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Abstract
Ancestral state reconstruction is a method used to study the evolutionary trajectories 
of quantitative characters on phylogenies. Although efficient methods for univariate 
ancestral state reconstruction under a Brownian motion model have been described 
for at least 25 years, to date no generalization has been described to allow more com-
plex evolutionary models, such as multivariate trait evolution, non-Brownian models, 
missing data, and within-species variation. Furthermore, even for simple univariate 
Brownian motion models, most phylogenetic comparative R packages compute ances-
tral states via inefficient tree rerooting and full tree traversals at each tree node, mak-
ing ancestral state reconstruction extremely time-consuming for large phylogenies. 
Here, a computationally efficient method for fast maximum likelihood ancestral state 
reconstruction of continuous characters is described. The algorithm has linear com-
plexity relative to the number of species and outperforms the fastest existing R imple-
mentations by several orders of magnitude. The described algorithm is capable of 
performing ancestral state reconstruction on a 1,000,000-species phylogeny in fewer 
than 2 s using a standard laptop, whereas the next fastest R implementation would 
take several days to complete. The method is generalizable to more complex evolu-
tionary models, such as phylogenetic regression, within-species variation, non-Brown-
ian evolutionary models, and multivariate trait evolution. Because this method enables 
fast repeated computations on phylogenies of virtually any size, implementation of the 
described algorithm can drastically alleviate the computational burden of many other-
wise prohibitively time-consuming tasks requiring reconstruction of ancestral states, 
such as phylogenetic imputation of missing data, bootstrapping procedures, 
Expectation-Maximization algorithms, and Bayesian estimation. The described ances-
tral state reconstruction algorithm is implemented in the Rphylopars functions anc.
recon and phylopars.
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1  | INTRODUCTION

Phylogenetic comparative methods provide a framework for studying 
phenotypic evolution across species while accounting for statistical 
nonindependence due to common descent (Felsenstein, 1985; Martins 
& Hansen, 1997). Ancestral state reconstruction offers a powerful 
context for studying evolutionary trajectories, such as the number 
of times a particular phenotype evolved, estimating the approximate 
timing of major evolutionary events, and inferring missing phenotypic 
values corresponding to discovered fossils (Garland, Midford, & Ives, 
1999; Schluter, Price, Moores, & Ludwig, 1997). Additionally, ances-
tral reconstruction may help contextualize observed patterns such 
as correlated shifts between phenotypic and environmental vari-
ables. Principles of ancestral state reconstruction may also be used 
to perform phylogenetic prediction, in which phenotypic values for 
unobserved or incompletely sampled taxa are estimated based on the 
evolutionary model and relative phylogenetic position (Garland & Ives, 
2000).

Several methods have been developed to reconstruct ances-
tral phenotypes, including parsimony-based, Bayesian methods, and 
maximum likelihood (ML) estimation, the latter of which constitutes 
the focus of this paper (Felsenstein, 1985; Maddison, 1991; Revell & 
Reynolds, 2012; Schluter et al., 1997). Like other phylogenetic com-
parative methods, ancestral state reconstruction becomes increas-
ingly time-consuming and computationally demanding as the number 
of species increases. Although efficient algorithms for most applica-
tions have existed since the initial development of modern compara-
tive methods, their importance has recently seen a renewed emphasis 
(FitzJohn, 2012; Freckleton, 2012; Ho & Ané, 2014). Fast compara-
tive methods are critical to keeping up with the ever-increasing size 
of phylogenetic trees in studies, as well as for statistical methods re-
quiring thousands or millions of repeated calculations (e.g., parametric 
bootstrapping, Bayesian inference) (Boettiger & Ralph, 2012; Goolsby, 
2016; Hadfield & Nakagawa, 2010; Schluter et al., 1997).

