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Introduction
Originally identified from human gastric duodenal and jejunal 
mucosal isolates,1 xenin, a naturally occurring 25-amino acid 
peptide, is synthesised from its 35-amino acid (aa) precursor 
pro-xenin.2-4 Interestingly, all 35-aa residues of yeast and mam-
malian alpha coat protein (COPA) are identical to that of pro-
xenin.3 Biologically active xenin-25 (otherwise termed xenin) 
is then released following the action of pepsin on pro-xenin.5,6 
Xenin has long been recognised as the human equivalent of the 
amphibian peptide xenopsin.7 Subsequent studies following on 
from original work by Feurle et  al1 that evidenced xenin in 
human gastric mucosa, demonstrate that xenin can be further 
extracted from the gut of various other species including dog, 
rabbit, rat and pig.6,8 In keeping with the view that the gut 
harbours numerous important regulatory peptide hormones, 
the highest concentrations of xenin are found within the gas-
trointestinal system.8 In this regard, xenin is synthesised and 
secreted into the circulation from a subpopulation of chro-
mogranin A-positive enteroendocrine K-cells,9 along with the 
incretin hormone, GIP, in response to food ingestion. However, 
Hamscher et  al8 also identified xenin in other key organs in 
dogs, including hypothalamus, liver, kidney, heart, pancreas, 
testes and skin. More recent studies have also identified xenin 
immunoreactivity within the endocrine pancreas,10 suggesting 
local production and biological activity in this organ.

Function, Potential Mechanism of Action and 
Therapeutic Application of Xenin
Xenin possesses numerous important biological actions that 
have been established in various animal models, (see Figure 1; 

Table 1) which have previously been reviewed in depth.4,6 
Briefly, key biological actions of xenin include control of energy 
balance and gastric transit,1,6,11,12 delay of gastric emptying in 
humans,13 appetite suppression,6,13-16 as well as regulating pan-
creatic exocrine and endocrine function.1,4,6,9,16-22 Xenin has 
also been shown to play a role in regulating normal bone physi-
ology, potentially through indirect neural effects.23 Studies 
have also clearly revealed that xenin can potentiate the insulin-
releasing capabilities of GIP (Figure 2), the incretin hormone 
co-secreted with xenin from intestinal K-cells,19,21,24-26 high-
lighting favourable attributes for the treatment of diabetes. 
Despite this established biological profile, a specific xenin 
receptor has yet to be identified. There is a suggestion that 
aspects of the biological actions of xenin may be mediated 
through activation of the neurotensin receptor, due to struc-
tural similarities between the 2 peptides.27 However, effects of 
xenin independent of neurotensin receptor activation have 
been demonstrated,28 highlighting the need for further detailed 
studies in this area. Finally, although there is no direct evidence 
for xenin induced benefits in type 1 diabetes mellitus, reduction 
of beta-cell apoptosis10 alongside positive actions on islet cell 
transdifferentiation,29 could be suggestive of positive effects of 
xenin in this disease state.

GIP potentiation

Resistance to the biological actions of GIP is a hallmark of 
type 2 diabetes mellitus, with the GIP-mediated incretin effect 
being severely diminished in people with diabetes (Figure 2).34 
However, despite the well-known importance of the incretin 
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Figure 1. Representation of the main biological actions of xenin. The impact of xenin on adipose tissue, brain, pancreas and gastrointestinal tract are 

considered.

Table 1. Summary of evidence to support the main biological actions of xenin represented in Figure 1.

SPECIES TREATMENT MAIN oUTCoMES REFERENCES

Gastrointestinal actions

Rodent Experimental design
 •  Dunken-hartley guinea pigs
•  Maximal efficacy of xenin-25 – 10−6 M

 •  In the jejunum

°   Small relaxation followed 
by a large contraction

 •  In the colon

°  Myokinetic relaxation effect

Feurle et al30

Rodent Experimental design
•  Xenin-25 (1 μM) at 15-20 min intervals

 •  Relaxation of rat ileum Clemens et al27

Human Experimental design
 •   Constant intravenous infusions: 0-300 min
 •   Infusion rates

°  Xenin @ 4 pmol/kg infusion

° Xenin @ 12 pmol/kg – administered at the same relative flow 
rates as above

 • Delay of gastric emptying in 
humans with and without 
T2DM

 •  Reduction in postprandial 
glucose levels

Chowdhury et al13

Anorexigenic effects

Chick Experimental design
  Central effects on feeding:

 •   Intracerebroventricular (ICV) injection of 0.75, 1.5 or 3.0 μg 
xenin.

