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Abstract

Electrical synapses couple inhibitory neurons across the brain, underlying a variety of functions that are modi-
fiable by activity. Despite recent advances, many functions and contributions of electrical synapses within neu-
ral circuitry remain underappreciated. Among these are the sources and impacts of electrical synapse
asymmetry. Using multi-compartmental models of neurons coupled through dendritic electrical synapses, we
investigated intrinsic factors that contribute to effective synaptic asymmetry and that result in modulation of
spike timing and synchrony between coupled cells. We show that electrical synapse location along a dendrite,
input resistance, internal dendritic resistance, or directional conduction of the electrical synapse itself each
alter asymmetry as measured by coupling between cell somas. Conversely, we note that asymmetrical gap
junction (GJ) conductance can be masked by each of these properties. Furthermore, we show that asymmetry
modulates spike timing and latency of coupled cells by up to tens of milliseconds, depending on direction of
conduction or dendritic location of the electrical synapse. Coordination of rhythmic activity between two cells
also depends on asymmetry. These simulations illustrate that causes of asymmetry are diverse, may not be
apparent in somatic measurements of electrical coupling, influence dendritic processing, and produce a variety
of outcomes on spiking and synchrony of coupled cells. Our findings highlight aspects of electrical synapses
that should always be included in experimental demonstrations of coupling, and when assembling simulated
networks containing electrical synapses.
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Significance Statement

Asymmetry, or unequal transmission of current between two coupled neurons, is a property of electrical
synapses often noted but seldom explored. Here, we show that multiple intrinsic factors can either produce,
or mask, asymmetry. Spike timing and rhythmic synchrony are both affected by asymmetric connections
between neurons. These results highlight important consequences of asymmetry that are likely to be reca-
pitulated within coupled networks throughout the brain.

Introduction
Electrical synapses represent a major form of communi-

cation between neurons across neuronal tissue, with
many impacts that have not been extensively explored.
Asymmetry of transmission, is a frequently noted aspect
of electrical synapses: it is the property of unequal trans-
mission of electrical signals between two neurons, and
ranges in effect from minor to complete. Electrical

synapses have been well studied in invertebrates, where
evidence of asymmetry comes from species including
crayfish (Furshpan and Potter, 1959), Drosophila giant fi-
bers (Phelan et al., 2008), lobster stomatogastric ganglion
(Johnson et al., 1993), and the Caenorhabditis elegans es-
cape circuit (Liu et al., 2017; Shui et al., 2020). In inverte-
brate systems, asymmetry varies widely, with some
synapses displaying full rectification. In contrast, asym-
metry at synapses between mammalian neurons is often
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more modest. Demonstrations of electrical synapse
asymmetry are numerous throughout the mammalian
brain, including retina (Veruki and Hartveit, 2002), cortex
(Galarreta and Hestrin, 2002), inferior olive (Devor and
Yarom, 2002), dorsal cochlear nucleus (Apostolides and
Trussell, 2013), mesencephalic trigeminal nucleus (Curti
et al., 2012), cerebellar Golgi cells (Szoboszlay et al.,
2016) and molecular layer interneurons (Mann-Metzer and
Yarom, 1999; Alcami and Marty, 2013), and the thalamic
reticular nucleus (TRN; Haas et al., 2011; Sevetson and
Haas, 2015; Zolnik and Connors, 2016). Recent results
show that asymmetry can be modified during the activity
that results in electrical synapse plasticity (Haas et al.,
2011; Fricker et al., 2021), indicating that it is a dynamic
property that is under activity-dependent regulation.
Asymmetry of electrical transmission can in principle

result from a wide variety of influences. It has been well
established in non-mammalian systems that directional
differences in conductance between two coupled cells
can result from heteromeric channels or heterotypic
gap junction (GJ) plaques that coupled membranes
(Bukauskas et al., 1995; Rash et al., 2013), or from dif-
ferences in hemichannel protein scaffolding (Marsh et
al., 2017). Hemichannel differences resulting in asym-
metry have been demonstrated in HeLa cells express-
ing connexin isoforms (Bukauskas et al., 1995) and at
the mixed synapse onto Mauthner cells in goldfish
(Rash et al., 2013). Connexin-sourced asymmetry was
thought to be unlikely for neuronal mammal synapses,
as connexin36 does not oligomerize or dock with other
connexins (Teubner et al., 2000; Li et al., 2004), and in
expression systems appears to form perfectly symmet-
ric synapses (Srinivas et al., 1999). However, residual
coupling has been noted between TRN neurons in con-
nexin36 knock-out mice, and that coupling was more
asymmetrical (Zolnik and Connors, 2016), indicating a
possible physiological source of synaptic asymmetry in
mammalian neuronal systems. Large gradients of Mg21

concentration produce asymmetric signaling for neuro-
nal synapses (Palacios-Prado et al., 2013), and gating
properties of connexin channels produce asymmetry in
computational models (Snipas et al., 2017). Cable prop-
erties of coupled dendrites affect voltage transmission
(Nadim and Golowasch, 2006), indicating that differen-
ces in dendritic diameter may produce asymmetric cou-
pling. Intrinsic differences between coupled neurons,
such as differences in input resistance (Bennett, 1966;
Mann-Metzer and Yarom, 1999; Veruki and Hartveit,
2002; Fortier, 2010) or leak conductances (Alcami and