Unlike most comparative methods (e.g., phylogenetic regression, 
phylogenetic signal, estimation of alternative evolutionary models), 
computationally efficient methods for performing ancestral state re-
construction are severely lacking. This is because, despite the exis-
tence of efficient comparative methods that avoid the need to invert 
the phylogenetic covariance matrix, most R implementations of ML 
ancestral state reconstruction rely on (1) rerooting the tree at each 
internal node and performing repeated calculations (Revell, 2012), (2) 
high-dimensional numerical optimization (Paradis, Claude, & Strimmer, 
2004), or (3) parameterizing and manipulating extremely large covari-
ance matrices (Ho & Ané, 2014; Paradis et al., 2004).

This paper introduces a computationally efficient, generalizable, 
two-pass algorithm for performing ML ancestral state reconstruc-
tion which outperforms existing implementations by several orders 
of magnitude. The algorithm is first described in univariate terms 
and is mathematically identical to efficient algorithms described by 
Maddison (1991), Felsenstein (2004), and Elliot (2015). Next, the al-
gorithm is generalized to multivariate trait evolution, non-Brownian 
models, missing data, and within-species variation.

The first pass of the algorithm is identical to the linear-time algo-
rithm described in Ho and Ané (2014), which computes quantities at 
the root of the tree using a postorder (tips to root) tree traversal al-
gorithm. The second pass of the algorithm operates by holding values 
computed at the root constant and recursively traversing the tree in 
preorder (root to tips) to compute quantities of interest at each internal 
node. The algorithm is implemented in the R package Rphylopars in the 
functions anc.recon and phylopars (Goolsby, Bruggeman, & Ané, 2017).

2  | METHODS

2.1 | Fast algorithm for ML ancestral state 
reconstruction

Here, we define a two-pass (postorder–preorder) recursive algorithm 
for calculating several quantities of interest related to ML ancestral 
state reconstruction at each node of the tree. The postorder portion 
of the algorithm as described in Ho and Ané (2014) partitions the phy-
logeny into recursively defined subtrees. For a terminal node (a tip) 
on the tree, the corresponding subtree consists of a single node (i.e., 
the tip of the subtree is also the root of the subtree), and the edge 
giving rise to the tip on the original phylogeny is the root edge of 
the subtree. For a bifurcating internal node, the corresponding sub-
tree has two tips and a single internal node with a root edge (for a 
polytomous internal node, the subtree has multiple tips and a root 
edge). Like the PIC algorithm (Felsenstein, 1985), the postorder por-
tion of the algorithm recursively computes locally parsimonious val-
ues for quantities of interest, including the expected variance due to 
phylogeny and estimated ancestral states at each internal node (Ho & 
Ané, 2014). In other words, local quantities that are calculated for a 
given node represent the global quantities that would be obtained if 
the tree consisted only of the given node and its descendants. At the 
root of the original phylogeny, the computed local quantity is equiva-
lent to the global quantity, corresponding to globally parsimonious 
and maximum likelihood estimates (Felsenstein, 1985; Garland et al., 
1999; Ho & Ané, 2014; Maddison, 1991). Conversely, the local quan-
tities obtained for all other internal nodes are not global quantities be-
cause they do not account for the information contained in the rest of 
the phylogeny. However, because the postorder algorithm computes 
global quantities for the root of the tree, we can hold the root quan-
tities constant and solve for values at its descendent nodes, which 
can then themselves be held constant to solve for their descendent 
nodes, and so on, until we reach the tips of the tree. The two-pass 
algorithm is mathematically equivalent to rerooting strategies for ob-
taining global estimates for each node (which are the current method-
of-choice for rapid ancestral state reconstruction in R (Revell, 2012)), 
but the proposed algorithm avoids redundant time-consuming opera-
tions and is accordingly several orders of magnitude faster.

