones, since it is

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
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Figure 2. Results and discrepancies on the test set for functional, computational and for all the features models. (A) Pie-chart with the performance of
the functional model analyzed on the test set. The functional model correctly predicted 249 out of 258 variants in the test set (96.51% accuracy), AUC is
96.79%. Green is for true positive (TP) predictions, light green for true negative (TN), light purple for false negative (FN) and dark purple for false positive
(FP). (B) Pie-chart similar to (A) for all features model. (C) Pie-chart similar to (A) for the computational model. (D) Venn diagram showing discrepancies
in the negative set of the three models and their intersections. (E) Venn diagram similar to (D), for the positive set.

possible to label only a subset of variants as functional
or non-functional. To minimize biases, we predefined
general and simple rules for the inclusion of variants
in the training data sets as mentioned above and as
described in Materials and Methods. Using a training set
that was taken from the 1294 labeled variants, rather
than chosen randomly from all the 2314 variants may
result in a biased algorithm that cannot predict accu-
rately the remaining unlabeled 1020 variants from the
prediction set. Hence, it is important to verify that the
training set is not distinct from the prediction set in
its properties. Accordingly, a dimensionality reduction
algorithm was applied to examine whether the training

variants are dispersed evenly in the features space with
all the rest of the variants and thus represent the whole
mutational landscape. Multidimensional scaling (MDS)
reduced the 42 features into a two-dimensional space
and was performed on variants used for the training as
well as on the rest of variants from UMD_TP53 database.
Variants used for training and the rest of the variants
were presented with even distributions on the two MDS
axes, supporting the assumption that these variants rep-
resent well the mutational landscape of TP53 (Figure 3A).
On the other hand, as expected, functionally inactive
variants are more centered compared to active variants
(Figure 3B). Moreover, these findings allow us to group the
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labeling of the training set and the algorithm’s prediction
of the prediction set into a unified approach to predict
pathogenicity to all 2314 missense variants of TP53. In the
coming sections, we show the validation of this unified
approach.

Figure 3C–E shows the algorithm’s predictions as
related to variants frequency in the UMD_TP53 database.
As expected, non-functional variants tend to have higher
frequency compared to functional variants. Neverthe-
less, the two groups cannot be separated accurately
using frequency information alone—thus highlighting
the importance of the predictive algorithm.

SNP prediction and experimental validation
The 41 p53 variants (set 41) that were kept aside from
the training for experimental purposes, include p53 vari-
ants found in population databases and suspected to
be either potential benign SNP or pathogenic variants
from asymptomatic individuals [37] (see Materials and
Methods). Among this set, the 15 variants that were
recently validated as bona fide SNPs [37], including the
two most common polymorphisms p.P72R and p.P47S,
were classified as functional by TP53_PROF (Table 1 and
Supplementary Table S7A available online at http://bib.
oxfordjournals.org/). None of these variants have been
described as dysfunctional either in the three large-scale
functional datasets or in the MUTLOAD database (Sup-
plementary Figure S4A and B available online at http://
bib.oxfordjournals.org/). Furthermore, their frequency of
multiple mutations (MMF) and germinal to somatic (GVS)
scores (see Materials and Methods) show that they were
outliers found at high frequency as germline variants
or associated with other p53 variants in human tumors
(Supplementary Figure S5A and Supplementary Table
S7A available online at http://bib.oxfordjournals.org/).
Among the remaining 20 variants also classified as func-
tional, nine variants are likely SNPs found at low fre-
quency in the human population, 10 cannot be classi-
fied precisely and the remaining one is a well-known
passenger variant (p.R175C) [37]. None of these variants
display any loss of activity in the three large-scale func-
tional datasets and have high GVS and/or MMF scores
(Supplementary Figure S4A and B and Supplementary
Table S7A available online at http://bib.oxfordjournals.
org/). Finally, the six variants that were defined as non-
functional by TP53_PROF include five bona fide cancer
associated variants found in multiple cancer patients
(Table 1 and Supplementary Table S7A available online
at http://bib.oxfordjournals.org/).

