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PLAAT1 is a member of the PLAAT protein family and plays important roles in

tumor suppression, transglutaminase activation and peroxisomal biogenesis.

Recently, PLAAT1 has been shown to promote degradation of p53 protein and

cellular organelles such as mitochondria, endoplasmic reticulum and

lysosome. In this study, we show that PLAAT1 inhibits the production of type

I interferon and promotes virus replication in zebrafish. Overexpression of

Plaat1 in zebrafish cells suppresses antiviral responses and promotes virus

replication. Mechanistically, PLAAT1 interacts with IRF3 and IRF7 to initiate

degradation of IRF3 and IRF7, which can be attenuated by 3-methyladenine, an

inhibitor of autophagosome. Our study provides novel insights into the

functions of PLAAT1 in host immune response to viral infection.
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Introduction

Detection of pathogen-associated molecular patterns (PAMPs) by host pattern-

recognition receptors (PRRs) induces interferon (IFN) production, triggering cellular

responses that confer to the protection against virus infection (1). In fish, a large panel of

evolutionarily conserved PRRs have been characterized, including the RIG-I-like

receptors (RLRs) and Toll-like receptors (TLRs) and cytosolic DNA sensors (2, 3).

RLRs including RIG-I and melanoma differentiation-associated gene 5 (MDA5) and

TLRs such as TLR3, TLR7 and TLR8 can sense viral RNA to induce MAVS-mediated IFN

production (4–7). DNA sensors such as TLR9 and cGAS detect cytosolic viral DNA to

activate IFN response through the adaptor protein STING (8–10). Both MAVS-
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dependent and STING-dependent signaling cascades lead to the

recruitment and activation of TANK-binding kinase 1 (TBK1)

and subsequent phosphorylation and dimerization of the

interferon-regulatory factors (e.g. IRF3 and IRF7). Interferons

bind to a heterodimeric receptor to induce the expression of

hundreds of interferon-stimulated genes (ISGs) to defend

viruses (11).

Interferon-regulatory factors (IRFs) belong to a family of

transcription factors which regulate the production of type I

IFNs and host antiviral response (12, 13). The IRF family

consists of 9 members in mammals and 11 members in fish

(14). They all contain a conserved N-terminal DNA-binding

domain (DBD) which recognize and specifically bind to DNA

motifs similar in sequence to the IFN-stimulated response

element (ISRE). The C-terminal region contains an IRF-

associated domain (IAD) responsible for the interaction with

members of the IRF family and/or other factors (15). Among IRF

members, IRF3 and IRF7 are closely related and harbor a serine-

rich region in their C terminus which is critical for the virus-

induced phosphorylation events and downstream signaling (16–

19). In fish, the structure and functions of IRF3 and IRF7 are

well conserved.

PLAAT1 was originally identified as a tumor suppressor and

termed A-C1 (20). PLAAT1 is a phospholipase A1/2 and belongs

to the phospholipase A/acyltransferase (PLAAT) family. The

PLAAT proteins are evolutionarily conserved in vertebrates and

have a broad substrate specificity towards a range of

glycerophospholipids (21–23). They all share 4 conserved

domains: a proline-rich motif at the N-terminus, a conserved

H-box, an NC motif (NCXHFV) and a C-terminal

transmembrane domain (24). In mammals, the PLAAT family

consists of five members, PLAAT1-5, and all are multifunctional

enzymes that possess N- and O- acyltransferase and

phospholipase1/2 activity (23, 25, 26). They play important

roles in regulating tumor progression, transglutaminase

activation, peroxisomal biogenesis and virus entry into the

host cells (21, 27, 28). PLAAT3, also termed PLA2G16, is an

adipose-specific phospholipase A2 and serves as a host factor to

uncoat enterovirus genome into the cytoplasm of target cells

(29). PLAAT3 has also been shown to promote degradation of

nuclear DNA by damaging the nuclear envelope and/or

enhancing the release of lysosomal DNase 2B (30–32). When

overexpressed in the HEK293 cells, PLAAT3 reduces the

number of peroxisomes by inhibiting peroxisome biogenesis

through interaction with PEX1921 (27). Recently, PLAAT1 has

been shown to be required for the degradation of cellular

organelles such as mitochondria, endoplasmic reticulum and

lysosome (33). Giving the importance of the cellular organelles

in host immune response and virus replication, we reason that

PLAAT1 may play a role in the interaction between host

and viruses.