The two-pass algorithm described here computes the following 
quantities: �̂(e)

=

(

1
�

C
(e)−1

1

)−1

1
�

C
(e)−1

Y, p(e)=1
�

C
(e)−1

1,Q
(e)
=L

�

C
(e)−1

R,  
and the log determinant of the species covariance matrix (log|C(e)|), 
where 1 is a vector of ones, �̂(e) is the ML ancestral estimate for Y 
at the node arising from edge e, C(e) is the species covariance matrix 
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obtained by rerooting the phylogeny at the node arising from edge 
e, and L and R are matrices of compatible dimensions in the prod-
uct L�C(e)−1

R (e.g., L = 1 and R = Y). These quantities are computed via 
preorder tree traversal following postorder computation of the local 

quantities �̃(e)
=

(

1
� ̃C

(e)−1

1

)−1

1
� ̃C

(e)−1

Y, p̃(e)=1
� ̃C

(e)−1

1, ̃Q
(e)
=L

� ̃C
(e)−1

R, 

and log | ̃C
(e)
|, where ̃C

(e)
 is the species covariance matrix obtained by 

pruning the tree to only the descendants arising from (but not includ-
ing) edge e. Note that 1∕p̃(e) is equivalent to the transformed branch 
lengths obtained using the phylogenetically independent contrasts 
(PIC) algorithm and �̃(e) is equivalent to PIC-based (locally parsimoni-
ous) ancestral state reconstruction (Felsenstein, 1985).

1.	 Initialization: for edge e of length t(e) giving rise to a terminal 
taxon, define as follows:

2.	 Postorder recursion: for edge e of length t(e) giving rise to an 
internal node, define for all immediate descendants (d) of edge e:

3.	 At the root edge of the tree, denote as follows:

4.	 Preorder recursion: for edge e (which arises from the node 
arising from ancestral edge a) of length te giving rise to an internal 
node, define as follows:

For a linear regression model, we may also compute the regres-
sion parameters �̂(e)=

(

Q
(e)

XX

)−1

Q
(e)

XY
 where X is a design matrix (for an 

intercept-only model, X = 1 as above; for a regression model, the first 
column typically consists of ones and the remaining columns consist of 
values for predictor variables).

Ho and Ané (2014) proved that the postorder recursion algorithm 
yields the global quantities �̂(r), p(r),Q

(r), and log | C(r) |, and it has been 
long-established that rerooting the tree yields global estimates of these 
quantities for any node of the tree (Garland & Ives, 2000; Maddison, 
1991; Swofford & Maddison, 1987). The preorder recursion step works 
by mathematically rerooting each subtree recursively at each node. 
To demonstrate the properties of the preorder recursion, first consider 
that the original phylogeny lacks a root edge (t(r) = 0), so step 3 reduces 
to p(r)=Σp̃(d). Therefore, we may treat the current subtree as being 
composed of two descendent edges which we denote e and other, 
such that p(r)=Σp̃(d)= p̃(e)+ p̃(other), which can also be expressed as 
p(r)= p̃(e)+

(

p(r)− p̃(e)
)

 to avoid having to keep track of p̃(other) (note that this 
holds true even if the subtree arising from other were in fact polytomous).

To compute the quantity p(e), we could reroot the original tree 
at the node arising from edge e and then perform steps 1–3 of 
the postorder algorithm (Garland et al., 1999; Ho & Ané, 2014). 
However, the majority of these steps would be redundant, as we 
have already computed all of these quantities up to our node of 
interest. To see this, note that had the original tree been rooted at 
the node arising from edge e rather than r, the original computation 
for p̃(e) would have been p̃(e)∗ =p

(e)

A
 instead of p̃(e)=p

(e)

A
∕

(

1+ t(e)p
(e)

A

)

 
because t(e) would have equaled zero (the length of t(e) would have 
instead been added to the length of t(other)). To adjust for this, we 
cancel out the contribution of t(e) as follows: p̃(e)∗ = p̃(e)∕

(

1− t(e)p̃(e)
)

.  
Now, we must add the contribution of t(e) to p̃(other), as follows: 
p̃(other)

∗

= p̃(other)∕
(

1+ t(e)p̃(other)
)

=

(

p(r)− p̃(e)
)

∕

(

1+ t(e)(p(r)− p̃(e))
)