Growth arrest activity of p53 variants confirmed the
prediction of TP53_PROF (Figure 4, Table 1). As expected,
the variant at position p.R181C have an intermediated
phenotype (see Supplementary document TP53 variants
update). Variant, p.G334R, located in the tetramerization
domain shows a partial defect in our functional assay but
display an intact activity in all published multiple large-
scale studies, stressing the difficulty to analyze variants
in this particular domain (Supplementary document

TP53 variants update). Nevertheless, this variant was
recently shown to be a pathogenic, Ashkenazi Jewish—
predominant mutation associated with a familial mul-
tiple cancer syndrome, although the LOF was partial
[58]. Taken together, analysis of p53 variants from
this set of 41 variants, as well as the experimental
data, are in good agreement with the predictions of
TP53_PROF.

The set of 41 variants was also used to compare
our model with other available scores. This set is
enriched with non-deleterious variants, thus allowing
for the examination of specificity performances, where
most current models perform poorly. TP53_PROF’s
classification was compared with six scores that pro-
vided formal classification cutoff in the TP53_UMD
database (Polyphen2 HumVar, Polyphen2 HumDiv, Sift,
Condel, Provean and Mutassessor). EVE, a recently
released deep generative model of evolutionary data
[45], CHASM, a cancer-specific algorithm that showed
peak performances in recent analysis [14, 15] and
Revel, another in-silico tool that presented with best
balanced accuracy in a recently published algorithms
comparison [13, 59], were also used for this analysis
with different defined cutoffs for LOF provided by the
scores documentation (see Methods). Annotations based
on the three experimental validations done on the
set of 41 variants (presented in Supplementary Table
S7A available online at http://bib.oxfordjournals.org/)
were used as the truth set. TP53_PROF outperformed
the other scores, with accuracy ranging between 97.5%
and 100% (Supplementary Table S7B available online
at http://bib.oxfordjournals.org/). The second-best score
was EVE75pct (92.6–100% accuracy). However, EVE75pct
defines 25% of its predictions as ‘uncertain,’ and
therefore had uncertainty regarding 34% [14] of the 41
variants set. EVE90, which defines 10% of its predictions
as ‘uncertain,’ had accuracy ranging between 71.1% and
84.8%.

For further comparison, the scores were also compared
to the performance of TP53_PROF on the validation and
test sets (n = 258 each, also enriched for non-deleterious
variants) and on ClinVar’s non-VUS variants set (n = 190,
enriched for deleterious variants). On both the validation
and the test sets, TP53_PROF maintained its advantage
with 98.06% and 96.5% accuracy scores, respectively. For
the validation set, Eve75pct performed second best with
94.6%, but lacked predictions for the significant portion
of 78% (202) of the variants. For the test set, CHASM_TP53
(a gene-specific suggested cutoff for CHASM) was second
best with 91.4% accuracy, serving as another indication
for the utility of the gene-specific approach.

On the ClinVar set, which is highly enriched with
deleterious variants, TP53_PROF maintained best per-
formance of 96.3% accuracy, with SIFT and Revel_b pre-
senting with a similar score. The Eve75pct score had an
accuracy of 98.03%. However, EVE75pct had predictions
for only a subset of 80.5% (153) of ClinVar’s variants. The
rest of the scores also performed very well on ClinVar

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
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Figure 3. Bidimensional MDS. Euclidean distance between each pairwise variants of the UMD database was calculated using all variant features. (A)
MDS discerning the variants in the training set (orange) and the rest of the variants predicted by TP53_PROF (blue). The two groups disperse evenly
in the variants space. (B) MDS discerning deleterious (blue) versus non-deleterious (yellow) variants. (C) Variant frequency in UMD of the variants
predicted by the algorithm. Variants used for training are in red and the variants from the prediction set are in turquoise. X-axis: p53 variants ranked
according to their frequency in UMD from left to right. Y-axis: frequency of each variant in UMD (Log2 scale). (D) Similar to (C), with variants from the
prediction set only. Variants are colored by their TP53_PROF prediction: Deleterious variants in yellow, non-deleterious variants in blue. The deleterious
and non-deleterious variants in this set present with a mixed frequency in UMD. (E) Similar to (D), with variants from the training set only.

