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Abstract: A new series of 8-methoxy-2-trimethoxyphenyl-3-substituted quinazoline-4(3)-one com-
pounds were designed, synthesized, and screened for antitumor activity against three cell lines,
namely, Hela, A549, and MDA compared to docetaxel as reference drug. The molecular docking
was performed using Autodock Vina program and 20 ns molecular dynamics (MD) simulation was
performed using GROMACS 2018.1 software. Compound 6 was the most potent antitumor of the
new synthesized compounds and was evaluated as a VEGFR2 and EGFR inhibitor with (IC50, 98.1
and 106 nM respectively) compared to docetaxel (IC50, 89.3 and 56.1 nM respectively). Compounds
2, 6, 10, and 8 showed strong cytotoxic activities against the Hela cell line with IC50 of, 2.13, 2.8,
3.98, and 4.94 µM, respectively, relative to docetaxel (IC50, 9.65 µM). Compound 11 showed strong
cytotoxic activity against A549 cell line (IC50, 4.03 µM) relative to docetaxel (IC50, 10.8 µM). Whereas
compounds 6 and 9 showed strong cytotoxic activity against MDA cell line (IC50, 0.79, 3.42 µM,
respectively) as compared to docetaxel (IC50, 3.98 µM).

Keywords: synthesis; methoxy quinazoline; anticancer; docetaxel; VEGFR2; EGFR

1. Introduction

Cancer is one of the world’s most prominent health-related diseases, which makes the
search for safe and efficient anticancer compounds a major goal for researchers. Many het-
erocyclic compounds have been intensively studied to classify new anticancer agents.
Quinazoline is one of the most common groups of heterocyclic compounds used in
medicine because of its broad variety of biological activities. We are particularly in-
terested in the present work with quinazoline derivatives that have been identified as
a class of heterocyclic cancer chemotherapeutic agents with significant therapeutic ef-
fects [1,2]. For example, the effects of 2-chloro-4-anilino quinazoline derivatives as dual
inhibitors for VEPGR and EGFR [3]. Some methoxy quinazolines are active as anticancer
compounds [4]. Quinazoline-isatin conjugates as an epidermal growth factor inhibitor [5].
2-substituted mercapto-3-(3,4,5-trimethoxybenzyl)-4(3H)-quinazolinone analogues show
antitumor activity [6]. Trimethoxyanilide based on 4 (3H)-quinazolinone scaffolds as an
antitumor compound [7]. Some quinazolinone nuclei are frequently used in medicinal
chemistry [8–24]. Some substituted 2-mercapto-4(3H)-quinazolinones and 2,3-disubstitued
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4(3H)-quinazolinone derivatives work as anti-inflammatory and analgesic agents, such
as COX-1/2 inhibitory activities [9,10]. Two identical anilinoquinazoline rings with ethy-
laminoethyl linker and N-ethylaminomorpholine moiety to enhance water solubility were
synthesized and evaluated as inhibitors of epidermal growth factor receptor (EGFR) ty-
rosine kinase with IC (50) values in the low micromolar range [25]. Some dimers and
substituted amino derivatives of quinazoline were synthesized, docked into ATP bind-
ing sites of epidermal growth factor receptor (EGFR) tyrosine kinase, and evaluated as
antitumor compounds against MCF7 cells with IC50 = 0.06 µg/mL; 1.64 nmol/mL [26].
Benzofuran and indole derivatives of 4-aminoquinazoline are inhibitors of epidermal
growth factor receptor (EGFR) tyrosine kinase phosphorylation. A heterocyclic scaffold
has been found to lead to heterocyclic quinazolines with good biological activity against
a panel of EGFR-positive cell lines, such as the human lung cancer (A549), epithelial col-
orectal adenocarcinoma (Caco-2), hepatocellular carcinoma (C3A), breast adenocarcinoma
(MCF-7), and cervical cancer (Hela) cell lines with reduced side effects [27].

Quinazoline has become an important pharmacophore for anticancer research since
the recent FDA approval of some quinazoline derivatives as anticancer drugs, such as
Raltitrexed (TomudexTM) and nolatrexed (thymitaqTM) as shown in Figure 1, as well as
gefitinib (IressaTM), lapatinib (TykerbTM also known as GW-572016), Vandetanib (Zacti-
maTM), afatinib (GilotrifTM), and erlotinib (TarcevaTM).
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Figure 1. Chemical structure for some quinazoline derivatives used as anticancer drugs, such as nolatrexed and Raltitrexed.