  Peripheral effects on feeding:
 •   Intraperitoneal injection of avian saline, 0.2, 2.0 or 20.0 μg 

xenin dissolved in in 180 min fasted chicks
  Gastrointestinal transit rate:

 •   Non-fasted chicks received the same ICV treatments as 
above.

 •   Immediately after injection, chick was gavaged with feed 
slurry at a mass of 4.0% body weight

 •  Anorexigenic actions and 
delay gastrointestinal transit 
rate in chicks

Cline et al11

(Continued)
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SPECIES TREATMENT MAIN oUTCoMES REFERENCES

Rodent Experimental design
•   Fasted (16 h) mice re-fed with pre-weighed food pellet for 1 h
•   Mice then given intraperitoneal injection of saline, xenin (50 μg/g 

bw) or urocortin (3 nmol/mouse)
•   Rate of gastric emptying was calculated as follows: Gastric 

emptying (%) = {1 − (wet weight of food recovered from the 
stomach/wet weight of food intake)} × 10012

•   The effect of xenin on food intake was examined in ad libitum–fed 
wild-type mice. Mice were injected intraperitoneally with xenin 
(50 μg/g bw) or saline and cumulative food intake was measured 
1, 2, 4, 6, 8, 12, 18 and 24 h after injection15

•   Mice were fasted for 12  h before subcutaneous injection of 50, 
100 or 500  nmol/kg xenin. Mice were then allowed free access to 
normal chow. Cumulative food intake was measured at 30, 60, 60 
and 120 min post injection18

•   Reduction of gastric emptying 
by 93% and induction of 
satiety

Kim and Mizuno,12 
Alexiou et al,14 
Leckstrom et al,15 
Taylor et al,18 
Cooke et al,31 and 
Bhavya et al32

Adipose Tissue

Rodent Experimental design
•   Ad libitum fed mice received 2 ICV injections of xenin (5 μg) at 

10:00 h and 22:00 h
•   Body weight and food weight were measured immediately prior to 

the first injection and 24 h after the first injection. Mice were 
euthanised 12 to 14 h after the second injection Epididymal 
adipose tissues and skeletal muscles were collected for RNA and 
protein analyses

•   Increased expression of 
lipolytic markers

Bhavya et al32

3T3-L1 
mouse 
adipocyte 
cell line

Experimental design
•   Immortalised 3T3-L1 fibroblasts differentiated 2 days post 

confluence in the absence or presence of xenin-25-Gln (10−6 M). 
Test peptides were added only during the key growth phase when 
the differentiation cocktail was present

•   Glycerol release, glucose uptake and gene expression were 
assessed

•   Increased glycerol release
•   Key adipogenic and lipolytic 

genes upregulated
•   Stimulated insulin-induced 

glucose uptake

English et al33

Table 1. (Continued)

(a)

(b)

(c)

Figure 2. Representation of the incretin effect mediated by GLP-1 and GIP under normal and diabetic conditions, with perceived xenin benefits in 

diabetes. (a) The incretin response under normal physiology alongside (b) the perturbed incretin response in T2DM, with (c) xenin acting as a GIP 

potentiator to restore GIP sensitivity in T2DM.

effect to regulate normal blood glucose levels,35 established 
treatments for type 2 diabetes fail to address this issue. Indeed, 
incretin-based therapeutics focus largely on augmenting the 
biological actions of the sister incretin glucagon-like peptide-1 
(GLP-1). However, recent exciting clinical findings with a 

dual-acting GLP-1 and GIP receptor hybrid peptide exhibit-
ing strong bias towards the GIP receptor,36 suggests that GIP 
resistance in type 2 diabetes is surmountable. In this regard, 
xenin has been shown to potentiate the insulinotropic actions 
of GIP in rodent models of diabetes.18-22,24-26 Whilst the 
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precise mechanism of xenin-induced GIP potentiation remains 
to be fully elucidated,25,27,37 it may be linked to acetylcholine 
M3 receptor signalling on pancreatic beta cells.25 However, 
there is also good evidence for a direct effect of xenin on beta 
cells,6 that is reinforced by knowledge that xenin is produced 
and secreted locally within islets.10

Appetite suppression

Several studies have demonstrated the role of xenin in regulat-
ing energy intake. Administration of xenin reduces calorie con-
sumption and delays gastric emptying in mice, rats, chicks and 
humans6,11,13-15,18,31 suggesting xenin may act directly on the 
gastrointestinal tract to induce satiety. This effect may occur 
through receptor binding at nerve terminal ends, which then 
influences the nucleus of the solitary tract anorexigenic activity, 
or hypothalamic receptors involved in energy homeostasis.38 
Indeed, hypothalamic neurons appear to have direct involve-
ment in regulation of calorie intake following intraperitoneal 
administration of xenin, suggesting centrally mediated effects.15 
Interestingly, more recent studies have characterised xenin 
activity in both peripheral and central regions linked to regu-
lating feeding in goldfish, to induce anorexigenic actions.39 It 
has also been demonstrated that xenin, when administered 
intracerebroventricularly in rats or peripherally in mice, may 
act through CRH-dependent signalling pathways to regulate 
food intake.38 However, it has been established that anorexic 
effects of xenin are independent of both the leptin- and mel-
anocortin-dependent signalling pathways.15