Previously, we showed that overexpression of plaat1 in

zebrafish cells inhibited mRNA expression of p53 and tnf-a,
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and induced degradation of p53 (34). In this study, we

investigated the functions of PLAAT1 in host immune

responses to viral infection in zebrafish. We found that

zebrafish PLAAT1 interacted with IRF3 and IRF7 and

promoted their degradation, resulting in suppression of type I

IFN production.
Materials and methods

Cells and viruses

ZF4 and EPC cells were cultured at 28 °C in a 5% CO2

incubator in Dulbecco’s modified Eagle’s medium (DMEM,

Gibco) supplemented with 10% fetal bovine serum (FBS,

Gibco). Spring viremia of carp virus (SVCV), provided by Dr

Mingxian Chang, was propagated in the EPC cells. Virus titer

was determined based on the 50% tissue culture infective dose

(TCID50) assay.
Plasmids and antibodies

Full-length cDNA of zebrafish plaat1 was cloned into

pcDNA3.1 with a Flag tag and pEGFP-N1 (34). Synthetic full-

length cDNA fragments of zebrafish irf3 and irf7 (GENEWIZ,

China) were cloned into pcDNA3.1 with a Myc tag at the C

terminus, respectively.

Antibodies used in this study included a-Flag (Huabio, China),
a-Myc (Huabio, China), a-b-actin (Huabio, China), a-GFP (Zen-

bio, China), a-GFP (Abmart, UK), a-mouse IgG (LI-COR, USA)

and a-rabbit IgG (LI-COR, USA) Abs. Following reagents were

used: TRIzol (Thermo Fisher, USA), Hifair® 1st Strand cDNA

Synthesis SuperMix (Yeasen, China), Hieff UNICON® Power

qPCR SYBR Green Master Mix (Yeasen, China), MG132

(Aladdin, USA), 3-methyladenine (3-MA) (Aladdin, USA),

chloroquine (CQ) (Sigma-Aldrich, USA), polyinosinic:

polycytidylic acid [poly(I:C)] (Sigma-Aldrich, USA), protein A/G

resin (Yeasen, China), radioimmunoprecipitation assay (RIPA)

buffer (Beyotime, China), and JetOPTIMUS plasmid transfection

kit (Polyplus, China).
Quantitative real-time PCR

Total RNA was extracted using TRIzol reagent according to the

manufacturer’s protocol. Quantitative real-time PCR (qRT-PCR)

was run in triplicate on a Light Cycler® 480 Real-Time PCR System

(Roche, Switzerland). The qRT-PCR reactions were set up as

follows: 5 mL Hieff UNICON® qPCR SYBR Green Master Mix, 1

mL cDNA template, 0.2 mL forward primer (10 mM), 0.2 mL reverse

primer (10 mM) and 3.6 mL distilled water, and run under following
conditions: 1 cycle of 95 °C for 30 s, 40 cycles of 95°C for 5 s, 62°C
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for 30 s, 72°C for 10 s, followed by 1 cycle of 95°C for 10 s, 65°C for

60 s, 97°C for 1 s. The qRT-PCR primers are listed in Table 1. The

elongation factor alpha (ef1a) was used as internal control to

normalize gene expression.
Luciferase assay

EPC cells were seeded in 24-well plates and transfected with

a mixture of 250 ng of luciferase reporter (firefly luciferase) and

25 ng of pRL-TK (Renilla luciferase plasmid), together with

reporter plasmids or vector plasmid. At 24 h post transfection,

the cells were transfected with poly(I:C) or infected with SVCV

and cultured for 24 h before harvest. The cells were lysed for

measuring luciferase activity using the Dual-Luciferase Reporter

Assay System (Promega, USA) according to the manufacturer’s

protocol. As for the IFN/ISRE promoter activation assay, various

plasmids at a ratio of 10:10:10:1 (expression vectors of irf3/irf7/

IFNj1pro/ISRE-Luc/pRL-TK) were used for transfection.