(accuracy ranging between 86.6% and 95.9%). This
emphasizes the fact that most models perform well
on classifying deleterious variants but not as good
in the classification of non-deleterious variants [13].
TP53_PROF by contrast performs well for both delete-
rious and non-deleterious variants.

Testing the model on population data
We first applied the TP53_PROF on gnomAD, the largest
set of genetic variations found in the human population.
Although gnomAD includes mostly benign variants,
recent studies indicate that it also contains pathogenic
variants in tumor suppressor genes such as BRCA1 or
TP53 [36, 60]. Indeed, 39 out of the 196 missense p53
variants included in gnomAD have been classified as
deleterious by the algorithm, including 22 CSD variants

(Figure 5 and Supplementary Figure S7 available online
at http://bib.oxfordjournals.org/). They are identified
both in the complete database as well as the no-cancer
versions of gnomAD, indicating that they are associated
with asymptomatic individuals carrying pathogenic
p53 variants (Figure 5 and Supplementary Figure S8
available online at http://bib.oxfordjournals.org/). This
high frequency is in accordance with the elevated (15–
30%) number of TP53 de novo mutations in the early onset
cancer patients not associated with familial history [61,
62]. On the other hand, 157/196 variants were defined as
non-deleterious, including the 15 TP53 SNPs described
above that were recently validated as bona fide SNPs [37]
(Supplementary Figures S9 and S10 available online at
http://bib.oxfordjournals.org/). Although these include
the three pathogenic variants described above (splice

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
http://bib.oxfordjournals.org/
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Figure 4. Functional analysis of p53 variants. (A) Representative photos of colony formation assay. Plates were stained two weeks after transfection.
Wild type p53 as well as several p53 variants can inhibit colony formation whereas the cancer associated variant, p.R175H, used as a positive control,
does not inhibit colony formation. Inclusion of p53 variants in the training or in the predictive set is shown under the name of the variant separated by
a backslash. ‘D’, ‘ND’ or ‘-‘: deleterious, non-deleterious or not included. For variants in the test set (20% of the training set) both labeling and prediction
are given. (B) Quantitative summary of the colony formation assay in (A). Inclusion of p53 variants in the training or in the predictive set is shown under
the name of the variant.

variants p.E224D and p.T125M and the Brazilian variant
p.R337H, known to be associated with adrenocortical
carcinoma and whose loss of activity have been difficult
to appraise), the remaining variants are found at very
low frequency both in gnomAD and UMD and are
likely very infrequent private SNPs or sequencing errors
(Supplementary Figure S10 available online at http://bib.
oxfordjournals.org/).

Testing the model on data of Li-Fraumeni
syndrome patients
Another line of validation was done using variants taken
from datasets of LFS patients that should include only
pathogenic non-functional variants [39]. First, we used
the 144 families (60 different p53 variants) included in
the LFS dataset from the IARC database [38]. Two variants
were miss-identified SNPs (p.R290H and p.N235S) [37],

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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Figure 5. Frequency of 196 variants in gnomAD and UMD databases. Bars showing frequency in gnomAD are colored in red. Bars showing frequency in
UMD are colored by the model’s prediction, Blue for deleterious and yellow for non-deleterious variants. Frequency is represented in log2 scale.

indeed predicted to be functional by the algorithm. Fifty-
four variants were classified as non-functional including
24 variants that were not included in the training set
and are from the prediction set (Supplementary Fig-
ure S11A available online at http://bib.oxfordjournals.
org/). The four remaining variants predicted as func-
tional were low-frequency variants without any obvious
loss of activity. Overall, this led to a model prediction
accuracy of 93.1% (54/58) after removing the two miss-
identified SNPs.

The second dataset described by Gao et al. includes
77 p53 variants issued from 324 LFS families. Seventy-
one variants were predicted to be deleterious (63
from the training set and eight from the prediction
set) (Supplementary Figure S11B available online at
http://bib.oxfordjournals.org/). Among the six remaining
variants predicted to be functional, three were miss-
identified SNP (p.I254V, p.R283C and p.N235S) [11], two
are pathogenic variants localized in the tetramerization
domain of p53 and the remaining one is the pathogenic
variant p.R181C discussed in the previous section (model
prediction accuracy is 95.9% after removing the three
SNPs).