. There
fore, we have now obtained the quantities necessary to compute p(r)∗ (i.e., 
had the tree been rooted at the node arising from edge e) without actu-
ally having to reroot the tree or perform any redundant calculations: 
p(e)= p̃(e)

∗
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∗
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The same procedure immediately follows for the computations of U(e)′,  
V(e), Q(e), and log | C(e) |  because at the root of the tree, these quanti-
ties are simply composed of the sums of their descendant quantities 
(because t(r) = 0). The ancestral state reconstruction �̂(e) is an algebraic 
simplification of the quantity �̂(e)

=

(

Q
(e)

11

)−1

Q
(e)

1Y
 where Q(e)

11
=1

�

C
(e)−1

1 
and Q(e)

1Y
=1

�

C
(e)−1

Y. By repeating step 4 recursively from the root to 
the tips, we obtain global ML estimates for each internal node.

The covariance of a given estimate can be computed as follows: 
cov

�̂(e) = �̂∕p(e) where �̂ is the ML or restricted ML evolutionary rate 
matrix: �̂=

(

(

Y−1�̂(r)
)�

C
(r)−1 (

Y−1�̂(r)
)

)

∕(N−REML), N is the number 
of species, and REML = 1 if the restricted ML estimate is desired and 
REML = 0 otherwise. 95% confidence intervals for an estimate can 
then be computed as follows: 95%C.I.

�̂(e) = �̂
(e)
±1.96

√

var
�̂(e)  (Garland 

& Ives, 2000; Garland et al., 1999; Rohlf, 2001).

2.2 | Multivariate data, alternative evolutionary 
models, within-species variation, and missing data

The described algorithm can be easily modified to incorporate a 
wide variety of models with various features such as missing data, 
intraspecific variation, and alternative evolutionary model specifications 
(Bruggeman, Heringa, & Brandt, 2009; Felsenstein, 2008; Goolsby et al., 
2017; Ives, Midford, & Garland, 2007). For a multivariate model of evo-
lution, the N × M matrix Y (where M is the number of traits) is rear-
ranged into an NM-length column vector y, the matrix 1 is replaced 
with an NM × M matrix describing which observations of y are from 
which trait, and the covariance of each observation is described by an 
NM × NM species-trait covariance matrix W. For a Brownian motion 
model of evolution, W = Σ ⊗ C, where Σ is the evolutionary rate matrix, 
⊗  denotes the Kronecker product, and W is partitioned into M2 blocks 
of size N × N. For example, at block i, j, Wi,j = Σi,jC. When considering the 
node arising from a single edge e, we are left with an M × M matrix of 
transformed heights (root-to-node distance): H(e) = Ca,bΣ, and the node 
arising form edge e is the most recent common ancestor of species a 
and b. The height matrix He can be converted into an edge length matrix 
T(e) as follows: T(e) = H(a) − H(e) (which also equals t(e)Σ for a Brownian 
motion model), where the node arising from edge a is the parent of edge 
e. For Brownian motion models, we can simply use T(e) = t(e)Σ. To accom-
modate rate shift models, the estimated regime-specific rate matrices 
Σ(s) may be used: T(e) = t(e)Σ(s). For more complex evolutionary models 
(e.g., multivariate Ornstein–Uhlenbeck on an ultrametric tree), W is 
scaled according to block-specific transformations, and we must com-
pute T(e) = H(a) − H(e) for each edge (for a derivation, see Goolsby et al., 
2017; Appendix S1). It should be noted that the algorithm requires an 
ultrametric tree if an Ornstein–Uhlenbeck model is specified; other-
wise, a complex series of branch length and data transformations must 
be made to maintain three-point structure as described in Ho and Ané 
(2014). The multivariate algorithm proceeds as follows:

1.	 Initialization: for edge e with length matrix T(e) giving rise to a 
terminal taxon, for the subset of variables k on which data are 
available (nonmissing)

̃U
(e)�

k
=L

(e)�

k
p̃
(e)

k,k
 for the subset of variables on which data are avail-

able. Rows of ̃U
(e) corresponding to missing data are set to zero.