Empty vector pcDNA3.1 was used to ensure that there were

equivalent amounts of total plasmid DNA for transfection.

Firefly luciferase activity was normalized based on the Renilla

luciferase activity.
Western blotting

Cultured cells were washed with ice-cold PBS and lysed in

RIPA buffer (Beyotime, China) supplemented with 1 mM

phenylmethylsulfonyl fluoride (PMSF) and protease inhibitor

cocktails (1:100, v/v, Beyotime, China). Protein solution or

whole cell lysates were resolved in SDS-PAGE loading buffer

(Sigma-Aldrich, USA), transferred to a polyvinylidene difluoride

(PVDF) membrane (Millipore, USA), and probed with the

primary and secondary antibodies. Western blotting images

were photographed using an Odyssey CLx Imaging System

(LI-COR, USA).
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Co-immunoprecipitation

HEK293 cells were seeded in 25-cm2
flasks and cultured

overnight. The cells were transfected with PLAAT1-GFP (5 mg)
and Myc-IRF3 (5 mg) or Myc-IRF7 (5 mg) plasmids. At 24 h post

transfection, the adherent cells were washed twice with ice-cold

PBS and covered with RIPA lysis buffer containing protease

inhibitor cocktails. The cell culture flasks were placed on a rocker

platform and rotated at a slow speed at 4°C for 30 min. The

lysate supernatants were collected by centrifugation at 12,000 x g

at 4°C for 15 min and incubated with 35 mL a-GFP affinity gel

(Abmart, UK) at 4°C overnight. Immunoprecipitated proteins

were collected by centrifugation at 2,000 x g for 3 min, washed

three times with ice-cold PBS, and resuspended in 50 mL of 2 x

SDS-PAGE sample buffer and then subjected to SDS-PAGE and

Western blotting.
Fluorescent microscopy

EPC cells were cultured on coverslips in 6-well plates and

transfected with 1 mg plasmid and cultured for 24 h. The cells

were washed twice with PBS, fixed with 4% Paraformaldehyde

Fix Solution (PFA) (Beyotime, China) for 10 min, washed three

times with PBS, and blocked with PBS containing 5% BSA for 1

h. The cells on coverslips were incubated with the primary

antibody at 4°C overnight, followed by incubation with Alexa

Fluor 594-conjugated a-rabbit IgG (Cell Signaling Technology,

USA) or Alexa Fluor 594-conjugate a-mouse IgG (Zenbio, USA)

for 1 h. The cells were washed three times with PBS and stained

with 1 mg/mL 4,6-diamidino-2-phenylindole (DAPI, Beyotime,

China) for 10 min in the dark at room temperature. The

coverslips were then washed, examined under a Leica confocal

microscope (Leica SP8) and photographed.
Statistical analysis

The qRT-PCR data were analyzed using the SPSS

package 20.0 (SPSS Inc., Chicago, IL, USA) and One-way

ANOVA and the LSD post hoc test. “*p <0.05” between

treatment groups and the corresponding control groups are

considered significant.
Results

PLAAT1 is not modulated at the
transcription level by poly(I:C) or SVCV

Previously, we found that PLAAT1 promotes p53

degradation and plays a regulatory role in p53 mediated

signaling and autophagy. It has been reported that p53 is
TABLE 1 Primers used in this study.

Primer name Sequence (5’!3’)

RT-ef1a-F CTGGAGGCCAGCTCAAACAT

RT-ef1a-R ATCAAGAAGAGTAGTACCGCTAGCATTAC

RT- ifnj1-F TGGAGGACCAGGTGAAGTT

RT- ifnj1-R ATTGACCCTTGCGTTGCTT

RT-SVCV n-F TCTGCCAAATCACCATACTCA

RT-SVCV n-R CTGTCTTGCGTTCAGTGCTC

RT-SVCV g-F ATCATTCAAAGGATTGCATCAG

RT-SVCV g-R CATATGGCTCTAAATGAACAGAA

RT-plaat1-F AGTCGGTGTTCAGCCGTAAAG

RT-plaat1-R TGACGAAGTGCTCACAGTTGC
F, forward; R, reverse.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.979919
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2022.979919
involved in a wide range of cellular responses including immune