In our present study, we designed a number of quinazoline derivatives bearing
trimethoxy phenyl moiety in position 2 and insertion of methoxy at position 8 to give
different electronic, steric, and lipophilic characters that might help improve the antitumor
activity of the newly designed scaffolds. In addition, we kept the substitution at position 3
in an attempt to get optimized quinazoline derivatives with promising anticancer activity
(Figure 2).
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Figure 2. Reported quinazoline with GI50 µg/mL [15] and designed quinazoline derivatives as
antitumor compounds.

2. Results and Discussion
2.1. Chemistry

The synthesis of the target compounds is depicted in scheme 1. The starting material
8-methoy-2-trimethoxyphenyl-4H-benzo[d](1,3)oxazin-4-one (3) was prepared according to
a reported procedure [28] by allowing N-(trimethoxybenzoyl)-3-methoxyanthranilic acid
to boil with acetic anhydride, then compound 3 allowed was fused with hydrazine to get
3-amino-8-methoxy-2-trimethoxyphenylquanazoline-4(3H)-one (4). IR spectra of compound
4 showed absorption bands at 3221.35, 3387.83, and 1655.19 cm−1 due to stretching vibration
of the NH2 group and CO, respectively, and 1H NMR led to the appearance of a singlet
of two protons for the NH2 group at 5.842. Compound 3 reacted with formamide to give
8-methoxy-2-trimethoxyphenylquanazoline-4(3H)-one (5), the latter compound showed a
stretching band for CO at 1655.67 cm−1, and 1H NMR showed a singlet peak at 8.292 ppm
for the NH group. Compound 3 reacted with ammonia to create benzamide derivative 6,
IR of compound 6 showed stretching vibration bands for NH2 and NH at 3193.13, 3367.91,
and 3389.62 and stretching bands at 1672.66 and 1663.23 for two CO groups. Moreover the
1H NMR data showed a singlet peak for the NH2 group at 6.069 ppm and a singlet peak at
9.782 ppm for NH moiety. Compound 3 reacted with hydrazine hydrate in the presence
of ethanol to get hydrazide derivative 7. Compound 7 showed characteristic CO bands of
diamide at 1670.63 and 1655.19 and NH, NH2 absorption at 3376.45, 3382.21, 3175.43, and
3295.34 cm−1, in addition to an 1H NMR singlet peak at 4.479 ppm for NH2 and two singlets
for NH of diamide at 10.134 and 10.167 ppm. Compound 7 reacted with benzene sulphonyl
chloride, which afforded compound 8 with absorption bands of NH groups at 3366.45,
3372.52, and 3385.43 cm−1 and CO band at 1670.65 and 1655.37 cm−1 on the IR spectrum,
as well as singlets at 8.5497 and 12.615 ppm for NH protons in 1H NMR. Additionally,
compound 4 reacted with benzene sulphonyl chloride to give compound 9 with absorption
bands at 1655.82 and 3385.56 cm−1 due to Co and NH, respectively, beside the 1H NMR
singlet for NH at 11.885 ppm. Moreover, compound 3 refluxed with methyl amine to give
3-methyl-8-methoxy-2-trimethoxyphenylquanazoline-4(3H)-one (10), the latter compound
was confirmed by the presence of the CH3 group at 17.08 and 2.637 ppm in 13C NMR and
1H NMR, respectively. Compound 3 reacted with 3, 4, 5-trimethoxy aniline to create 3-(3,
4, 5-trimethoxyphenyl)-8-methoxy-2-trimethoxyphenylquanazoline-4(3H)-one (11), which
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was confirmed by the presence of singlet peaks at 56.18, 59.56, and 60.23 ppm and 3.624,
3.768, and 3.964 ppm due to one methoxy group and two trimethoxy groups in 13C NMR
and 1H NMR spectrum, respectively (Scheme 1).
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2.2. VEGFR2 and EGFR Inhibitory Activity

The synthesized compounds were evaluated for anticancer activity by adapting a
reported procedure [29–33] using two enzymes, VEGFR2 and EGFR, as well as three cell
lines. The inhibitory activity for VEGFR2 and EGFR was assessed for the most active one



Molecules 2021, 26, 2992 5 of 14

(compound 6) and the results are reported as IC50 values. Compound No. 6 proved to have
almost 91% inhibitory activity for enzyme VEGFR2 compared to the inhibitory activity
of the reference drug, with IC50 values 98.1 to compound 6 and 89.3 for docetaxel for the
positive control. Meanwhile, the inhibitory activity for enzyme EGFR was almost 53%,
with IC50 value 106 compared to IC 50 value 56.1 for docetaxel as reference drug (Table 1).

Table 1. IC50 [nM] values for the cytotoxic effect of compound 6 and docetaxel on enzymes VEGFR2
and EGFR.