̃V
(e)

k
= p̃

(e)

k,k
R
(e)

k
 for the subset of variables on which data are available. 

Columns of ̃V
(e) corresponding to variables with missing data are set 

to zero.

̃Q
(e)

k,k
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(e)�

k
p̃
(e)

k,k
R
(e)

k
 for the subset of variables on which data are 

available. Rows and columns of ̃Q
(e)
 corresponding to missing data are 

set to zero.

log | ̃W
(e)
|= log |T

(e)

k,k
| for the subset of variables on which data are 

available.

2.	 Postorder recursion: for edge e with length matrix T(e) giving 
rise to an internal node, define for all immediate descendants 
(d) of edge e:

3.	 At the root edge of the tree, denote:

4.	 Preorder recursion: for edge e (which arises from the node 
arising from ancestral edge a) of length T(e) giving rise to an 
internal node, define

p̃
(e)

k,k
=T
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I−T
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5.	 For edge e (which arises from the node arising from ancestral 
edge a) of length T(e) giving rise to a terminal node (a tip) with 
missing data on a subset of variables (u) and nonmissing data 
for subset k, define

To accommodate within-species variation when only summary 
data are available, the above algorithm is identical except that in 
steps 1, T(e) is replaced with T(e) + B(e) where B(e) is an estimate of 
within-species covariance (e.g., a diagonal matrix with squared stan-
dard errors) (Ives et al., 2007). For species mean imputation in step 
5, B(e) is not added to T(e) (Bruggeman et al., 2009; Goolsby et al., 
2017).

To accommodate within-species variation when raw data are 
available, the algorithm is nearly identical as above except that ini-
tialization (step 1) and imputation of missing data (step 5) is per-
formed on raw data (i.e., an individual within-species observation) 
rather than on species means, and T(e) replaced entirely with B(e) in 

steps 1 and 5. B(e) may be set to an a priori determined value (Ives 
et al., 2007) or jointly estimated during maximum likelihood optimi-
zation (Felsenstein, 2008). Typically, B(e) is assumed to be identical 
across species if B(e) is to be estimated via numerical optimization 
(Felsenstein, 2008). Steps 2–4 proceed as normal, except that spe-
cies nodes are treated as “internal nodes” since the “tips” of the tree 
are individual observations, and hence edges giving rise to species 
nodes are included in the postorder and preorder recursion steps. 
When e gives rise to a species node, step 4 provides estimates of 
species means, and step 5 provides raw data imputations for miss-
ing values.
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F IGURE  1 Computation times (left) for univariate ancestral state reconstruction using the described fast two-pass algorithm (anc.recon 
function, Rphylopars package), numerical optimization (ace function, ape package), generalized least squares (GLS) with matrix inversion (Martins 
& Hansen, 1997), GLS without matrix inversion (Ho & Ané, 2014), and the rerooting method implemented in the fastAnc function in phytools. 
The right panel consists of ratios of computation times for optimization, GLS with and without inversion, and rerooting relative to the described 
fast algorithm. All anc.recon run times completed in fewer than 10 ms, whereas the next-fastest method (fastAnc) ran from 141 to 13,104 times 
slower than anc.recon, and the slowest method (ace) ranged from 537 to nearly three million times slower than anc.recon (right panel). Error bars 
(where visible) indicate standard deviation of five replicate runs per simulated number of species
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TABLE  1 Mean computation times for anc.recon ancestral state 
reconstruction on univariate datasets with 256 to 2,097,152 (28 to 
221) species. For each number of species, five simulated phylogenies 
and datasets were generated

Number of species Computation time (s) Standard deviation

256 0.0003 1.87E-05

512 0.0004 1.67E-05

1,024 0.0007 1.14E-05

2,048 0.001 3.36E-05

4,096 0.003 8.29E-05

8,192 0.006 0.0004

16,384 0.011 0.0006

32,768 0.021 0.0004

65,536 0.052 0.0084

131,072 0.110 0.0071

262,144 0.222 0.0148

524,288 0.520 0.0418

1,048,576 1.136 0.0929

2,097,152 2.422 0.4268
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3  | RESULTS AND DISCUSSION