Marty, 2013), have long been mentioned as a straight-
forward reason that one might observe asymmetry in
coupling coefficients. For TRN synapses, asymmetry
remains even after computing estimates of conduct-
ance that should in principle minimize contributions of
input resistance (Haas et al., 2011; Sevetson and
Haas, 2015). And while many reports of electrical syn-
apses across the mammalian brain include asymmetry
in their measurements, some reports do not note it, or
only note that in their observations, synapses were
symmetrical as expected. In all, asymmetry and its
sources remain underappreciated at mammalian elec-
trical synapses.
Beyond observations, the functional consequences of

electrical synapse asymmetry on neural activity are not ro-
bustly understood. Electrical synapses have been widely
shown to contribute toward synchrony of rhythmic activity
in neuronal networks in both experiments (Marder, 1998;
Draguhn et al., 1998; Galarreta and Hestrin, 1999; Gibson
et al., 1999; Mann-Metzer and Yarom, 1999; Tamás et al.,
2000; Hormuzdi et al., 2001; Landisman et al., 2002;
Blatow et al., 2003; Bennett and Zukin, 2004; Long, 2004;
Christie et al., 2005; Long et al., 2005; Vervaeke et al.,
2010) and in computational models (Kepler et al., 1990;
Sherman and Rinzel, 1992; Destexhe et al., 1996; Manor
et al., 1997; Skinner et al., 1999; Chow and Kopell, 2000;
Lewis and Rinzel, 2003; Whittington and Traub, 2003;
Kopell and Ermentrout, 2004; Nomura et al., 2004; Saraga
and Skinner, 2004; Pfeuty et al., 2005; Traub et al., 2005;
O’Connor et al., 2012; Gutierrez et al., 2013; Pernelle et
al., 2018), and oscillations are more robust when asym-
metrical electrical synapses are included (Gutierrez and
Marder, 2013). Rectification at the LP-PY mixed synapse
is a key component of coordinating the pyloric circuit of
the spiny lobster (Mamiya et al., 2003). In non-rhythmic
settings, strong asymmetry can produce nearly unidirec-
tional communication that serves to reliably excite one
coupled cell, as is the case with the club endings onto
Mauthner cells in goldfish (Rash et al., 2013), and dorsal
cochlear nucleus (Apostolides and Trussell, 2013).
Electrical synapses modulate individual spike times in
coupled neighbors in TRN by up to tens of milliseconds
(Haas, 2015; Sevetson and Haas, 2015), and asymmetric
coupling can add to that modulation, even reversing firing
order between two coupled cells that receive closely-
timed inputs (Sevetson and Haas, 2015). In a model thala-
mocortical circuit, coupling between feedback inhibitory
neurons enhances discrimination of inputs sent to cortex
by relay cells (Pham and Haas, 2018). In a canonical
model circuit with feedforward inhibition, electrical synap-
ses enhance subthreshold integration in principal cells
(Pham and Haas, 2019). In a toadfish vocal circuit, electri-
cal coupling between feedforward inhibitory neurons en-
hances synchrony and temporal precision (Chagnaud et
al., 2021) and a similar effect occurs for cerebellar basket
cells (Alcami, 2018; Hoehne et al., 2020). These are some
of the functions that could be altered by asymmetry.
While a few models have included electrical synapses in
morphologically extended cells (Saraga and Skinner,
2004; Nadim and Golowasch, 2006; Amsalem et al.,
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2016), the sources or functions of asymmetrical synapses
have not yet been explored in that context.
Here, we used compartmental models of coupled TRN

neurons to investigate and compare how a variety of funda-
mental neuronal properties could each contribute to electrical
synapse asymmetry, including synapse location, strength, di-
rection of conductance, dendritic geometry, and input resist-
ance. We show that, as predicted, a variety of these factors
can produce effective differences in coupling coefficients as
observed between somas. We then demonstrate that con-
versely, these same properties can mask asymmetric con-
ductance of electrical synapses, resulting in apparently equal
coupling as measured between somas. Together, these re-
sults underline that asymmetric transmission and impacts are
likely to occur more widely than previously considered.
Finally, we show that asymmetry regulates spike timing and,
unexpectedly, the form of rhythmic coordination in coupled
neurons. We conclude that electrical synapses between den-
drites can exert locally powerful influence that is not readily
apparent at the soma, highlighting the necessity of including
electrical synapses in morphologically detailed models, cir-
cuits or connectomes.