response to infection. To examine the transcriptomic response of

plaat1 in antiviral response, ZF4 cells were transfected with poly

(I:C) or infected with SVCV. As shown in Figures 1A, C, the

mRNA levels of plaat1 were generally unaffected by poly(I:C)

transfection and SVCV infection. However, the plaat1 gene was

marginally induced 24 h after stimulation with poly(I:C) but

downregulated at 48 h following SVCV infection. As expected,

the expression of ifnj1 was significantly upregulated

(Figures 1B, D).
PLAAT1 represses IFN expression
induced by poly (I:C) and SVCV

Although we did not observe modulatory effects of poly(I:C)

and SVCV on the expression of plaat1 at the transcription level,

we sought to investigate whether PLAAT1 is involved in

mediating IFN mediated response at the protein level, which is

central for the antiviral defense. We overexpressed Flag-plaat1 in

the EPC cells and assessed the promoter activities of IFNj1 and
IFN stimulating response element (ISRE) following stimulation

with poly(I:C) or infection with SVCV. It is apparent that

overexpression of Flag-plaat1 suppressed the activation of the

IFNj1 promoter (Figure 2A). Consistently, the ISRE activity was

also inhibited after treatment with poly(I:C) or infection with
Frontiers in Immunology 04
SVCV (Figure 2B). Further, we examined the effect of plaat1 on

the ISRE promoter activity after stimulation with the

recombinant IFNj1 protein (produced in our laboratory). We

found that the activation of the ISRE promoter was significantly

enhanced and this IFN induced effect was attenuated by plaat1

overexpression (Figure 2C). The ISRE motifs are conserved

binding sites for the ISGs that respond to IFN activation.

These results suggest that PLAAT1 acts as a negative regulator

for IFN production and IFN mediated signaling.
Overexpression of Plaat1 increases SVCV
replication in the EPC cells

Since PLAAT1 inhibited the promoter activity of IFNj1 and
ISRE, we sought to perform plaque assay to assess the viruses

released to the culture media. The culture media were collected

from the plaat1-overexpressing EPC cells following infection

with SVCV and used for plaque assay. Compared with the

control cells (transfected with pcDNA3.1), higher numbers of

viruses were detected in the culture media of plaat1-

overexpressing EPC cells (Figure 3A). Consistently, the mRNA

expression levels of the SVCV g (glycoprotein) and n

(nucleoprotein) genes were markedly increased in the plaat1-

overexpressing EPC cells (Figures 3B, C). These data suggest that

zebrafish PLAAT1 promotes replication of SVCV.
B

C D

A

FIGURE 1

Plaat1 expression in ZF4 cells in response to poly(I:C) and SVCV infection. ZF4 cells were seeded in 6-well plates and cultured overnight. The
cells were transfected with poly(I·C) (2 mg) or infected with SVCV (3.16 × 106 TCID50/mL). Gene expression of plaat1 (A, C) and ifnj1 (B, D) was
analyzed by qRT-PCR. Data are presented as mean ± SEM, n=3. *P<0.05 is considered significant difference.
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PLAAT1 targets IRF3 and IRF7 to suppress
IFN response

IRF3 and IRF7 are the master transcription factors to control

IFN production (35). Upon activation of PRRs by viral pathogen

associated molecular patterns (PAMPs), IRF3 and IRF7 are
Frontiers in Immunology 05
phosphorylated in the cytoplasm, form homo- or hetro-

dimers and subsequently translocate into the nucleus to

activate IFN expression. We reasoned that PLAAT1 may

target IRF3 and IRF7 to inhibit IFN response. We analyzed

the activity of IFNj1-luc and ISRE-Luc in the EPC cells after

overexpression of Myc-irf3 or Myc-irf7 and Flag-plaat1. As
B C

A

FIGURE 3

Overexpression of plaat1 promotes SVCV replication in the EPC cells. The EPC cells were transfected with 2 mg of Flag-plaat1 plasmid or empty
vector (pcDNA3.1). At 24 h post-transfection, cells were infected with SVCV (3.16 × 106 TCID50/mL) for 24 h. Cell culture media were collected
for plaque assay (A). The mRNA levels of the SVCV g (B) and SVCV n (C) genes were analyzed by qRT-PCR. Data are shown as mean ± SEM
(n=3). *P<0.05 is considered significant difference.
B CA