Testing the model on ClinVar database
The ClinVar database that is extensively used in genetic
testing programs includes 748 p53 missense variants that
were classified using the five-tier classification system
(pathogenic, likely pathogenic, uncertain significance,
likely benign, or benign) [63]. First, matching ClinVar
with the two training sets shows that the negative set
includes only variants classified as benign (B), likely
benign (LB) or VUS, whereas the positive set includes only
variants defined as pathogenic (P), likely pathogenic (LP)

or VUS, thus supporting our labeling selection procedure
(Supplementary Figure S12 available online at http://bib.
oxfordjournals.org/).

TP53_PROF predicts that the 26 B or LB variants
included in ClinVar are functional (True negative 100%,
no false positive) (Figure 6 and Supplementary Figure
S13 available online at http://bib.oxfordjournals.org/). On
the other hand, among the 164 P or LP variants, 157 are
predicted to be non-functional (Supplementary Figure
S13 available online at http://bib.oxfordjournals.org/).
Hence, the functional model’s predictions are 95.73%
sensitive, 100% specific, the accuracy is 96.32% and
the area under the curve (AUC) is 98.8%. Among the
seven false negative variants, three were localized in the
tetramerization domain of the protein (Supplementary
Figure S13 available online at http://bib.oxfordjournals.
org/).

Five hundred fifty-one ClinVar variants are annotated
as VUS, 223 (40%) of which were defined as non-
functional by our model. Although, the VUS status
suggests an unresolved issue for these variants, the
observation that 68 (30%) of them have been described as
somatic variants in more than 100 independent studies
is highly suggestive of a pathogenic class (Figure 6C).

Testing the model on survival information
To test TP53_PROF predictions on survival data, we used
pan-cancer tumor samples from TCGA. We divided the
samples into four categories of TP53 mutational status: (i)
no mutation in TP53 (n = 6987), (ii) missense mutation in
TP53 predicted by TP53_PROF to be functional (n = 58), (iii)
missense mutation in TP53 predicted by TP53_PROF to be
non-functional (n = 2126), (iv) tumors with a truncating
non-missense mutation in TP53 (n = 1151).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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Figure 6. ClinVar comparison with TP53_PROF’s predictions. (A) Variants annotated by ClinVar as benign (B), likely benign (LB), pathogenic (P) or likely
pathogenic (LP) are compared with TP53_PROF’s deleterious (D) and non-deleterious (ND) predictions. 26 variants were predicted as B or LB by ClinVar
and as ND by TP53_PROF and are considered true negative (TN), given in light green. 157 variants were predicted as P or LP by ClinVar and as D by
TP53_PROF and are considered TP, given in green. Seven variants were predicted as P or LP by ClinVar and as ND by TP53_PROF and are considered false
negative (FN), given in purple. All B or LB variants were predicted ND by TP53_PROF, with no false positives. (B) same as (A), with the addition of 551
variants annotated by ClinVar as VUS, given in bright yellow. The VUS variants make up 74.3% of the variants in the analysis. (C) same as (B), with VUS
variants (shown by the bright yellow outer circle) also colored by their TP53_PROF prediction. 211 VUS variants were predicted as D, given in blue. 340
VUS variants were predicted as ND, given in yellow. (D) Venn diagram showing discrepancies in the TP53_PROF- ClinVar comparison. The discrepancies
were similar for the functional and all-features models. The computational model showed better performance in this analysis, with four of the seven
false negatives correctly classified, and a remaining discrepancy of three variants.