Materials and Methods
Modelling
Models were built on those previously reported (Destexhe

et al., 1996; Traub et al., 2005; Haas and Landisman, 2012;
Pham and Haas, 2018, 2019). We use Hodgkin–Huxley for-
malism (Eq. 1) solved by a second order Runge–Kutta ODE
solver in MATLAB version R2020b (MathWorks), simulations
were run on an ASUS desktop PC with Intel i7-10700K CPU
runningWindows 10:

Cm
dVi

dt
¼ Gleak � Eleak � Við Þ1

X
ion

channels

GionðtÞ � ðEion � ViÞ

1

Xj 6¼i

chemical
synapses

Gsyn t; teventsj

� �
� Esyn � Við Þ1

Xj 6¼i

electrical
synapses

Gelec ji � ðVj � ViÞ

1

X
external
inputs

Gsyn t; teventsexternal

� � � ðEsyn � ViÞ

1

Xj 6¼i

coupled
compartments

Ginternal ji � ðVj � ViÞ (1)

The single compartment TRN cell model included the
following ionic currents and maximal conductances: fast
transient Na1 (NaT) 60.5 mS/cm2, K1 delayed rectifier (Kd)
60 mS/cm2, K1 transient A (Kt) 5 mS/cm2, slowly inacti-
vating K1 (K2) 0.5 mS/cm2, slow anomalous rectifier (AR)
0.025 mS/cm2, and low threshold transient Ca21 (CaT)
0.75 mS/cm2. Reversal potentials were 50mV for sodium,
�100mV for potassium, 125mV for calcium, �40mV for
AR and �75mV for leak. Capacitance was 1 mF/cm2 with
leak of 0.1 mS/cm2. Three-compartment models were
constructed consisting of one soma and two dendritic
compartments, approximating the middle and distal

regions of the dendrite. Compartments were connected
by a static conductance Ginternal of 0.35 mS/cm2 between
distal and middle dendrites, and 0.4 mS/cm2 between
middle dendrite and soma. Membrane capacitance was
1.2 mF/cm2. Maximal conductance for the compartmental
model were: NaT 60.5 mS/cm2, Kd 90 mS/cm2, Kt 5 mS/
cm2, K2 0.5 mS/cm2, AR 0.005 mS/cm2, and CaT 0.5 mS/
cm2. Leak conductance was set at 0.1 mS/cm2 for soma
compartments, and 0.035 mS/cm2 for dendrites, except
when altering input resistance where leak conductance
was scaled by 0.75–1.45 times, corresponding to 625%
change in input resistance. Dendritic compartments had
lower CaT conductance of 0.15 mS/cm2. We removed the
sodium current from dendrites, as TRN dendrites do not
spike in recordings (Connelly et al., 2017). Electrical syn-
apses were modeled as a static conductance Gelec (re-
ferred to as Gc in Results) applied to the voltage
difference between the coupled compartments of the
TRN cells. Asymmetry was implemented by varying Gelec

for each cell. Excitatory synapses were AMPAergic with
reversal potential of 0mV with rise and fall time kinetics of
5ms and 35ms respectively.

Analysis
Coupling coefficients were measured by injecting hyperpo-

larizing current into the soma of one cell (A) and measuring
the resulting current deflection in the soma of the other cell
(B) compared with baseline (ccAB = DVB/DVA), matching ex-
perimental methodology. We used 500-ms-long square cur-
rent injection and measured coupling in both directions
between the cell pairs. The steady-state voltage during hy-
perpolarization was taken as the average voltage during the
last 200ms of stimulation. Coupling coefficient ratio was cal-
culated as cc12/cc21.
To analyze latency modulation produced by electrical

synapses we applied burst like EPSCs to distal dendrites
of the model TRN cells and measured the time between
onset of the first EPSC to the first action potential. Bursts con-
sisted of 13 EPSCs of 1-mA amplitude with 5-ms interspike in-
terval (ISI), 0.5-mA depolarizing current was applied to raise
excitability of the cell model. Latency modulation was ex-
pressed as the difference in the change of latency between
the two cells, compared with the latency of an uncoupled
model cell. Synchrony was examined using single cell models
driven to spike tonically, with one cell driven slightly higher,
I1=0.575, I2=0.6mA/cm2. Cross-correlations were taken for
a 500-ms time window during stable tonic firing, spike trains
were filtered with a 5-ms Hanning window. Time lag values
from the peak of the cross correlations were taken to calcu-
late phase difference between the two spike trains (phase
difference = tmax lag/ISI� 360). To examine the effect of asym-
metry, coupling was constant in the cell 2–1 direction and
scaled coupling in the 1–2 direction to obtain ratios between
0.3 and 3 times, the range observed from paired recordings
at TRN.