FIGURE 2

Zebrafish PLAAT1 negatively regulates IFN expression and signaling. (A, B) Overexpression of plaat1 suppressed the activity of IFNj1 (A) or ISRE (B)
luciferase reporter induced by SVCV infection or poly (I:C). EPC cells were seeded in 24-well plates and transfected with IFNj1pro-Luc (250 ng) or ISRE-
Luc (250 ng) plus pRL-TK (25 ng) and Flag-plaat1 or pcDNA-3.1 (empty vector, 250 ng). After 24 h, the cells were infected with SVCV (3.16 × 106

TCID50/mL) or transfected with poly (I:C) (2 mg/mL). After 24 h, luciferase reporter activity was analyzed. (C) The EPC cells were transfected with ISRE-
Luc (250 ng) plus pRL-TK (25 ng) and Flag-plaat1or pcDNA-3.1 (empty vector, 250 ng). At 24 h post-transfection, cells were treated with PBS or IFNj1
protein (100 ng/mL) for 6 h. Data are shown as mean ± SEM (n=3). *P<0.05 is considered significant difference.
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shown in Figures 4A, B, overexpression of irf3 or irf7

significantly enhanced the promoter activity of IFNj1 and

ISRE, whereas the inducible effects could be abrogated by the

overexpression of plaat1. Notably, the inhibitory effects were

dependent on the doses of plaat1 plasmid transfected

(Figures 4C–F). These data suggest that plaat1 might target

irf3 and irf7 to negatively regulate the IFN response.
PLAAT1 Interacts with IRF3 and IRF7

To explore whether PLAAT1 interacts with IRF3 and IRF7,

EPC cells were co-transfected with PLAAT1-GFP and plasmids

expressing Myc-IRF3 and Myc-IRF7, and co-IP assays were
Frontiers in Immunology 06
performed using a-GFP beads. The results showed that the a-
GFP Ab-immunoprecipitated protein complexes contained IRF3

and IRF7 (Figures 5A, B), revealing that PLAAT1 interacted with

IRF3 and IRF7 through protein interaction. Confocal

microscopic analysis revealed that the PLAAT1-GFP protein

was distributed in the cytoplasm and nucleus with or without

SVCV infection (Figure 5C). To further determine whether

PLAAT1 with IRF3 and IRF7 shared similar subcellular

locations. We co-transfected Myc-IRF3 or Myc-IRF7 with

PLAAT1-GFP. As shown in Figure 5D, PLAAT1 colocalized

with IRF3 and IRF7 without or with SVCV infection.

Interestingly, SVCV infection resulted in aggregation of

PLAAT1 in the cytoplasm. Collectively, the results indicate

that PLAAT1 interacts with IRF3 and IRF7.
B

C D

E F

A

FIGURE 4

PLAAT1 targets IRF3 and IRF7 to suppress IFN response. (A, B) Overexpression of plaat1 inhibits the activation of IFNj1/ISRE promoters induced by irf3
and irf7. EPC cells were transfected with indicated plasmids and collected at 24 h for luciferase assay. (C–F) Different doses of plaat1 plasmid (250, 500,
or 1000 ng) were used for transfection. Data are expressed as mean ± SEM (n=3). Data are shown as mean ± SEM (n=3). *P<0.05 is considered
significant difference.
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PLAAT1 interacts with the IAD of IRF3
and IRF7