Patients with TP53 mutations predicted to be func-
tional had longer survival times compared to patients
with TP53 mutations predicted to be non-functional
(P = 0.00188) and compared to patients with truncat-
ing mutations (P = 0.00125) (Figure 7A). Patients with
TP53 mutations predicted to be non-functional by the
algorithm had significantly shorter survival time as
compared to patients with no TP53 mutations (P < 2e-
16). There was no significant survival difference between
patients with functional mutations and patients with
no TP53 mutations (P = 0.109), nor between patients
with non-functional mutations and patients with known
truncating mutations (P = 0.759). Interestingly, minority
of mutations in the somatic database of TCGA were pre-
dicted to be functional (58/3335, 1.74%) and this seems to
reflect that such mutations are not positively selected in
cancer. These findings provide an independent validation
that the algorithm’s prediction has accurate clinical
implication. Similar analysis performed for the other
models (based on computation features and based on
all features) provided comparable results as shown in

Supplementary Figure S14A and B available online at
http://bib.oxfordjournals.org/.

Since the survival comparison was performed across
tumor types, potential bias caused by the high level of
heterogeneity of tumor types may be the cause for the
presented statistical significance. To address this, multi-
variable analysis was performed using the cox regression
model, with TP53_PROF’s predictions and the tumor type
as the variables. A P-value of 0.005 was obtained for
the comparison of D and ND predictions in this analysis
as well, indicating that the significant results are main-
tained independently of the tumor type (Figure 7B). Since
the number of ND predicted samples in this analysis is
small, a similar comparison in a tumor specific manner is
not likely to present with statistically significant results
due to lack of power, but it may hint towards a similar
pattern. Therefore, survival comparisons were performed
on tumors with more than three samples predicted as ND
by TP53_PROF, and where general TP53 mutational state
presents with statistically significant survival prediction
distinctions: lung adenocarcinoma (LUAD) and uterus

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
http://bib.oxfordjournals.org/
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Figure 7. (A) Survival curve of tumors from TCGA database. TCGA tumor samples are presented in four groups, by their TP53 mutational status. Green:
Samples with no TP53 mutation (No TP53, n = 6987). Yellow: Missense TP53 mutations predicted by TP53_PROF to be non-deleterious (ND, n = 58). Blue:
Missense TP53 mutations predicted by TP53_PROF to be deleterious (D, n = 2126). Purple: Samples with a truncating TP53 mutation (truncating, n = 1151).
P-values for the comparison between these groups are also shown, with an orange line indicating the two groups being compared. Survival predictions
are distinct when comparing No TP53 and D (P < 2e-16), comparing ND and D (P = 0.00188) and comparing ND and truncating (P = 0.00125). Survival
predictions are indistinctive for comparisons between D and truncating (P = 0.759) and between ND and No TP53 (P = 0.1). (B) Multivariable analysis for
the cox regression survival model with TP53_PROF’s predictions (pred) and tumor type as variables. The survival distinction of the patient groups D
compared to ND predictions, was significant at the P = 0.005, independent of the effect of tumor type. Tumor types that had significant effect on the
hazard ratio are colored in orange.
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corpus endothelial carcinoma (UCEC). There were no
death events in the ND predicted group for UCEC (n = 4)
and only one deceased patient in the same group for
LUAD (n = 7, Supplementary Figure S14C and D available
online at http://bib.oxfordjournals.org/).

Discussion
Predicting the pathogenicity of somatic or germline
genomic variations represents an unmet need in genetic
consultation and precision genomic medicine for cancer
treatment. Regarding TP53, somatic TP53 status is used in
routine clinical practice in several types of cancer such as
chronic lymphocytic leukemia (CLL) [64], acute myeloid
leukemia (AML) [65] and myelodysplastic syndrome, in
order to identify patients likely to benefit from specific
treatments. Furthermore, it has been clearly established
that germline p53 variants are frequent in familial
cancer syndromes, such as LFS or in families with
hereditary breast and ovarian cancer, and surveillance
of individuals with an identified germline TP53 mutation
is highly beneficial to improve the likelihood of early
tumor detection and subsequently improved outcomes.
Therefore, there is a necessary need to have accurate
information regarding p53 variants. This challenge is
complicated by the landscape of p53 variants which is
composed predominantly of multiple missense variants
spread-out on the entire gene. Among the 2314 possible
missense variants in the coding region, 1621 (70%) have
been described in at least one tumor and among them
only 190 have interpretation in ClinVar, the leading
genomic variant database.