Compound
Results

VEGFR2 EGFR

Compound No. Code MW IC50nM IC50nM
6 M6 360 98.1 ± 2.93 106 ± 2.22

Reference Docetaxel 807.88 89.3 ± 2.67 56.1 ± 1.17

The synthesized compounds were also subjected to anticancer assay using three cell
line panels. The first cell line was Hela cells using docetaxel as positive control and the
results were recorded as IC50 values. Compounds 2, 6, 10, and 8 proved to be the most
active Hela cells inhibitors, with IC50 values indicating that they are more potent than
docetaxel, with scores of IC50, 2.13, 2.8, 3.98, 4.94 µM, respectively, and 3-methoxy-N-
(trimethoxyphenyl) anthranilic acid was the most potent of them as a Hela inhibitor, with
almost fivefold inhibitory activity. Compounds 9, 11, and 5 proved to have good inhibitory
activity, with IC50 values of 11.70, 12.00, and 12.90 µM, while compounds 4 and 3 had
moderate activity as Hela cell inhibitors, with IC50 values 29.80 and 66.50 as compared with
that of docetaxel IC50, 9.65 µM (Table 2 and Figure 3). The second one was A549, using
docetaxel as positive control, and the results were determined as IC50 values. 8-methoxy-2-
trimethoxymethyl-3-trimethoxyphenyl quanazoline-4(3H)-one (11) proved to be the most
potent one of them, with almost two-and-a-half-fold more than the reference drug, with an
IC50 value of 4.03 µM. Compounds 10, 8, 4, and 9 showed good A549 inhibitory activity,
with IC50 values 12.30, 13.00, 18.00, and 19.90 µM, respectively. Compounds 5, 2, 3, and
7 showed moderate A549 inhibitory activity, with IC50 values of 26.30, 29.70, 43.60, and
46.30 µM, respectively. In addition, compound 6 proved to be the least active one, with
IC50, 81.00 µM in comparison to docetaxel (IC50, 10.8 µM) (Table 2 and Figure 3).

Table 2. IC50 [µM] values of compounds 2–11 and docetaxel.

Compound No.
Group M Cytotoxicity IC50 µM

Code MW Hela A549 MDA

4 M-1 357 29.8 ± 0.78 18 ± 0.5 4.12 ± 0.1
3 M-2 343 66.5 ± 1.74 43.6 ± 1.1 17.4 ± 0.5

11 M-3 506 12.0 ± 0.31 4.03 ± 0.1 7.06 ± 0.2
2 M-4 361 2.13 ± 0.06 29.7 ± 0.8 9.24 ± 0.2
5 M-5 342 12.9 ± 0.34 26.3 ± 0.7 4.39 ± 0.1
6 M-6 360 2.8 ± 0.07 81 ± 2.1 0.79 ± 0.04
7 M-7 375 18.7 ± 0.49 46.3 ± 1.2 9.0 ± 0.2
8 M-8 515 4.94 ± 0.13 13 ± 0.3 11.7 ± 0.3
9 M-9 497 11.7 ± 0.31 19.9 ± 0.5 3.42 ± 0.1

10 M-10 356 3.98 ± 0.1 12.3 ± 0.3 7.77 ± 0.2
Ref. Docetaxel 807.8 9.65 ± 0.2 10.8 ± 0.23 3.98 ± 0.08

The third cell line was MDA cells using a positive control and the results are reported
as IC50 values. Compounds 6 and 9 proved to be the ones that were more potent than
the positive control, with IC50 values of 0.79 and 3.42 µM, respectively, and compound
6 (3-methoxy-2-(trimethoxybenzamido) benzamide) was the most active of all as MDA
inhibitor, with a fourfold higher inhibitory activity compared to the reference drug. Re-
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spectively, compounds 4 and 5 had good inhibitory activity with MDA cells with IC50,
4.12 and 4.39 µM. Compounds 11, 7, 2, and 8 showed moderate inhibitory activity, with
IC50 values 7.06, 9.00, 9.24, and 11.70 µM, respectively. In addition, compound 3 showed
the least activity, with an IC50 value of 17.40 µM as compared with docetaxel IC50, 3.98 µM.
(Table 2 and Figure 3).
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2.3. Molecular Docking Analysis