To characterize the functional domains of IRF3 and IRF7

which are targeted by PLAAT1, we constructed two domain

mutants of IRF3 (NCBI accession number: NP_001137376),

IRF3-DDBD (lacking the DNA-binding domain (DBD), 7-

107 aa) and IRF3-DIAD (lacking the IRF-association domain

(IAD), 245-408 aa) (Figure 6A). Co-IP assays were performed

to determine the interaction of the two domains with

PLAAT1. As shown in Figure 6B, the wild type IRF3 and

IRF3-DDBD were shown to bind to PLAAT1 whereas the

IRF3-DIAD did not bind, indicating that the IAD but not

DBD is required for the interaction between IRF3 and

PLAAT1. Similarly, two domain mutants of IRF7 (NCBI

accession number: NP_956971) were constructed, IRF7-

DDBD (lacking the DBD, 7-110 aa) and IRF7-DIAD

(lacking the IAD, 216-388 aa) (Figure 6C). Consistent with

the observations in the IRF3/PLAAT1 co-IP assay, the wild

type IRF7 and IRF7-DDBD were co-immunoprecipitated with

PLAAT1 but not the IRF7-DIAD (Figure 6D). Collectively,

these data indicate that PLAAT1 interacts with the IAD but

not DBD of IRF3 and IRF7.
Frontiers in Immunology 07
PLAAT1 mediates autophagic
degradation of IRF3 and IRF7

Given that PLAAT1 interacts with IRF3 and IRF7 and that it

suppresses IFN response, we reason that formation of PLAAT1/

IRF3 or PLAAT1/IRF7 complex may initiate degradation of

IRF3 and IRF7 proteins. For this, we overexpressed the plaat1

gene together with the irf3 or irf7 gene in the EPC cells and

observed that PLAAT1 promoted degradation of IRF3 and IRF7

in a dose dependent manner (Figures 7A, B). It has been well

established that protein is degraded mainly via three different

pathways involving lysosome, ubiquitin–proteasome and

autophagosome. To determine the degradation pathways, we

analyzed the effects of pathway inhibitors on the PLAAT1

mediated IRF3/IRF7 degradation. These included chloroquine

(CQ, inhibitor of late-phase lysosome dependent autophagy,

MG132 (inhibitor of the ubiquitin–proteasome system) and 3-

methyladenine (3-MA) (inhibitor of autophagosome). It was

shown that the PLAAT1-mediated degradation of IRF3 and

IRF7 could be restored by 3-MA but not CQ or MG132

(Figures 7C, D), suggesting that overexpression of PLAAT1

could act ivate degradat ion of IRF3 and IRF7 via

autophagosome mediated pathway.
B

CA

FIGURE 5

PLAAT1 interacts with IRF3 and IRF7. (A, B) EPC cells were transfected with the indicated plasmids (5 mg each). After 24 h, cell lysates were
immunoprecipitated (IP) with a-GFP affinity resin. The immunoprecipitates and cell lysates were analyzed by immunoblotting (IB). (C) PLAAT1
co-localized with IRF3 and IRF7 in the cytoplasm. with or without SVCV infection. EPC cells were plated onto coverslips in 6-well plates and
transfected with PLAAT1-GFP (2 mg) and Myc-IRF3 (2 mg) or Myc-IRF7 (2 mg) plasmids. After 24 h, the cells were left untreated (MEM), infected
with SVCV. After an additional 24 h, cells were stained with DAPI (blue) and photographed under a confocal microscope. Green and red colors indicate
overexpressed PLAAT1 and IRF3 or IRF7, respectively. Scale bar=25 mm. All experiments were repeated at least three times with similar results.
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Discussion

The PLAAT family consists of multiple members that are

evolutionary conserved and possess multiple functions. In

humans, 5 members are present whereas in mice, 3 are found.

All the members possess phospholipase A/acyltransferase

activities and play key roles in modifying phospholipids (21).

However, the functions of these enzymes are not fully

understood. Recently, it has been shown that PLAAT1 and

PLAAT3 are involved in degradation of cellular organelles

such as mitochondria, endoplasmic reticulum and lysosomes

in the lens (33). Moreover, some members of the PLAAT family

have been implicated in regulating immune responses. For

example, PLAAT3 (also known as PLA2G16) causes

membrane rupture of endo-lysosomes to release the viral

genomes upon infection with picornavirus and acts as a switch

in virus entry and clearance (28). Plaat3 can be induced by IFN-g
and promotes the premature egress of parasites in humans,

hence restricting Toxoplasma gondii infection (36). In a previous

study, we found that PLAAT1 interacts with p53 and is involved

in autophagy (34). Our current work has shown that PLAAT1

inhibits virus-induced production of type I IFN by degradation
Frontiers in Immunology 08
of IRF3 and IRF7. These results demonstrate that PLAAT1

regulates host immune response against infection.