Code availability
The code/software described in the paper is freely avail-

able online at https://github.com/jhaaslab/Asymmetry.
The code is also available as Extended Data 1.
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Results
To address the impact of neuronal excitability and mor-

phology on electrical synapse communication, we built a
three-compartment TRN cell Hodgkin–Huxley model, in-
cluding a T-type calcium conductance in addition to leak,
sodium, and potassium conductances, based on those

previously used (Destexhe et al., 1996; Traub et al., 2005;
Pham and Haas, 2018, 2019). To validate the model’s
dendritic responses, we used coupling between compart-
ments that generated reasonable amplitudes of backpro-
pagated signals (Fig. 1A), sublinear dendritic responses to
AMPAergic current injections (Fig. 1B) that matched

Figure 1. Compartmental TRN model and characterization of coupling responses for GJs at varied dendritic locations. A,
Schematic of compartmental TRN model and representative traces from each compartment in response to square depolarizing cur-
rent injection at the soma compartment. Scale bars: 10mV, 25ms. B, Postsynaptic response to an AMPAergic input delivered to
distal dendrite. EPSP amplitudes were sublinear above 2 mA, due to lack of active conductances in dendrites. C1, Schematic for
electrically coupled models. Voltage traces in both cells result from a hyperpolarizing current injection into the soma of cell 1 (left
traces) and transfer to cell 2 (right traces). Scale bars: 5mV, 100ms. C2, Coupling coefficients (cc) measured between somatic com-
partments as in C1 for GJs located between the somas (yellow), middle compartments (red), and distal dendrites (blue). An identical
single-compartment model is shown for comparison (black). D1, Schematic and voltage traces for coupling measured between den-
drites after dendritic current injection. D2, Coupling coefficients (cc) measured between dendritic compartments as in D1 for GJs lo-
cated between the somas (yellow), middle compartments (red), and distal dendrites (blue). E, EPSP amplitudes for each
compartment for distally applied EPSC to cell 1 (left traces; scale bars: 2mV, 25ms), transmitted to cell 2 across a distal electrical
synapse (right traces; scale bars: 1mV, 12.5ms).
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dendritic recordings from TRN cells (Connelly et al., 2017)
and firing responses from our own recordings (Haas et al.,
2011; Sevetson and Haas, 2015). We then added an elec-
trical synapse between matched compartments of two
identical TRN model cells and measured the coupling co-
efficients resulting from hyperpolarizing current applied to
and measured at the somas (Fig. 1C1). We chose coupling
conductance values to match coupling coefficients ob-
served in recordings, cc between 0 and 0.3 (Haas et al.,
2011). For these matched-compartment connections, elec-
trical synapses produced higher coupling coefficients when
synapses were closer to the soma, as the current between
electrodes has a more direct path (Fig. 1D1). A single-com-
partmental model used for comparison (Fig. 1C1,D1, black)
resulted in stronger coupling coefficients, as removing den-
drites reduced leaks from the circuit. Similarly, when current
is applied and coupling measurements are taken between
distal dendrites (Fig. 1C2), coupling is stronger at dendriti-
cally located synapses but decreases as the synapse loca-
tion approaches the soma (Fig. 1D2). This is a simple result
of cable properties, but highlights the notion that electrical
synapses can produce strong and effective coupling be-
tween dendritic compartments (Fig. 1E) that is not apparent
from somatic measurements.
Next, we varied the location of electrical synapses be-

tween the dendritic compartments of each cell, and again

measured coupling between somas of cell 1 and cell 2. In
all cases, the coupling for mixed-location synapses was
intermediate to the values obtained for connections be-
tween matched compartments (Fig. 2A–C). Interestingly,
coupling values for pairs of compartment connections
that one might initially expect to produce the same cou-
pling, such as soma-middle (S-M) and middle-soma (M-S;
Fig. 2A, orange dots), do not produce identical coupling
coefficients. The source of asymmetry in this case is the
differences in dendritic leaks that siphon soma-applied
current from the GJ pathway. Specifically, for S-M con-
nections, the dendritic load for soma-applied current
comprises resistance from both M and D compartments
and is larger than the remaining dendritic leak from a sin-
gle D compartment when current is applied to the oppo-
site soma. These differences lead to differences in the
currents crossing the GJ when current is separately ap-
plied to each soma, and thus the coupling coefficients are
asymmetric as measured between somas. Comparing
Figure 2A–C, we note that this effect is strongest for con-
nections closer to the soma, where the differences in den-
drites distal to the electrical synapse are largest.
We compared asymmetry, or cc ratios, for all synapse

locations as a function of synapse strength (Fig. 2D). As
expected, connections between the same compartments
(e.g., M-M) were perfectly symmetrical for all values of