In order to get an insight into the mechanism of interaction between M6 and EGFR
and VEGFR2 tyrosine kinases, a molecular docking analysis was performed using doc-
etaxel and co-crystalized ligands as references. The docking of M6 into the ATP pocket
of EGFRL858R/T790M indicates that M6 adapted a binding mode similar to docetaxel as
well as the co-crystal ligand; compound 1 had a docking energy score of −7.4 kcal/mol
(Figure 4A). Compound 1 is a potent non-covalent inhibitor of EGFR del19 T790M C797S, with
an IC50 = 790 nM [34].
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Figure 4. The binding of M6 to EGFR L858R/T790M tyrosine kinase (PDB ID: 6S9B). (A) Surface
representation for the binding mode of M6 (green), docetaxel (pink), and co-crystallized ligand
compound 1 (white) to EGFR tyrosine kinase. Ribbon representation for the binding interaction of
(B) M6 (green) and (C) docetaxel (pink) with EGFR tyrosine kinase. Hydrogen bonds are shown in
green dashed lines.
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M6 was able to form a hydrogen bond between the oxygen atom of methoxy-group and
T854 within the hinge region and hydrophobic interaction with side chains of F723, L718,
and L844 (Figure 4B). Notably, a mutation of L718 within the P-loop has been reported as a
mutation conferring resistance to osimertinib [35]. It was also in close proximity to catalytic
lysine residue, K745. In contrast, the docetaxel was involved in two hydrogen bonds, with
the nitrogen of N842 and oxygen of D800, as well as several hydrophobic interactions with
L844, G796, and L718 (Figure 4C). To confirm the docking results, M6–EGFR complex was
subjected to a 20 ns MD simulation to further analyze the molecular mechanism of the
ligand–protein interaction. The backbone RMSD of the M6–EGFR complex was calculated
to predict the M6–EGFR complex stability over time. As shown in Figure 4A, the complex
reached equilibration after ~1.5 ns with a normal fluctuation pattern for the rest of the time
(~18.5 ns) between 0.2 and 0.3 Å, indicating a stable dynamic behavior (Figure 5A). The
hydrogen bonds are major contributors to the stability of the binding between the protein
and the ligand. M6 was found to form up to three hydrogen bonds with the active site of
EGFR over the simulation time (Figure 5B).
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Similarly, the docking of M6 against the wild type VEGFR2 was performed using
sorafenib as a reference. Sorafenib is a nonselective potent ATP-competitive inhibitor
of VEGFR2 in which IC50 = 2.3 nM [36]. The results indicate that M6 binds to the ATP
binding pocket with a docking energy score of −7.3 kcal/mol. This compound binds to the
conserved regions of the ATP site, similarly to docetaxel as well as the co-crystalized ligand,
sorafenib (Figure 6A). However, unlike M6, docetaxel was able to bind the regulatory
domain pocket (RDP), as was the sorafenib, as both molecules have larger substituents [37].

In term of interactions, M6 was involved in two hydrogen bonds between the nitrogen
and oxygen atoms within the benzamide moiety and E885 of the αC helix; as well as with
the D1046 residue in the DFG region of the VEGFR2, respectively; and in hydrophobic
bonds with the side chain of L1019 (Figure 6B). On the other hand, docetaxel made four
hydrogen bonds with V916, L1025, D1046, AND L1049, as well as hydrophobic interactions
with K868, L882, G885 L889, I892, and H1026 (Figure 6C). The stability of the M6-VEGFR2
complex was confirmed by MD simulation. The backbone RMSD of the complex showed a
normal dynamic behavior with a fluctuation range between 0.1 and 0.2 Å over the 20 ns
simulation time. Additionally, this complex formed up to three stable hydrogen bonds
over simulation period (Figure 7).
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The MD summation results suggest a stable binding of M6 within the ATP binding
pocket of EGFR and VEGFR2 due to the stable hydrogen bonds formed with the proteins.
These results are in line with the docking and in vitro results supporting the notion that
this compound might act as a dual EGFR and VEGFR2 tyrosine kinase inhibitor.

3. Materials and Methods
3.1. Chemistry

All melting points were determined in open capillaries and are uncorrected. Micro-
analyses were conducted on a Perkin–Elmer 2408 analyzer (Perkin Elmer, USA). Thin layer
chromatography was performed on Merck 5 × 10 cm plates. Samples were percolated with
silica gel GF254 using (EtOAc, hexane 1:10) as the solvent system and a short wavelength
UV light for visualization. All fine chemicals and reagents used were purchased from
(Aldrich chemical Co. U.S.A.) 1 HNMR samples were recorded on a Bruker 500 MHz
spectrophotometer (Bruker AXS Inc., Switzerland). Chemical shifts are in δ (ppm) val-
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ues downfield from tetramethyl siloxane as an internal standard. The mass spectra were
measured on Waters Micromass (Water AQUITY UPLC System LCT Premier XE Serial no:
KE468, USA).