Lipid metabolism

In addition to its role in reducing food intake, xenin has also 
been shown to cause alterations in the expression of genes 
involved in lipid metabolism, as well as proteins found within 
white adipose tissue.32 There was an original hypothesis that 
xenin acts on adipose tissue to stimulate lipolysis, and that 
xenin may hold promise as an anti-obesity therapy by reducing 
adipose fat depots, but such observations were somewhat 
inconsistent.32 Thus, English et  al33 recently revealed direct 
lipogenic and lipolytic actions of xenin in 3T3-L1 adipocytes, 
whilst also promoting adipocyte differentiation in 3T3-L1 
pre-adipocytes, through alterations in gene expression of LPL 
and FASN, key promoters of 3T3-L1 differentiation.33 The 
effects of xenin to positively modulate lipolysis, lipogenesis and 
adipocyte differentiation are likely modulated through NTRS1 
activation on the AKT/PI3K pathway.33 However, it should be 
noted that the actions of xenin on lipid metabolism are still not 
well defined and require more detailed study, especially in light 
of some conflicting observations.32,33

Pancreas

Immunoreactivity of xenin has been identified in human pan-
creatic extracts,8 where concentrations increased following 

pepsin digestion.8 More recently, immunohistochemical-based 
methods demonstrated expression of xenin in both alpha- and 
beta cells, with both arginine and glucose acting as a stimulus 
for xenin secretion from the islet.10 Numerous biological roles 
of xenin in the pancreas have already been recognised, includ-
ing secretion of insulin and glucagon, as well as effects of secre-
tory activity in the exocrine pancreas.6 In addition, xenin exerts 
beneficial effects on beta cell growth and protection against 
apoptosis,6 with obvious therapeutic benefit in the context of 
diabetes. Moreover, recent studies in insulin-deficient Ins1Cre/+; 
Rosa26-eYFP transgenic mice with islet cell lineage tracing 
capabilities reveal positive effects of xenin on islet cell differen-
tiation, including maintenance of beta cell identity and preven-
tion of beta cell de-differentiation.29 These positive effects on 
islet cell architecture may be related to potentiation of the bio-
logical actions of GIP, since GIP has established benefits on 
beta cell growth and survival, as well as transdifferentiation.40-43 
The mechanisms related to these xenin-mediated pancreatic 
islet actions are somewhat disputed however, with proposed 
importance of both direct and indirect actions. Thus, xenin has 
been shown to directly stimulate glucagon and insulin secretion 
in vitro when applied to cultured pancreatic alpha- and beta-
cells, respectively.17 These direct receptor-mediated actions are 
strengthened by evidence of local xenin production and secre-
tion within pancreatic islets.10 On the other hand, there are also 
reports to suggest that xenin does not directly enhance GIP-
mediated insulin exocytosis, with these effects stimulated 
through activation of acetylcholine containing enteric neurons 
that are in direct contact with the pancreas.25

Polycystic ovary syndrome

Insulin resistance is an established pathological feature of type 
2 diabetes mellitus, with polycystic ovary syndrome (PCOS) 
also closely associated with obesity and insulin resistance.44 
Thus, similar to diabetes, previous research has defined a rela-
tionship between xenopsin-related-peptide-1 and PCOS, 
where the levels of xenopsin-related-peptide-1 were signifi-
cantly elevated in PCOS patients when compared to controls.45 
In this regard, serum xenin concentrations are significantly 
elevated in women with PCOS compared to women with no 
menstrual cycle abnormalities.46 However, as with diabetes,6 
the precise impact of xenin in PCOS and its pathophysiology 
remains to be fully elucidated. When viewed together, the 
above diverse biological actions of xenin emphasise potential 
for targeting related pathways for the amelioration of insulin 
resistance and related disease such as diabetes and PCOS.