In the current study, we described TP53_PROF, a predic-
tive machine learning algorithm aimed to predict the LOF
of every possible missense variant in TP53. This study was
made possible by the conjunction of two factors, namely
the large number of p53 variants reported occurrences
in the literature (more than 150 000) and the publication
of three large-scale functional analysis of more than
15 000 p53 variants. The presence of variants in four
independent datasets enables defining a robust positive
training set. The fact that almost no new p53 variants are
detected (‘saturation’) supports grouping variants that
were not reported or reported only once into a negative
training set. It was therefore possible to develop a robust
original and reliable positive and negative training sets
that are the prime requisite for machine learning. The
algorithm selected for this model, GBM, uses decision
tree structures in an iterative manner to improve residual
discrepancies. GBM is considered highly efficient for tab-
ular data and is ideal for the amount of data used to train
TP53_PROF. TP53_PROF achieved high level of accuracy
of 96.5% on the independent test set. Interestingly, the
model using all features had the highest AUC on the test
set but the model using the functional features only, pro-
vided slightly better accuracy (Figure 2). While accuracy
is better oriented towards the model’s final purpose of
predicting deleteriousness, it also depends on the final

cutoff decision made during validation. This may cause
accuracy variations on the test set. AUC on the other
hand can be thought of as the expectation of accuracies
given all possible cutoffs and can therefore be considered
as a more robust estimation of performance.

TP53_PROF was validated using various independent
datasets enriched in functional variants (validated TP53
SNPs in set 41 or gnomAD) or non-functional variants
(LFS patients or ClinVar). ClinVar analysis showed that
TP53_PROF reach an accuracy of 96.3% and a sensitivity
of 95.7%. Benign and likely benign variants in ClinVar
were detected with a sensitivity of 100%. LFS database
analysis showed accuracy of 93–95.9% and the analysis
of 41 gnomAD variants showed accuracy of at least 93%.

We further validated our approach using the survival
data of TCGA. Survival of patients with missense variants
predicted as non-functional by TP53_PROF is comparable
to the survival of patients with truncating variants in
TP53. By contrast, patients with variants predicted func-
tional by TP53_PROF had longer overall survival that was
comparable to patients with no TP53 mutations. These
analyses portray a picture of a highly robust model,
with the capability of correctly identifying TP53 muta-
tions when somatic or germline, benign or pathogenic, in
healthy and in sick patients. The discrepancies presented
by the model are in almost all cases explainable by
technical limitations of the functional assays, or by the
complexity of identifying specific variants.

Although, TP53_PROF is very efficient to detect func-
tional variants such as benign SNPs included in gnomAD,
we observed a few false negatives linked to variants asso-
ciated with specific features. First, exonic splice variants,
usually localized in codons close to splice junctions, are
not readily classified. As functional assays used exoge-
nous cDNA-based expression of p53, variants associated
with nonsense-mediated mRNA decay (NMD) such as
nonsense, no stop or splice mutations will lead to random
results. We have recently shown that some of these vari-
ants can be spotted and efficiently classified by data min-
ing and expression data and that TP53 RNA expression is
lower for these variants [33]. Increasing the number of
studies that will include both genomic sequencing and
expression data will improve the detection of variants
that target quantitative and/or qualitative RNA expres-
sion.

Second, although variants localized in the DNA-
binding domain and linked directly to the transcriptional
function of p53 are efficiently classified, we noticed that
this is not the case for variants in the oligomerization
domains. It has been previously shown that the LOF of
variants in this region are more difficult to analyze. This
is the case for two well established population specific
non-functional p53 variants, i.e. p.R337H, associated with
familial pediatric adrenocortical carcinoma in Brazil
or p.G334R in hereditary breast cancer in Ashkenazi
Jews. For both cases as well as for other variants in
this domain, classical functional assays using read-
out such as growth arrest or transcriptional activities

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab524#supplementary-data
http://bib.oxfordjournals.org/
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are not efficient. Indeed, examination of functional
data from the dominant negative assay of Giacomelli
et al. [25] shows that all TP53 variants localized in the
oligomerization domain of p53 scored fully active. Refine
analysis of these variants using more sensitive and
specific assays will be needed to assess the functionality
of variants in the oligomerization domain.