3-methoxy-N-(trimethoxyphenyl) anthranilic acid (2)

A mixture of 3-methyl anthranilic acid (1, 2.37 g, 0.01 mol) and 3,4,5-trimethoxybenzoyl
chloride (0.01 mol) in dry pyridine (50 mL) was heated under reflux for 12 h, then cooled
and poured onto dilute HCL. The separated solid was filtered, washed with water, dried,
and recrystallized from MeOH; 1H NMR (500 MHz, DMSO-d6); δ 3.732 (s, 3H, phenyl-
OCH3), 3.85 (s, 9H, phenyl-OCH3), 7.22 (d, 1H, J = 6.0 Hz, phenyl-H), 7.43 (d, 2H,
J = 5.5 Hz, phenyl-H), 7.506 (d, H, J = 8.5 Hz, quinazoline-H), 7.80–7.81 (d, 1H, J = 5.5 Hz,
quinazoline-H), 7.82–7.84 (d, 1H, J = 6.5 Hz, quinazoline-H), 7.96 (s, 2H, phenyl-H), 9.79 (s,
1H, NHCO), 10.17 (s, 1H, -COOH); 13C NMR (125 MHz, DMSO-d6) d; 56.08, 60.12, 105.21,
114.86, 121.25, 125.73, 126.84, 129.48, 130.35, 139.89, 152.41, 154.74, 164.60, 167.25. MS (m/z):
[M+1]: 362.1215.

8-methoxy-2-trimethoxyphenyl-4H-benzo[d](1,3)oxazin-4-one (3)

Cyclization of N-(trimethoxybenzoyl)-3-methoxyanthranilic acid (2, 2.37 g, 0.01 mol)
was performed by boiling in (50 mL) acetic anhydride, after which it was cooled and
poured onto water. The separated solid was filtered, dried, and recrystallized from MeOH;
yield, 83%; mp: 182–184 ◦C; IR (KBr) ν max/cm−1 1655.11 (CO); 1H NMR (500 MHz,
DMSO-d6); δ 3.631 (s, 3H, phenyl-OCH3), 3.73 (s, 9H, phenyl-OCH3), 7.21–7.25 (m, 3H,
quinazoline-H),) 7.26 (s, 2H, phenyl-H), 9.81 (s, 1H, -CONH); 13C NMR (125 MHz, DMSO-
d6) δ 56.08, 60.12, 105.21, 114.86, 121.25, 125.73, 126.84, 129.48, 130.35, 139.89, 152.41, 154.74,
164.60, 167.25. MS (m/z): [M+1]: 344.1112.

3-amino-8-methoxy-2-trimethoxyphenylquanazoline-4(3H)-one (4)

A mixture of 4H-1,3-benzoxazin-4-one derivative (3, 3.43 g, 0.01 mol) and hydrazine
(15 mL) was fused for 6 h, poured in water, filtered, dried, and recrystallized from MeOH;
yield, 81%; mp: 182–184 ◦C; IR (KBr) νmax/cm−1 3221.35, 3387.83 (NH2); 1655.19 (CO);
1H NMR (500 MHz, DMSO-d6), 4: δ 5.842 (s, 2H, -NH2), 3.617 (s, 3H, phenyl-OCH3),
3.683 (s, 9H, phenyl-OCH3), 5.841 (s, 2H, -NH2), 7.013 (s, 2H, phenyl-H), 7.300–7.316
(d, 1H, J = 8.0 Hz, quinolone-H), 7.399–7.431 (m, 1H, quinazoline-H), 7.585–7.601 (d, 1H,
J = 8.0 Hz, quinolone-H). 13C NMR (125 MHz, DMSO-d6) δ 55.62.56.06, 56.12, 60.12, 105.13,
115.21, 116.85, 121.78, 126.76, 127.36, 139.17, 140.00, 150.34, 152.79, 164.55, 162.26. MS (m/z):
[M+1]: 358.1378.

8-methoxy-2-trimethoxyphenylquanazoline-4(3H)-one (5)

A mixture of 4H-1,3-Benzoxazin-4-one derivative (3, 3.43 g, 0.01 mol) and formamide
(30 mL) was heated under reflux for 16 h. On cooling, the separated solid was filtered,
washed with water, and recrystallized from EtOH; yield, 78%; mp: 242–244 ◦C; IR (KBr)
νmax/cm−1 1655.67 (CO); 1H NMR (500 MHz, DMSO-d6), 5: δ 2.488 (s, 3H, phenyl-CH3),
7.330 (d, 1H, J = 7.5 Hz, phenyl-H), 7.489 (d, 2H, J = 5.5 Hz, phenyl-H) 7.583 (d, 1H, J = 7.5 Hz,
quinazoline-H), 7.758 (d, 1H, J = 7.5 Hz, quinazoline-H), 7.865 (d, 1H, J = 7.5 Hz, quinazoline-
H), 8.083 (s, 1H, phenyl-H) 8.132 (s, H, phenyl-H) 8.292 (s, 1H, quinazoline-NH), 13C NMR
(125 MHz, DMSO-d6) δ 16.53, 125.23, 125.43, 125.57, 128.03, 128.46, 128.68, 129.25, 130.83,
132.17, 133.65, 138.23, 152.28, 164.43, 170.12. MS (m/z): [M+1]: 343.1274.