Truncated Xenin Peptides and Analogues
Naturally occurring peptides such as xenin have many thera-
peutic advantages over small molecules, including their diver-
sity, safety, ease of synthesis, along with minimal risk of 
drug-drug interactions.47 Naturally occurring peptides also 
have a high binding affinity towards a broad, but specific range 
of therapeutic targets and are often very potent, resulting in 



Craig et al 5

enhanced efficacy, selectivity and specificity, even at lower ther-
apeutic doses.48 Therefore, peptide therapeutics are of great 
interest for drug developers. However, the clinical use of pep-
tides is hindered by certain disadvantages, including their 
instability and susceptibility to enzymatic degradation, reduced 
oral bioavailability, limited cell membrane permeation and 
rapid renal clearance.49 Fortunately, these limitations can be 
largely overcome through structural modification of the pep-
tide,49-53 which has been demonstrated for xenin, as discussed 
below.

Stable analogues of xenin (Tables 2 and 3) with preserved 
or even enhanced bioactivity have been developed.6 Many of 
these xenin analogues possess notable beneficial metabolic 
effects in pre-clinical models of diabetes-obesity,16,22,54 which 
has been reviewed in detail previously.6 However, the use of 
truncated peptide fragments of xenin that retain the full bio-
logical actions of the parent peptide, could enhance therapeu-
tic promise by making peptide synthesis easier and cheaper, as 
well as facilitating possible non-injectable peptide drug deliv-
ery.55,56 An earlier comprehensive exploration identified the 
degradation profile of xenin in mouse plasma, revealing the 
following C-terminally truncated metabolites; xenin 9-25, 
xenin 11-25, xenin 14-25 and xenin 18-25 (where xenin 
18-25 represents xenin-8).20 Subsequent characterisation 
revealed that only xenin-8 possessed biological activity equiv-
alent to the parent peptide.20 Indeed, this truncated octapep-
tide has long been recognised as a naturally occurring and 
biologically active derivative of xenin,17,57,58 that retains full 
insulinotropic actions.20 Furthermore, amino acid substitu-
tion of the Lys and Arg residues for Gln in xenin-8, resulted 
in production of a fully enzymatically stable octapeptide that 
retained full gluco-regulatory and antidiabetic actions as full-
length xenin.16 Subsequent recent research has now con-
firmed bioactivity of xenin-6 (xenin 20-25) at the level of the 
endocrine pancreas.26,50 Moreover, modification of xenin-6 

through introduction of a reduced pseudopeptide bond 
between amino acid residues Lys-20 and Arg-21, to create 
xenin-6-psi, further increased bioactivity of this truncated 
peptide.26,50 Intriguingly, xenin-6-psi exerted potent meta-
bolic actions in diabetic rodents and prominently augmented 
the biological actions of the incretin hormone GIP.26 Thus, it 
appears that the 6 C-terminal residues of xenin are sufficient 
to facilitate receptor binding and activation of the full reper-
toire of xenin cell signalling pathways.

Dual and Triple Acting Therapeutic Approaches  
That Incorporate Xenin Elements
As noted above, truncated xenin peptides retain bioactivity and 
have promising antidiabetic actions.20,26,50 However, in such a 
multi-factorial disease as type 2 diabetes mellitus, monother-
apy does not appear to adequately control glycaemia over the 
longer-term. Thus, multi-targeting unimolecular hybrid pep-
tides, designed to simultaneously modulate multiple signalling 
pathways are now thought to offer superior therapeutic efficacy 
than single targeted compounds.60 Indeed, data emerging from 
recent clinical studies with a dual-acting GLP-1/GIP com-
pound, Tirzepatide (LY3298176), developed by Lily, with 
strong bias towards the GIP receptor, fully support this 
notion.61 Data from phase 1 and 2 studies were extremely 
promising, with the compound now entering SURPASS phase 
3 clinical trials to determine long-term efficacy and safety.62 
Initial proof-of-concept for utilisation of multi-acting hybrid 
peptides comes from the naturally occurring dual agonist 
oxyntomodulin (OXM), that activates both GLP-1 and gluca-
gon receptor pathways.63 More recent studies demonstrate the 
opportunity of linking together individual bioactive peptide 
domains of different peptides, or engineering unique amino 
acid sequences that incorporate binding capabilities of 2 or 
more regulatory peptides, to create multi-targeting hybrid 
peptides.64-66

Table 2. Amino acid sequences of xenin-25 as well as its related stable analogues and naturally occurring fragment peptides.