Finally, we used the subset of missense variants for
which definitive prediction is given in ClinVar and com-
pared to our approach (190 variants). For our full set of
labels and predictions (training set and predicting set) the
level of accuracy was 96.32%. These numbers represent
the accuracy of our approach. ClinVar is enriched by
variants predicted to be deleterious (183/190—96.3%).
Indeed, all the discrepancies are in variants for which
ClinVar predicted non-functionality, our model predicted
functionality, and they are all in the prediction set (n = 7).

The ACMG guidelines include multiple rules for
variant classification. Among them, PS3 (Pathogenic
Strong, well-established assay, deleterious effect) and
BS3 (Benign Strong, well-established assay, no deleterious
effect) rules that are strong but challenging criteria to
define the final pathogenicity of a variant. These rules
cannot be applied to every gene due to the lack of
functional assays suitable to capture a direct readout
that can be directly linked to the pathology. Instead,
PP3 rules (pathogenic supporting, multiple lines of
computational evidence support a deleterious effect on
the gene or gene product) or BP4 (benign supporting,
multiple lines of computational evidence suggest no
impact on gene or gene product) are widely used but they
must be used with extreme caution due to their lack of
specificity. Indeed, the accuracy of our model enables a
more confident application of PP3 and BP4 rules.

A further reaching application of our model can be
to create a new Bayesian-based framework that incor-
porates the model’s prediction with family history to
provide a probability score of functionality for individ-
ual patients. Such application requires further validation
using large databases of clinical genetic consultation
that can help tune the framework and provide retrospec-
tive validation. The model can also play a role in clas-
sification of somatic mutations in TP53 for therapeutic
decision making such as for CLL patients.

Most predictive tools used to assess the effect of amino
acid substitutions on the function of a protein rely on
non-specific or indirect computational features. In the
present analysis, using various TP53 specific features, we
have been able to reach a high accuracy for the prediction
of cancer associated p53 variants. Although, as of today,
only a few genes can be so deeply interrogated, it is
likely that large-scale functional and omics analysis as
well as in deep structural studies will be more readily
available making the strategy used for the development
of TP53_PROF suitable for other genes of clinical interest.

Data Availability
UMD_TP53 variant database, 2019_R1 version, was used
for the analysis and can be downloaded from http://p53.
fr/download-the-database/. Functional activity scores
were also extracted from UMD_TP53. TP53MUTLOAD
is available at http://p53.fr/tp53-database/mutload/.
TCGA (mutations and survival) and MSKCC data were
downloaded from http://www.cbioportal.org/, updated
to October 2019. ICGC data were downloaded from
https://dcc.icgc.org/, data release 26, 17 December
2017. gnomAD TP53 variant data were extracted from
version 2.1, available at https://gnomad.broadinstitute.
org/downloads.

Computational scores were extracted from dbNSFP
version 3.5, available at https://sites.google.com/site/
jpopgen/dbNSFP?authuser=0 (Sources of the few excep-
tions are described in Supplementary Table S8 available
online at http://bib.oxfordjournals.org/). LFS cohort data
were extracted from (i) the IARC database [40] and (ii) Gao
et al. [39]. ClinVar’s p53 missense variant annotations can
be retrieved from https://www.ncbi.nlm.nih.gov/clinvar.
Source code is available at https://github.com/gilbenc/
TP53_PROF.

Key Points

• Highly accurate gene specific machine learning model
predicts the impact of all missense mutations in TP53.

• Integrating p53 specific functional assay scores and com-
putational scores as features.

• Unprecedented thorough validation and in-depth exam-
ination of model’s performances in clinical and experi-
mental context.

• Model is competitive in identifying deleteriousness (sen-
sitivity) and is far superior over other examined scores in
identifying non-deleteriousness (specificity).

• Data assembly and learning methods are generalizable
to other major cancer genes.

Supplementary Data
Supplementary data are available online at https://
academic.oup.com/bib.
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