Figure 2. Electrical synapse location and strength contribute to coupling coefficient and asymmetry measured at the soma. A,
Coupling coefficients measured from cell 1 to cell 2 for all sets of somatic and middle-compartment electrical synapses. Soma-
soma synapses are in yellow, middle-middle synapses are in red, and both types of soma-middle synapses are orange with oppo-
site coupling (M-S) indicated by darker shaded datapoints. B, As in A for somatic and distal synapse locations. C, As in A for middle
and distal synapse locations; note overall decrease in coupling for more-distant synapses. D, Coupling coefficient ratio (cc12/cc21)
for each synapse location and strength. Locations are grouped by effect; the top box shows GJs between matched compartments
that are symmetric, as expected. In the middle box, the GJ was closer to the soma of cell 2, and thus cc21 was larger. In the bottom
box, the GJ was closer to the soma of cell 1, and thus cc12 was larger. Asymmetry increased with difference between location of
the GJ, and with proximity to the soma.
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electrical synapse conductance. In contrast, mismatched
synapses are marked by decreasing or increasing cc ra-
tios, with the mirror cases producing similar degrees of ef-
fective asymmetry in opposite directions (e.g., M-D and
D-M). We also noted that asymmetry was greater for
more-mismatched synapse pairs (e.g., S-D and M-D, or
the blocks in Fig. 2D), as the distal-soma connections
produce cc ratios furthest from 1. Further, asymmetry
was greatest for synapses connected to the soma, while
M-D synapses showed a lesser degree of effective asym-
metry. These simulations demonstrate that effective
asymmetry between somatic integrators can arise from
difference in synapse location, when perfectly symmetri-
cal electrical synapses encounter asymmetrical spatial
differences between identical somas and dendrites, and
thereby dictate effective asymmetry.
Effective asymmetry can also arise from differences in

basic excitability, e.g., membrane input resistance Rin. To
demonstrate this widely expected phenomenon, we al-
tered Rin by changing leak conductance in cell 2 of the
model (Fig. 3A), and measuring coupling coefficient cc in

both directions. When GJs coupled two somas of differing
Rin, cc was determined only by Rin of cell 2 (Fig. 3B, yel-
low); cc12 varied, while cc21 stayed constant. As GJs were
more distant from the soma, voltage divisions allowed
both cc12 and cc21 to change, although changes in cc12
were always larger. Differences in GJ location also con-
tributed to asymmetry here, again splitting the differences
between the extremes, similarly to the effect shown in
Figure 2.
The combined effects of input resistance and location

are summarized in Figure 3E, which shows simulations for
three values of average electrical synapse strength GC for
all synapse locations and input resistance mismatches.
For matched-compartment locations (top boxes), asym-
metry was determined only by differences in Rin. For GJs
that coupled cells with differing Rin and synapses at mis-
matched locations, synapse location appeared to be a
weaker effect than input resistance mismatch: the cell
with the GJ closer to its soma always yielded a smaller
coupling (e.g., middle box: synapses are closer to soma
2, and produced asymmetry,1). As in Figure 2,

Figure 3. Dependence of asymmetry on synapse location and input resistance differences. A, Schematics depicting differences in
input resistance, and varied synapse locations. B, Coupling versus difference in input resistance for GJs (GC = 0.15 mS/cm2) be-
tween middle-middle, middle-soma, and soma-soma compartments. Difference in input resistance is expressed as cell 2 relative to
cell 1. C, As in B for GJs between distal and soma compartments. D, As in B for GJs between distal and middle compartments. E,
Asymmetry plotted against input resistance differences, grouped by electrical synapse strength (GC), which increases across pan-
els: 0.1, 0.15, and 0.2 mS/cm2.
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asymmetry was strongest for synapses coupling the
most spatially separate compartments. These simula-
tions showed us that increasing GC amplified the asym-
metry produced by differences in Rin. Synapses that
were mostly below one in cc ratio further decreased in
cc ratio (Fig. 3E, middle rows), while locations with cc
ratio above one increased with the strength of the syn-
apse (Fig. 3E, bottom rows). Synapses between similar
compartments (top rows) showed minimal changes with
increasing strength of the synapse.
To further examine how heterogeneity between two

coupled cells could contribute to effective asymmetry, we
altered the internal coupling conductance between com-
partments of the cell. For all synapse locations, differen-
ces in dendritic coupling altered resulting cc ratios
(Fig. 4), but by amounts smaller than synapse mismatch
or input resistance difference. Increasing dendritic con-
ductance favors transmission into that cell and thus

lowers cc ratio when cell 2 has more-conductive den-
drites. Similarly, cc ratio increases when cell 1 is higher in
dendritic conductance. This result is consistent for the
connections between same cellular compartments, which
are symmetric when morphology is the same, and the
mismatched locations which are asymmetric in the same
case. Although morphology may not produce substantial
asymmetry alone, in conjunction with synapse location
the intrinsic differences between two cells will fine-tune
the overall coupling and asymmetry measured between
them.
The previous sets of simulations used a symmetrical

synapse to show that several aspects of cellular proper-
ties and synapse locations can yield effective asymme-
try, as expected. Next, we asked whether an electrical
synapse that was itself asymmetrical could produce the
same effective asymmetries. We varied the conduct-
ance GC of the electrical synapse between somatic