PEPTIDE AMINo ACID SEqUENCE REFERENCES

Xenin-25 M-L-T-K-F-E-T-K-S-A-R-V-K-G-L-S-F-H-P-K-R-P-W-I-L-oH Feurle et al1

Xenin-25-Gln M-L-T-q-F-E-T-q-S-A-q-V-q-G-L-S-F-H-P-q-q-P-W-I-L-oH Parthsarathy et al22

Xenin-25[Lys13PAL] M-L-T-K-F-E-T-K-S-A-R-V-K-(N-ε-(γ-GLU(hexadecanoyl))-G-
L-S-F-H-P-K-R-P-W-I-L-oH

Gault et al21

Xenin 9-25 (Xenin-17) S-A-R-V-K-G-L-S-F-H-P-K-R-P-W-I-L-oH Martin et al20

Xenin 11-25 (Xenin-15) R-V-K-G-L-S-F-H-P-K-R-P-W-I-L-oH Martin et al20

Xenin 14-25 (Xenin-12) G-L-S-F-H-P-K-R-P-W-I-L-oH Martin et al20

Xenin 18-25 (Xenin-8) H-P-K-R-P-W-I-L-oH Martin et al20

Xenin 18-25-Gln H-P-q-q-P-W-I-L-oH Martin et al16

Xenin 20-25 (Xenin-6) K-R-P-W-I-L-oH Craig et al26 and Feurle et al50

Xenin-6-psi K-(CH2NH)-R-P-W-I-L-oH Craig et al26 and Feurle et al50
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Table 3. Summary of study design and main experimental outcomes from studies with fragment peptides of xenin-25.

SPECIES TREATMENT MAIN oUTCoMES REFERENCES

In vitro and 
rodent

Experimental design
•   For food intake studies, fasted (18 h) mice were given 

intraperitoneal (i.p) injections of either saline vehicle (0.9% w/v 
NaCl), xenin-8 or xenin-8-Gln at a dose of 500 nmol/kg bw. 
Cumulative food intake measured over 120 min

•   For glucose homeostasis and insulin secretory studies, blood 
glucose and plasma insulin concentrations were measured 
immediately prior to and 15, 30 and 60 min after i.p. administration of 
glucose alone (18 mmol/kg bw) or in combination with either xenin 18 
to 25 or xenin 18-25 Gln (each at 25 nmol/kg bw) in non-fasted mice

•   Concentration-dependently 
stimulated insulin secretion

•   Enhanced glucose-induced 
insulin release

Martin et al16

Rodent Experimental design
•   Twice daily i.p. injections of saline vehicle, xenin-8 or xenin-8-Gln 

(both at 25 nmol/kg bw) for 21 days in HFF mice
•   Energy intake, body weight, non-fasting blood glucose and 

plasma insulin concentrations were assessed during the 21 days
•   At the end of the treatment period, i.p. glucose tolerance 

(18 mmol/kg bw), biological response to GIP (18 mmol/kg glucose 
in combination with native GIP (25 nmol/kg); i.p.) and insulin 
sensitivity (15 U/kg bw; i.p.) tests were performed

•   Both treatment regimens

°  Elevated circulating plasma 
insulin concentrations

°    Improved insulin sensitivity
•   Xenin-8-Gln

°  Improved glucose 
tolerance

 °  Augmented GIP-mediated 
glucose-lowering and 
insulin-releasing effects

Martin et al16

Rodent Experimental design
•   For food intake studies, fasted (18 h) lean mice were given 

intraperitoneal (i.p) injections of either saline vehicle (0.9% w/v 
NaCl) or Ψ-xenin-6 at a dose of 25 or 250 nmol/kg bw. Cumulative 
food intake was measured at 30 min intervals for 180 min

•   For acute effects of peptides on glucose tolerance and insulin 
secretion, blood glucose and plasma insulin concentrations were 
determined immediately prior to and 15, 30, 60 and 105 min after 
i.p. injection of glucose alone (18 mmol/kg bw) or in combination 
with test peptides (25 nmol/kg bw), as well as test peptides 
together with GIP (25 nmol/kg bw) in 4 h fasted mice

•   To assess duration of peptide action, mice were administered 
saline vehicle or test peptides (25 nmol/kg bw) at 2, 4, 8 or 12 h 
prior to an i.p. glucose challenge (18 mmol/kg bw) and blood 
glucose measured

•   Significantly reduced glucose 
levels

•   Enhanced glucose-induced 
insulin release

•   Enhanced the glucose-
lowering action of GIP

•   Exhibited satiety actions

Craig et al26

Rodent Experimental design
•   Oral sitagliptin phosphate monohydrate once daily (50 mg/kg bw), 

intraperitoneal (i.p.) Ψ-xenin-6 twice daily (25 nmol/kg bw) or a 
combination of both compounds for 18 days in HFF mice

•   Energy intake, body weight, non-fasting blood glucose and 
plasma insulin concentrations were assessed at regular intervals

•   At the end of the treatment period, i.p. glucose tolerance 
(18 mmol/kg bw; 18 h-fasted mice), insulin sensitivity (25 U/kg 
bovine insulin; i.p.; non-fasted mice) and pyruvate tolerance (2 g/
kg sodium pyruvate; i.p.; 18 h-fasted mice) tests were performed

•   HOMA-IR, fasting glucose (mmol/L) × fasting insulin (mU/L)/22.5, 
was also calculated as a surrogate marker of insulin resistance

•   Terminal analyses included extraction of pancreatic tissue for 
determination of pancreatic insulin content. In addition, liver tissue 
was processed for hepatic gene expression by qPCR after total 
RNA extraction

Ψ-xenin-6 alone
•   Reduced weight gain
•   Reduced glucose levels as well 

as improved glucose tolerance 
and insulin sensitivity.