3-methoxy-2-(trimethoxybenzamido) benzamide (6)

A mixture of 4H-1,3-benzoxazin-4-one derivative (3, 3.43 g, 0.01 mol) and ammonia
solution (20 mL) was heated under reflux for 12 h. It was then poured onto water, filtered,
dried, and recrystallized from dioxane; yield, 92%; mp: 132–134 ◦C; IR (KBr) νmax/cm−1

3193.13, 3367.91(NH2), 3389.62 (NH), 1672.66, 1663.23 (CO); 1H NMR (500 MHz, DMSO-d6),
6: δ 3.760 (s, 3H, phenyl-OCH3), 3.860 (s, 9H, phenyl-OCH3), 6.069(s, 2H, -NH2), 6.478–6.509
(m, 1H, phenyl-H), 6.846 (d, 1H, J = 15.0 Hz, phenyl-H), 7.094 (d, 1H, J = 8.0 Hz, phenyl-H),
7.027–7.284 (m, 2H, phenyl-H) 9.782 (s, 1H, CO-NH). 13C NMR (125 MHz, DMSO-d6) δ
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55.44, 55.85, 55.90, 59.99, 119.25, 122.66, 128.36, 138.47, 139.24, 139.59, 146.79, 147.40, 152.54,
165.40, 165.86, 168.41. MS (m/z): [M-1]: 361.1216.

3-methoxy-2-(trimethoxybenzamido)-benzoylhydrazide (7)

A mixture of 4H-1,3-benzoxazin-4-one derivative (3, 3.43 g, 0.01 mol) and hydrazine
hydrate (85% 15 mL) in EtOH (30 mL) was heated under reflux for 2 h. The obtained solid
was filtered, washed with water, dried, and recrystallized from EtOH; yield, 83%; mp:
195–197 ◦C; IR (KBr) νmax/cm−1 3175.43, 3295.34,{NH2), 3376.45, 3382.21, (NH); 1670.63,
1655.19 (CO); 1H NMR (500 MHz, DMSO-d6), 7: δ 3.747 (s, 3H, phenyl-OCH3), 3.881 (s, 9H,
phenyl-OCH3), 4.479 (s, 2H, -NH2), 7.051 (d, 1H, J 7.5 Hz, phenyl-H), 7.118 (d, 1H, J = 8.0 Hz,
phenyl-H), 7.285–7.300 (d, 1H, J = 7.5 Hz, phenyl-H) 7.316–7.384 (m, 2H, phenyl-H) 10.134
(s, 1H, -CONHNH2), 10.167 (s, 1H, -NHCO). 13C NMR (125 MHz, DMSOd6) δ 56.03, 56.24,
60.11, 59.99, 105.33, 113.37, 120.42, 123.51, 127.89, 129.10, 134.73, 139.87, 152.45, 155.49, 164.79,
165.52. MS (m/z): [M−1]: 374.1349.

3-methoxy-2-(trimethoxybenzamido)-N-[benzenesulphonyl]benzoylhydrazide (8)

A mixture of 3-methoxy-2-(trimethoxybenzamido)-benzoylhydrazide (7, 0.01 mol,
3.75 g) and benzene sulphonyl chloride (0.01 mol, 1.76 g) in 15 mL dioxane containing triethy-
lamine (0.02 mol, 2.02 g) was refluxed for 5 h. The reaction mixture was cooled down and
the solvent was removed under reduced pressure; the recovered solid was filtered, washed
with water, dried, and recrystallized from ethanol; yield, 81%; mp: 263–265 ◦C; IR (KBr)
νmax/cm−1 3366.45, 3372.52, 3385.43 (NH), 1670.65, 1655.37 (CO); 1H NMR (500 MHz,
DMSO-d6), 8: δ 3.629.(s, 3H, phenyl-OCH3), 3.942 (s, 9H, phenyl-OCH3), 7.281 (d, 1H,
J = 5.0 Hz, phenyl-H),.7.319 (d, 2H, J = 8.0 Hz, phenyl-H), 7.359–7.374 (m, 3H, quinazoline-H),
7.390–7.441 (m, 2H, phenyl-H), 7.566 (2, 2H, J = 7.5 Hz, phenyl-H), 8.5497 (s, 1H, -CONHNH),
12.615 (s, 2H, -CONH). 13C NMR (125 MHz, DMSO-d6) δ 56.19.56.28, 60.18, 105.20, 119.38,
116.85, 121.78, 126.76, 127.36, 127.80, 139.12, 140.08, 150.42, 152.67, 164.36, 167.34. MS (m/z):
[M−1]: 514.1275.