Figure 4. Differences in dendritic morphology fine-tune coupling coefficients and asymmetry. A, Internal conductances between the
three subcellular compartments were altered in cell 2, as shown in schematics. Changes in middle-soma conductance is plotted on
the x-axis, and change in distal-middle conductance is plotted on the y-axis. B, Heat maps of cc ratio for all synapse locations. In
all cases, decreasing internal conductance increased cc ratio, while increasing internal conductance in decreased cc ratio. Gc was
0.15 mS/cm2 for all synapses in these simulations.
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compartments, and again examined the effect of input
resistance changes on effective asymmetry. Our results
demonstrate that similar values of effective asymmetry
could arise from either GC ratio or input resistance dif-
ference (Fig. 5). For each set of input resistances (Fig. 5,
column), synaptic asymmetry could produce a range of
effective asymmetry. These simulations illustrate the
potential for cc values recorded from the soma to ap-
pear similarly asymmetric, whether asymmetry is pro-
duced from differential intrinsic properties or synapses
themselves.
Together, the previous results show that asymmetry in

coupling as measured between somas can arise from a
number of factors. We demonstrate this masking in Figure
6 the same amount of asymmetry in coupling as meas-
ured at the soma can arise from independent sources. We
identified simulations that resulted in 20% coupling differ-
ence, as this is the most common cc ratio observed in
paired recordings at TRN (Haas et al., 2011). Higher trans-
mission to cell 2 by the same proportion (cc ratio ;1.2)
can be produced by asymmetric GJ with Gc ratio of 1.8
and Rin change of �20% (Fig. 6B), or M-D synapse lo-
cation and 125% Rin change (Fig. 6D), or S-M synapse
with higher dendritic conductance in cell 1 (Fig. 6F).
Alternatively, higher transmission to cell 1 (cc ratio
;0.8) can be produced by asymmetric GJ with Gc ratio
of 0.67 and 16% Rin change (Fig. 6C), or M-S synapse
and �12% Rin change (Fig. 6E), or D-S synapse with
higher dendritic conductance in cell 2 (Fig. 6G). Thus,
asymmetry measured at the soma is not informative as
to its source, and more pertinently, fails to provide in-
sight into processing in coupled dendrites.
Next, we examined the impact of asymmetry on the

function of coupled pairs. Electrical synapses have been
previously shown to modulate latency of action potentials
in coupled pairs (Haas, 2015; Sevetson and Haas, 2015;
Alcami, 2018). We measured latency to burst-like input
patterns of AMPAergic synaptic currents delivered to

distal dendrites of both cells of a coupled pair, to mimic
excitatory afferent activity received by cells of the TRN
(Gentet and Ulrich, 2003) from bursting thalamic relay
cells (Fig. 7A). We tested each synapse location, and also
varied the arrival (onset) times of the AMPAergic bursts
between the two cells. For synapses between the similar
compartments (Fig. 7C,D), latency difference increases
with GC and difference in input time. Dissimilar locations
alter the latency modulation with a variety of effects, with
synapses in varied locations shifting latency modulation
curves either up (D-M) or down (M-D), producing a variety
of outcomes in cell firing by as much as 20ms. This trend
is generalized in the asymmetrically conducting synapse,
where GC ratio .1 produces higher latency modulation,
and values,1 shift latency modulation lower (Fig. 7B).
To examine the possible consequences of asymmetry

on spike synchrony, a well noted function of electrical
synapses, we used single-compartment models used
previously (Haas and Landisman, 2012; Pham and Haas,
2018) to analyze correlations of tonic spike trains (Fig. 8A,
B) elicited by steady current injection, with one cell (here,
cell 2) driven slightly faster. Synchrony was demonstrated
by peaks in steady-state cross-correlation of the spike
trains (Fig. 8C,D). As electrical synapse strength in-
creased, spike rates of the two neurons converged for
coupling strength larger than 0.004 mS/cm2, and in-
creased together with synapse strength because of the in-
crease in excitability contributed by the GJ (Fig. 8E). As
expected from theoretical models of coupled oscillators
(Lewis and Rinzel, 2003; Saraga and Skinner, 2004), our
simulations revealed synchronous firing that transitioned
from stable in-phase (;0° lag) to out-of-phase (;180°
lag) forms (Fig. 8E) for a symmetrical GJ. We next ob-
served that asymmetry of the GJ interacted with strength
and altered the form of synchrony (Fig. 8F). For weak cou-
pling, asymmetry that increased from 0.3 to 3, altering the
identity of the favored cell, brought spike times closer to-
gether and produced a transition from out-of-phase to in-