•   Positive effects on pancreatic 
islet architecture

Ψ-xenin-6 and sitagliptin:
•   Prominent benefits on 

circulating glucose and insulin 
levels

•   Improvements in attenuating 
gluconeogenesis

•   Benefits on pancreatic islet 
architecture

•   Improved insulin sensitivity

Craig et al59

With regards to type 2 diabetes mellitus, Gault et al67 ini-
tially indicated that a GLP-1 and GIP preparation, that com-
bined long-acting acylated version of the parent peptides, 
displayed enhanced glucose-lowering and insulinotropic 
actions in animal models of diabetes. This being despite earlier 
observations that combined administration of individual enzy-
matically stable, but non-acylated GIP and GLP-l mimetics 
was not associated with benefits beyond that of either peptide 
alone,68-70 however this could be related to differences in treat-
ment regimens or animal models employed. Following on from 
this, a triple acting hybrid peptide comprising GLP-1, GIP 

and glucagon was developed that offered some improvements 
in preclinical models of obesity-diabetes when compared to 
parent peptides.71 In addition, 2 separate CCK/GLP-1 fusion 
peptides have been characterised revealing notable benefits on 
appetite suppression, insulinotropic effects as well as beta cell 
function and morphology.64,72 Furthermore, numerous other 
dual- and triple-acting hybrid peptides have been developed 
that clearly advocate the therapeutic benefits of single peptide-
based drugs capable of positivity modulating more than 1 
receptor pathway for the treatment of diabetes.65,66,73-75 Tschöp 
et  al75 demonstrated that novel unimolecular combination 



Craig et al 7

therapies have superior efficacy, compared to current therapeu-
tic options, thus having potential to reverse obesity and type 2 
diabetes.

In terms of incorporating xenin into multi-acting hybrid 
peptides (Tables 4 and 5), this was first demonstrated in 2017 
through a GIP/xenin entity, namely (DAla2)GIP/xenin-8-
Gln.54 Subsequent work with (DAla2)GIP/xenin-8-Gln has 
highlighted that twice-daily administration in high fat fed 
mice for 28 days significantly reduced food intake and body 
weight, with associated reductions in circulating glucose con-
centrations and HbA1c levels, whilst improving glucose toler-
ance and insulin sensitivity.76 Similar, but somewhat less 
striking antidiabetic effects were noted in db/db mice given 
(DAla2)GIP/xenin-8-Gln, demonstrating that the positive 
antidiabetic actions are transferable across diverse aetiologies of 
type 2 diabetes mellitus.76 Remarkably, the same study also 
demonstrated long-acting positive metabolic effects of (DAla2)
GIP/xenin-8-Gln following 14-day cessation of treatment.76 
This could suggest positive metabolic reprogramming induced 
by co-activation of GIP and xenin receptor pathways in keep-
ing with positive effects on beta cell function and integrity,6,29,43 
and represents a potential benefit for future antidiabetic ther-
apy. Such observations are extremely important moving 
towards the clinical setting given the complex aetiology and 
progressive nature of type 2 diabetes mellitus in humans.77 
Subsequent investigations characterised a novel GLP-1/xenin 
hybrid peptide (exendin-4/xenin-8-Gln) that exhibited posi-
tive antidiabetic actions in high fat fed mice,78 highlighting 
positive effects of combined modulation of GLP-1 and xenin 
related signalling pathways in diabetes. Hasib et al78 also dem-
onstrated the potential of combined modulation of GLP-1, 
gastrin and xenin signalling pathways,78,79 which was superior 
to the previously described dual-acting fusion peptide incorpo-
rating GLP-1 and gastrin only, namely ZP3022.80