3-benzenesulfamoyl-8-methoxy-2-trimethoxyphenylquanazoline-4(3H)-one (9)

A mixture of 3-amino-8-methoxy-2-trimethoxyphenylquanazoline-4(3H)-one (4, 0.01 mol,
3.57 g) and benzene sulphonyl chloride (0.01 mol, 1.76 g) in 15 mL dioxane containing
triethylamine (0.02 mol, 2.02 g) was refluxed for 6 h. The reaction mixture was cooled down
and the solvent was removed under reduced pressure. The recovered solid was filtered,
washed with water, dried, and recrystallized from ethanol; yield, 80%; mp: 244–246 ◦C;
IR (KBr) νmax/cm−1 3385.56 (NH), 1655.82 (CO); 1H NMR (500 MHz, DMSO-d6) 9: δ 187
3.632 (s, 3H, phenyl-OCH3), 3.748 (s, 9H, phenyl-OCH3), 6.7288–7.860 (m, 2H, phenyl-H),
7.224–7.290 (m, 3H, phenyl-H), 7.368–7.459 (m, 3H, phenyl-H), 7.480–7.537 (m, 3H, phenyl-H)
11.885 (s, 1H, NHSO2). 13C NMR (125 MHz, DMSO-d6) δ 56.15, 59.93, 107.04, 116.06, 117.31,
121.60, 126.11, 128.34, 132.61, 135.99, 138.28, 139.85, 151.63, 154.16, 154.43, 160.06. MS (m/z):
[M−1]: 496.1171.

3-methyl-8-methoxy-2-trimethoxyphenylquanazoline-4(3H)-one (10)

A mixture of 4H-1,3-benzoxazin-4-one derivative (3, 3.43 g, 0.01 mol) and methyl
amine (0.096 g, 0.003 mol) in dry pyridine (15 mL) was heated under reflux for 18 h. The
solvent was evaporated under reduced pressure. The obtained solid was filtered, washed
with diluted HCl, and crystallized from glacial acetic acid; yield, 85%; mp: 218–220 ◦C; IR
(KBr) νmax/cm−1 1655.73 (CO); 1H NMR (500 MHz, DMSO-d6), 10: δ 2.637 (s, 3H,-CH3),
3.913 (s, 3H, phenyl-OCH3), 3.929 (s, 9H, phenyl-OCH3), 7.358 (d, 1H, J = 8.5 Hz, phenyl-H),
7.357–7.388 (m, 1H, quinazoline-H), 7.518 (s, 2H, phenyl-H), 7.641–7.656 (d, 1H, J = 7.5 Hz,
quinazoline-H), 8.045 (d, 1H, J = 7.5 Hz, quinazoline-H). 13C NMR (125 MHz, DMSO-d6) δ
17.08, 56.31, 61.04, 59.99, 105.31, 116.59, 125.56, 126.19, 127.56, 135.97, 137.39, 141.87, 145.22,
153.23, 155.48, 160.16. MS (m/z): [M+1]: 357.1083.

8-methoxy-2-trimethoxymethyl-3-trimethoxyphenyl quanazoline-4(3H)-one (11)

A mixture of 4H-1,3-benzoxazin-4-one derivative (3, 3.43 g, 0.01mol) and 3, 4, 5-
trimethoxy aniline (1.89 g, 0.01 mol) in dry pyridine (20 mL) was heated under reflux
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for 16 h. The solvent was evaporated under reduced pressure. The obtained solid was
filtered, washed with diluted HCl, and crystallized from glacial acetic acid; yield, 83%; mp:
237–239 ◦C; IR (KBr) νmax/cm−1 1655.84 (CO); 1H NMR (500 MHz, DMSO-d6), 11: δ 3.624
(s, 3H, phenyl-OCH3), 3.768 (s, 9H, phenyl-OCH3), 3.964 (s, 9H, phenyl-OCH3), 7.103
(s, 2H, phenyl-H), 7.169 (s, 2H, phenyl-H) 7.248 (d, 1H, J = 8.5 Hz, quinazoline-H), 7.314
(d, 1H, J = 7.5 Hz, quinazoline-H), 7.429–7.445 (d, 1H, J = 8.0 Hz, quinazoline-H). 13C NMR
(125 MHz, DMSO-d6) δ.56.18, 59.56, 60.23, 105.06, 119.63, 125.65, 126.05, 127.12, 129.32,129.65,
129.68, 129.97, 134.13, 134.34, 135.67, 145.96, 164.43, 165.34. MS (m/z): [M+1]: 509.1467.