Figure 5. Asymmetry due to altering directional conductance produces similar response in coupling coefficients compared with syn-
apse location asymmetry. Directional conductance changes between the cells produces a similar degree of asymmetry in cc ratio,
with input resistance difference between the two cells predictably shifts the cc ratio values. Gc ratio (Gc12/Gc21) from altering con-
ductance from cell 1 to cell 2 was varied, while the opposite direction was held constant (Gc21 = 0.15 mS/cm2). Input resistance
was altered in cell 2 relative to cell 1. Neuron schematics depict direction with larger conductance as a thicker resistor symbol,
while size of the cell indicates change in input resistance.
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phase synchrony. The impact of asymmetry strengthened
as synapse strength increased (Fig. 8F, across panels).
Asymmetry that favored transmission arising from the
slower cell (GC ratio. 1) brought firing closer to in-phase,
while asymmetry that favored the faster cell (GC ratio,1)
led to out-of-phase solutions (Fig. 8G,H). These results to-
gether show that asymmetry, regardless of its subcellular
source, controls synchronous rhythmic activity between
coupled neurons.

Discussion
Asymmetry of transmission at electrical synapses has

been widely noted but its specific sources rarely explored
in depth, perhaps because of the experimental difficulties
of identifying and localizing specific GJs in vitro or in vivo.

Nonetheless, because asymmetry is pervasive and can
result in extreme cases in which spikes in one cell more or
less faithfully drives spiking in the coupled neighbor
(Apostolides and Trussell, 2013; Rash et al., 2013), we
sought to understand how basic neuronal properties
could influence effective coupling, and thereby the func-
tion of coupled networks. Here, we have shown that
asymmetry can arise from a variety of intrinsic differences
in neuronal properties as well as differences in subcellular
localization of the GJ between somas. We expect addi-
tional heterogeneities, such as in the ionic currents
expressed in each cell, will similarly affect coupling meas-
urements and thus effective asymmetry, as similar activity
patterns can be produced by a variety of models in pyloric
circuit (Prinz et al., 2004). In practice, asymmetry is a
combined product of all of these factors together. We

Figure 6. Varied scenarios can produce identical asymmetry as measured at the soma. A, Approximate isoclines (black lines) show
parameters that produce the same degree of asymmetry (cc ratio of 16 0.2). Representative traces (B–G) were taken from data
along these isoclines (white stars) for cases of directionally asymmetrical conducting GJs, differing synapse locations, or differing
dendritic geometries. B, GC ratio 1.8, Rin change �20%. Scale bars: 5mV, 200ms. C, GC ratio 0.667, Rin change 16%. D, M-D GJ:
Rin change 125%. E, M-S GJ, Rin change �12%. F, S-M GJ, GMS change �13.3%, GDM change �20%. G, D-S GJ, GMS change
120%, GDM change 120%.
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also found that asymmetrical and/or strong synapses be-
tween dendritic compartments can be masked from so-
matic detection by the same intrinsic properties. Our
measurements here focused on soma-to-soma transmis-
sion, as ultimately, asymmetry between somas is the last
stop before spike generation in the axon initial segment,
and because electrical synapse strength is traditionally
measured between somas. Indeed, our results also high-
light that regardless of its source, asymmetry substantially
impacts spike times and synchrony between coupled
cells (Gutierrez and Marder, 2013; Sevetson and Haas,
2015).
Precise locations of electrical synapses along dendrites

have proven difficult to exhaustively determine, but a
handful of studies point toward asymmetrical localization.
In coupled interneurons of cortex Layer IV, synapses are
located all along the dendrites, and measurements from
204 cells showed strong asymmetry in localization, with

90% synapses within 50–75 mm of one soma, but up to
250mm away from the coupled soma (Fukuda, 2017).
Asymmetrical localization also appears to be a feature of
coupling between cerebellar Golgi cells (Szoboszlay et al.,
2016). The strongly asymmetrical synapses of the DCN
also appear to couple mismatched distances from fusi-
form and stellate somas (Apostolides and Trussell, 2013).
Other studies indicate that dendritic location of GJs is di-
verse across brain areas, and thus asymmetry could vary
widely. In brainstem MesV cells, GJs appear to be located
at or very close to the soma (Curti et al., 2012). In contrast,
in inferior olive (Devor and Yarom, 2002; Hoge et al.,
2011) cells are coupled at quite distal dendrites, such that
somatic measurements of coupling themselves are small.
Average intersomatic distances between coupled cells in
TRN are ;100mm (Lee et al., 2014), implying that GJs are
dendro-dendritic, and have a great deal of potential to
create asymmetric localization of GJs between cells.