Interferon response is essential for the host to defend virus

invasion. However, the actions of type I IFN must be tightly

controlled to avoid excessive IFN response which is detrimental

to the host. IRF3 and IRF7 are the master transcription factors

driving IFN production in response to viral infection (35). Upon

activation by the viral PAMPs, PRRs trigger a cascade of

signaling events, leading to phosphorylation of IRF3 and IRF7

and subsequent translocation into nucleus to induce IFN

expression (37). This process can be regulated at the multiple

levels by host cellular factors and viral proteins. For example,

zebrafish sirt7 negatively regulates antiviral response through

attenuating phosphorylation of IRF3 and IRF7 (38). The SVCV

P protein functions as a TBK1 substrate to decrease IRF3

phosphorylation, reducing IFN transcription and facilitating

viral replication (39). On the other hand, the availability of

IRF3 and IRF7 for phosphorylation is critical and can be affected

by cellular factors mediating protein synthesis and degradation.

It has been shown that proteasomal degradation of IRF3 and

IRF7 is enhanced by F-box protein fbxo3 in zebrafish, thus

inhibiting the IFN production during viral infection (40). In
B

C D

A

FIGURE 6

PLAAT1 interacts with the IAD of IRF3 and IRF7. (A) Schematic description of IRF3, IRF3-DDBD and IRF3-DIAD. (B) PLAAT1 was immunoprecipitated with
IRF3, IRF3-DDBD. (C) Schematic description of IRF7, IRF7-DDBD and IRF3-DIAD. (D) PLAAT1 was immunoprecipitated with IRF7 and IRF7-DDBD. EPC
cells were transfected with the indicated plasmids (5 mg each). At 24 h, cell lysates were analyzed by immunoblotting (IB) with the respective Abs.
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supporting this notion, we show here that PLAAT1 interacts

with IRF3 and IRF7, triggering their degradation to mitigate IFN

expression. This negative regulation of IFN response could be

important to fine-tune the IFN response to restore the

hemostasis state after clearance of viruses. On the other hand,

viruses could exploit this mechanism to counteract the IFN

activated antiviral response.

Protein degradation is regulated via three different pathways,

engaging the lysosome, ubiqui t in-proteasome and

autophagosome. Previous studies have suggested that zebrafish

IRF3 or IRF7 are regulated by the ubiquitin proteasome

pathway, for instance, Uba1 promotes the K48-linked

ubiquitination of IRF3, leading to their proteasomal

degradation (41). In addition, ovarian tumor domain-

containing 6B protein diminishes TRAF6-mediated K63-linked

polyubiquitination of IRF3 and IRF7 to suppress IFN production

(42). Autophagy also contributes to the regulation of IRF3-

mediated antiviral signaling. IFN-induced transmembrane

protein 3 (IFITM3) mediates degradation of IRF3 via

autophagosome-dependent pathway, inhibiting virus-triggered

IFN induction (43). Autophagy allows cells to degrade proteins,

protein complexes, and organelles through a lysosome-

dependent mechanism (44). We demonstrate here that

PLAAT1 interacts with IRF3 and IRF7, resulting in their

degradation likely through an autophagosome-dependent
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pathway since 3-MA, an inhibitor of autophagosome, could

abolish the inhibitory effect of PLAAT1 on degradation of

IRF3 and IRF7 (Figure 7). We further show that the

interaction between PLAAT1 and IRF3/IRF7 involves the IAD

but not the DBD domains of both IRF3 and IRF7. Previous

studies have shown that the IADs of IRFs are responsible for the

interactions with other proteins including other members of the

IRF family (13, 17).

In summary, we show that zebrafish PLAAT1 interacts with

IRF3 and IRF7 and triggers degradation of IRF3 and IRF7,

therefore blocking IFN production. Our findings reveal a novel

role of PLAAT1 in regulating host cellular antiviral response.
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