3.2. Molecular Docking

The molecular docking was performed using Autodock Vina program [38]. The crystal
structures of proteins (PDB code 6S9B for EGFR and 4ASD for VEGFR2) were prepared
by eliminating unwanted co-crystalized ligands and water molecules using Discovery
Studio Visualizer (Accelrys, USA). AutoDock Tools was employed to prepare the input
pdbqt files for proteins and ligands and to set the size and the center of the grid box. The
size of EGFR active site was set at 14 × 18 × 16 Å coordinates in x, y, and z dimensions
and centered to (x = −51.787, y = 21.484, z= −0.026) using 1000 Å spacing. The size of
VEGFR2 active site was set at 20 × 20 × 20 Å coordinates in x, y, and z dimensions and
centered to (x = −23.756, y = −1.152, z = −11.701) using 1000 Å spacing. PyMol [37] and
Discovery Studio Visualizer were used to analyze the binding mode and interaction of
ligands with proteins.

3.3. Molecular Dynamic Simulation

All atom 20 ns molecular dynamics (MD) simulations was performed using GRO-
MACS 2018.1 software [39]. OPLS-AA/L force field was used to generate the topology of
proteins [40]. The topology and parameter of ligands were generated by the Swissparam
server (available at http://www.swissparam.ch/, access on 17 May 2021) [41]. The MD
simulations were performed using the previously reported method [42]. Briefly, the system
was solvated in cubic box with TIP3P as a water model followed by adding counter ions
to neutralize the system. Periodic boundary conditions were used during MD simulation.
Energy minimization of system was performed using steepest descent algorithm with toler-
ance value of 1000 kJ mol−1 nm−1. The system was then equilibrated using NVT and NPT
ensembles for 100 ps. Finally, 20 ns production MD was performed for the system, with
trajectories generated every 2 femtoseconds (fs) and snapshots saved every 2 picoseconds
(PS). Standard analysis was applied to calculate the root mean square deviation (RMSD)
and hydrogen bond formation over the simulation time. Standard analysis was applied to
calculate the root mean square deviation (RMSD) and hydrogen bond formation over the
simulation time using gmx rms and gmx hbond, respectively.

3.4. Antitumor Screening

A primary anticancer assay was performed for two enzymes VEGFR2 and EGFR and
3 human tumor cell line panels, Hela, A549, and MDA, which are related to some neoplastic
diseases, like cervical, lung, and breast carcinoma, in accordance with the protocol of the
Drug Evaluation Branch, National Cancer Institute, Bethesda, MD [29–33].

4. Conclusions

A new series of 8-methoxy-2-trimethoxyphenyl-3-substituted quinazoline-4(3H)-one
was synthesized and assessed for antitumor activity against three cell line panels, HeLa,
A549, and MDA, using docetaxel as a reference drug. The most potent antitumor activity
was found in compound 6, assessed as a VEGFR2 and EGFR enzyme inhibitor, with (IC50,
98.1 and 106 nM, respectively) relative to docetaxel (IC50, 89.3 and 56.1 nM, respectively)
as reference drug. The molecular docking and 20 ns molecular dynamics (MD) simulation
results suggest a stable binding of M1–6 within the ATP binding pocket of EGFR and
VEGFR2 due to the stable hydrogen bonds formed with the proteins. That makes the results

http://www.swissparam.ch/
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in line with the docking and in vitro results, supporting the notion that this compound
might act as a dual EGFR and VEGFR2 tyrosine kinase inhibitor. Strong cytotoxic activity
was shown for compounds 2, 6, 10, and 8 against Hela cell line with IC50 values of, 2.13,
2.8, 3.98, and 4.94 µM, respectively compared to docetaxel (IC50, 9.65 µM). Strong cytotoxic
activity was shown for compound 11 against A549 cell line (IC50, 4.03 µM) in comparison
to docetaxel (IC50, 10.8 µM). A strong cytotoxic activity was shown for compounds 6 and
9 against MDA cell line (IC50, 0.79 and 3.42 µM, respectively) relative to docetaxel (IC50,
3.98 µM).
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