More recent work has explored the possibility of Ψ-xenin-6 
to enhance the antidiabetic efficacy of the established dipepti-
dyl peptidase-4 (DPP-4) inhibitor drug sitagliptin.59 Multiple 
metabolic advantages of combined Ψ-xenin-6 and sitagliptin 
therapy were observed, including benefits on body weight, cir-
culating glucose and insulin along with additional enhance-
ments to reduce gluconeogenesis and improve pancreatic islet 

architecture.59 Additional related studies have demonstrated 
how specifically elevating xenin concentrations through use of 
the methionine aminopeptidase inhibitor 2, TNP-470, can also 
augment the antidiabetic efficacy of sitagliptin.82 Moreover, as 
well as increasing xenin secretion, TNP-470 is a putative anti-
obesity agent,83-85 highlighting obvious benefits of this treat-
ment modality in obesity-driven forms of diabetes. Given 
xenin has confirmed GIP-potentiating actions, the combina-
tion of therapies that increase xenin bioactivity alongside 
established DPP-4 inhibitor drugs clearly warrants further 
consideration as a novel therapeutic option in the management 
of type 2 diabetes mellitus in humans.

Concluding Remarks
This minireview highlights the diverse biological actions of 
xenin, as well as the therapeutic potential for xenin and related 
truncated metabolites for diabetes and related disorders. 
Future studies are required to fully understand the signalling 
pathways and mechanisms involved in the insulinotropic, 
GIP-potentiating and anorexigenic actions of xenin, as well as 
the role of xenin signalling within benefits of associated hybrid 
peptides. Clarification of whether or not a specific xenin 
receptor exists is key in this paradigm. Nevertheless, xenin 
possesses a promising therapeutic repertoire that may result in 
the development of a safe, effective, long-acting and cost-
effective therapy for obesity-diabetes.

Due to the multifactorial nature of type 2 diabetes mellitus, 
monotherapy is often not an effective treatment option. Thus, 
combination therapy or hybrid peptides have the potential to 
emerge as leading therapeutic approaches for this disease. 
Both approaches show promise with xenin-based therapies, 
demonstrating obvious advantages over monotherapy that is 
highly favourable moving towards the clinic.54,76,78,79 However, 
future studies are required to fully understand the mechanisms 
and pathways associated with satiety effects, insulinotropic 
and GIP-potentiating actions to gain a better understanding 
of the role of xenin and overall therapeutic potential of these 
hybrid peptides. Further to this, recent studies have high-
lighted the stability and metabolic benefits of Ψ-xenin-6 
alone,26 and in combination with established anti-diabetic 
therapies.59 To date, hybrid peptides that contain a xenin 

Table 4. Amino acid sequences of xenin incorporated multi-acting hybrid peptides.

PEPTIDE AMINo ACID SEqUENCE REFERENCES

(DAla2)GIP/xenin-8-
Gln

Y-[DA]-E-G-T-F-I-S-D-Y-S-I-A-M-H-P-q-q-P-W-I-L-oH Hasib et al54  
and Pathak et al74

Exendin-4/xenin-8-Gln H-G-E-G-T-F-T-S-D-L-S-K-q-M-E-E-E-A-V-R-L-F-I-E-W-L-K-N- AEEAc – 
AEEAc-H-P-q-q-P-W-I-L-oH

Craig et al76

Exendin-4/gastrin/
xenin-8-Gln

H-G-E-G-T-F-T-S-D-L-S-K-q-M-E-E-E-A-V-R-L-F-I-E-W-L-K-N- AEEAc – 
AEEAc-Y-G-W-L-D-F- AEEAc – AEEAc-H-P-q-q-P-W-I-L-oH

Hasib et al81

Exendin-4(Lys27PAL)/
gastrin/xenin-8-Gln

H-G-E-G-T-F-T-S-D-L-S-K-q-M-E-E-E-A-V-R-L-F-I-E-W-L-K(γ-Glu-palm)-
N-AEEAc-AEEAc-Y-G-W-L-D-F-AEEAc-AEEAc-H-P-q-q-P-W-I-L-oH

Hasib et al78
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element have focussed on xenin-8 sequences, but utilisation of 
xenin-6 peptides, particularly xenin-6-psi, could offer distinct 
advantages over this approach. In terms of potential side 
effects of xenin-based therapeutics, the only notable reported 
side effect following xenin infusion in humans was mild  
diarrhoea.13 There is also lack of any obvious side effects in 
rodents following sustained xenin administration in numerous 
studies.54,76 Thus, xenin appears to have side-effect profile sim-
ilar to that of established GLP-1 therapeutics, namely mild 

gastrointestinal adverse events, with GLP-1 mimetics now 
well-established as important anti- obesity and -diabetes 
drugs in man.86,87 However, further dose-response studies are 
still required in human volunteers to uncover the complete 
adverse side effect profile of xenin. Ultimately, xenin-based 
therapies need to be further assessed in the human setting to 
confirm translatability of the many positive findings from pre-
clinical trials,21,26,59,76,78,79,82,83 and progress benefits towards 
the clinic.