Figure 7. Asymmetry controls the latency modulation produced by electrical synapses. A, Each TRN cell received AMPAergic
burst-like inputs (13 events with 1-mA amplitude, 5-ms ISI) at varied onset times. Traces at right show responses of all compart-
ments of a single cell to a burst input. Scale bars: 10mV, 25ms. B, Differences in spiking latency between the two cells plotted
against difference in onset of burst inputs (tin2 – tin1) for the two TRN cells. Asymmetrical somatic GJs increased GJ-mediated la-
tency differences for GC ratios .1, and decreased them for GC ratio , 1. C, Changes in latency for varied electrical synapse loca-
tions, strengths and input time differences. D, Example bursts taken from C (red circles) for an uncoupled pair (1), a pair with a high
conductance D-M synapse (2), and high-conductance M-D synapse (3). Asymmetrical location of an electrical synapse determines
bursting order, and results in positive or negative latency change. Scale bar: 20mV, 25ms, traces offset for clarity.
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Dendritic integration is likely to be influenced by the
presence of GJs along dendrites (Vervaeke et al., 2012),
as they have been shown to act as a shunt of current aris-
ing from nearby chemical synapses (Llinas et al., 1974;
Lang et al., 1996), and in C. elegans coupled motor neu-
rons, electrical synapses spread excitation during con-
traction and inhibit cell pairs between cycles through a

shunting effect (Choi et al., 2021). Asymmetry has also
been shown to amplify EPSPs in mixed synapses (Liu et
al., 2017). Additionally, dendritic morphology deter-
mines transmission across GJs (Nadim and Golowasch,
2006), as well as firing patterns of extended morpho-
logic models (Mainen and Sejnowski, 1996), and as our
results demonstrate, substantial coupling influences on

Figure 8. Asymmetry determines the phase of synchrony. A, Traces of two coupled TRN cells driven to spike tonically; cell 2 re-
ceived a slightly larger current pulse. I1 = 0.575, I2 = 0.6mA/cm2. Scale bars: 25mV, 50ms. B, Zoom of tonic spikes from A showing
synchronous firing for low coupling strength (Gc = 0.005 mS/cm2) and out-of-phase synchrony for higher coupling strength (Gc =
0.025 mS/cm2). Scale bars: 40mV, 5ms. C, Cross correlation of tonic spikes for varied values of symmetric GJ strength. D,
Histogram of cross correlations for a symmetric synapse. E, ISIs for tonic spikes and phase difference (purple) of synchronous
spike trains, dotted line indicates the emergence of synchrony from cross correlations in D. F, Cross correlations for asymmetric
synapses. Asymmetry values.1 represent better transmission from cell 1 to cell 2. Initial strength of the GJ, Gc 21, increases across
panels. G, Traces from weakly coupled cells in F for three different asymmetry conditions. Scale bars: 40mV, 5ms. H, Phase differ-
ence for asymmetric GJs from F, for weak (blue, Gc 21 = 0.005), medium (yellow, Gc 21 = 0.0125), and strong (red, Gc 21 = 0.025) ini-
tial synapse strengths.
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dendritic processing may not be appreciably indicated
by somatic measurements.
Effective asymmetry results in differentially directed

signal and information flow through a network that in-
cludes realistic electrical coupling. Our results here raise
interesting questions whether cells within a network reg-
ulate any of the factors that result in asymmetry to pro-
duce precise direction of information flow within their
network. Increasing electrical synapse strength through
trafficking of connexin proteins, a process which is con-
trolled by cAMP expression (Palumbos et al., 2021), may
determine location or possibly effectively relocate a syn-
apse slightly closer to or distal from the soma. Distances
of dendritically located electrical synapses between cer-
ebellar Golgi cells do not correlate with coupling strength
measured between somas (Szoboszlay et al., 2016), indi-
cating a possible compensation for distance by strength
upregulation for those cells. Further, our previous work
demonstrating activity-dependent plasticity showed that
asymmetry changes systematically with unidirectional
activity or ion flow across the GJ (Haas et al., 2011;
Fricker et al., 2021). Those results imply that asymmetry
is a modifiable element of electrical synapse plasticity.
Our results here also point out that cellular changes,
such as activity-induced changes in dendritic resistance
or mutation-induced localization of GJs, could result in
the changes in asymmetry measured, in addition to the
possibility of changing the conductance itself.
Asymmetry, as it influences spike times in coupled

cells, has downstream effects on the synaptic targets of
the coupled cells. Symmetrical electrical synapses be-
tween model TRN cells act to merge spike times of thala-
mocortical cells in response to inputs of similar strength
or timing, or can separate spikes from dissimilar inputs
(Pham and Haas, 2018). We hypothesize that TRN neu-
rons with asymmetric GJs will inhibit thalamocortical relay
cells unequally, shifting the balance between merging or
distinguishing signals as they are relayed to cortex.
Including asymmetry as a factor in TRN networks will be
important to understanding how TRN cells orchestrate
the attentional spotlight at sensory thalamic nuclei. In ca-
nonical feedforward circuits, coupling between inhibitory
interneurons impacts integration in principal cells (Pham
and Haas, 2019). Recent investigations further show the
influence of electrical synapses on temporally precise in-
hibition in feedforward circuits (Hoehne et al., 2020;
Chagnaud et al., 2021). Asymmetry, as it can be applied
to electrical synapses in these general motifs, may impact
the many GJ coupled feedforward and feedback circuits
that embed electrical synapses across the brain.
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