3.1 | R implementation

The proposed ancestral state reconstruction algorithm is imple-
mented in the R package Rphylopars (Goolsby et al., 2017). For sim-
ple Brownian motion evolution on univariate or multivariate data, 
maximum likelihood ancestral states and confidence intervals may be 
fit using the Rphylopars function anc.recon. For more complex models 
with missing data, within-species variation, or alternative evolutionary 
model specifications (e.g., Ornstein–Uhlenbeck or Early-Burst), the 
Rphylopars function phylopars must be used to fit evolutionary model 
parameters, which are then used to compute maximum likelihood an-
cestral states using the fast algorithm.

3.2 | Speed comparisons: univariate data

Here, we compare the speed of the proposed algorithm is implemented 
in anc.recon with four standard methods as implemented in R for per-
forming ML ancestral state reconstruction: (1) numerical optimization 
(ace function in the R package ape, Paradis et al., 2004), (2) generalized 
least squares with direct matrix inversion (Martins & Hansen, 1997), 
(3) generalized least squares avoiding matrix inversion using the linear-
time algorithm described in Ho and Ané (2014), and (4) the rerooting 
method implemented in the fastAnc function in the phytools package 
(Revell, 2012). Univariate traits were simulated on phylogenies of 
size 32, 64, 128, 256, 512, 1,024, 2,048, and 4,096 species using the 
rTraitCont and rtree functions in ape (Paradis et al., 2004). For each 
tree size, five simulated phylogenies and datasets were generated, and 
the mean and standard deviation of computation time was recorded 
for each method. In order to be able to distinguish the computation 
time of the algorithm described here from 0 s (using the system.time 
function, which has a resolution of 10 ms), speed assessments using 
anc.recon were performed on 1,000 replicated function calls and the 
total computation time was subsequently divided by 1,000.

For all simulated datasets, anc.recon computation time was below 
10 ms, whereas the fastanc function took up to 36 s for the largest 
simulated dataset (4,096 taxa), with a polynomial increase in com-
putation time as the number of species increased (Figure 1a). Other 
methods were even slower, including numerical optimization, in which 
anc.recon performed approximately 3,000,000 times faster than ace 
(Figure 1b). Even on the smallest simulated datasets (32 taxa), anc.
recon was approximately 140 times faster than fastAnc (the next fast-
est method), and for the largest dataset, anc.recon was over 13,000 
times faster than fastAnc. Additionally, a decrease in precision was ob-
served for numerical optimization in the ace function, something not 
shared by the method described here (which algorithmically computes 
exact maximum likelihood estimates). Speed assessments were also 
performed using only anc.recon on phylogenies ranging from 256 to 
2,097,152 (28 to 221) taxa, the largest of which completed in fewer 
than 3 s. Across all simulations, anc.recon exhibited linear increases 
in computation time (Table 1). R code for performing the simulations 
used to generate all figures is supplied in Appendix S1.

4  | CONCLUSION

The algorithm described here generalizes existing efficient algorithms 
(Elliot, 2015; Felsenstein, 2004; Maddison, 1991) and is capable of 
performing maximum likelihood ancestral state reconstruction on 
phylogenies containing one million taxa in fewer than 2 s, using mod-
est computational resources (i.e., a standard laptop). The method can 
be expanded to incorporate a variety of models, including multivariate 
generalizations, within-species variation, non-Brownian evolutionary 
models, rate heterogeneity, and more. As the number of taxa in phy-
logenetic comparative studies continues to rise, efficient linear-time 
algorithms will become increasingly critical. Additionally, frameworks 
requiring thousands or millions of repeated calculations, such as para-
metric bootstrapping and Bayesian analyses, will also benefit from the 
continued improvement of fast algorithms.
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