Table 5. Summary of study design and main experimental outcomes from studies with xenin incorporated multi-acting hybrid peptides.

SPECIES TREATMENT MAIN oUTCoMES REFERENCES

Rodent Experimental design
•   Twice daily i.p. injections of saline vehicle, (DAla2)GIP/xenin-8-Gln (25 

nmol/kg bw), exendin-4 (25 nmol/kg bw), or a combination of both peptides 
for 28 days in HFF mice, followed by 14 days cessation of treatment

•   Energy intake, body weight, non-fasting blood glucose and plasma 
insulin concentrations were assessed at regular intervals

•   At the end of the treatment period, i.p. glucose tolerance (18 mmol/kg 
bw; 18 h-fasted mice) and insulin sensitivity (25 U/kg bovine insulin; i.p.; 
non-fasted mice) tests were performed. Metabolic responses to acute 
re-administration of respective treatment regimens together with 
glucose was also examined

•   On day 28 observations were continued in a sub-group (n = 6) of mice 
following cessation of treatment regimens for a further 14 days, with 
assessment of the same parameters as documented above

(DAla2)GIP/xenin-8-Gln
•   Reduction in food intake, 

body weight, circulating 
glucose and HbA1C

•   Improved glucose tolerance 
and insulin sensitivity

•   Improved pancreatic 
architecture

Craig et al76

Rodent Experimental design
•   Twice daily i.p. injections of saline vehicle, (DAla2)GIP/xenin-8-Gln (25 

nmol/kg bw), exendin-4 (25 nmol/kg bw), or a combination of both 
peptides for 28 days in db/db mice

•   Energy intake, body weight, non-fasting blood glucose and plasma 
insulin concentrations were assessed at regular intervals

•   At the end of the treatment period, i.p. glucose tolerance (18 mmol/kg 
bw; 18 h-fasted mice) and insulin sensitivity (50 U/kg bovine insulin; i.p.; 
non-fasted mice) tests were performed

•   (DAla2)GIP/xenin-8-Gln in 
combination with exendin-4 
was required to induce 
beneficial effects on glucose 
tolerance, insulin sensitivity

Craig et al76

Rodent Experimental design:
•   Twice daily i.p. injections of saline vehicle (0.9% w/v NaCl), exendin-4, 

exendin-4/gastrin/xenin-8-Gln alone and in combination with (DAla2)
GIP (each peptide at 25 nmol/kg bw) for 21 days in HFF mice

•   Cumulative food intake, body weight, non-fasting glucose and insulin 
concentrations were monitored at regular intervals

•   Circulating glucagon, amylase activity and blood lipid profile were 
assessed at the end of the treatment period

•   Glucose tolerance (18 mmol/kg bw; i.p.), metabolic response to GIP 
(18 mmol/kg glucose in combination with native GIP (25 nmol/kg); i.p.) 
and insulin sensitivity (25 U/kg bw; i.p.) tests were performed at the end 
of the treatment period

•   On day 21 locomotor activity and energy expenditure were assessed

•   Reduced circulating glucose 
and increased plasma insulin 
concentrations

•   Improved glucose tolerance, 
insulin sensitivity and 
metabolic response to GIP

•   Reduced LDL-cholesterol and 
body fat mass

•   Normalised pancreatic islet 
and beta-cell area

•   Increase in energy 
expenditure and locomotor 
activity in mice treated with 
exendin-4/gastrin/xenin-8-
Gln in combination with 
(DAla2)GIP

Hasib et al81

Rodent Experimental design
•  Dosing Regimen: Twice-daily injections of saline vehicle, exendin-4/

gastrin, exendin-4/gastrin/xenin-8-Gln, or exendin-4(Lys27PAL)/gastrin/
xenin-8-Gln (each at 25 nmol/kg bw; ip) for 31 days in ob/ob mice

•   Energy intake, body weight, non-fasting blood glucose and plasma 
insulin concentrations were assessed at regular intervals

•   Plasma glucagon, amylase activity, 24-h glucose profile and whole 
blood HbA1c were measured on day 31

•   At the end of the treatment period, glucose tolerance (18 mmol/kg bw; 
ip), metabolic response to GIP (18 mmol/kg glucose in combination 
with native GIP [25 nmol/kg]; ip) and insulin sensitivity (50 U/kg bw; ip) 
tests were conducted

•   Percentage body fat and pancreatic insulin content were also 
determined

•   Decreased food intake, 
glucose and HbA1c 
concentrations

•   Enhanced circulating and 
pancreatic insulin levels

•   Improved glucose tolerance 
and glucose-induced insulin 
secretion

•   Enhanced metabolic 
response to GIP and the 
glucose-lowering actions of 
insulin

Hasib et al79
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