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Abstract
Ancestral	state	reconstruction	is	a	method	used	to	study	the	evolutionary	trajectories	
of	quantitative	characters	on	phylogenies.	Although	efficient	methods	for	univariate	
ancestral	state	reconstruction	under	a	Brownian	motion	model	have	been	described	
for	at	least	25	years,	to	date	no	generalization	has	been	described	to	allow	more	com-
plex	evolutionary	models,	such	as	multivariate	trait	evolution,	non-Brownian	models,	
missing	 data,	 and	within-species	 variation.	 Furthermore,	 even	 for	 simple	 univariate	
Brownian	motion	models,	most	phylogenetic	comparative	R	packages	compute	ances-
tral	states	via	inefficient	tree	rerooting	and	full	tree	traversals	at	each	tree	node,	mak-
ing	 ancestral	 state	 reconstruction	 extremely	 time-consuming	 for	 large	 phylogenies.	
Here,	a	computationally	efficient	method	for	fast	maximum	likelihood	ancestral	state	
reconstruction	of	continuous	characters	 is	described.	The	algorithm	has	 linear	com-
plexity	relative	to	the	number	of	species	and	outperforms	the	fastest	existing	R	imple-
mentations	 by	 several	 orders	 of	magnitude.	 The	 described	 algorithm	 is	 capable	 of	
performing	ancestral	state	reconstruction	on	a	1,000,000-species	phylogeny	in	fewer	
than	2	s	using	a	standard	 laptop,	whereas	the	next	fastest	R	 implementation	would	
take	several	days	to	complete.	The	method	is	generalizable	to	more	complex	evolu-
tionary	models,	such	as	phylogenetic	regression,	within-species	variation,	non-Brown-
ian	evolutionary	models,	and	multivariate	trait	evolution.	Because	this	method	enables	
fast	repeated	computations	on	phylogenies	of	virtually	any	size,	implementation	of	the	
described	algorithm	can	drastically	alleviate	the	computational	burden	of	many	other-
wise	prohibitively	time-consuming	tasks	requiring	reconstruction	of	ancestral	states,	
such	 as	 phylogenetic	 imputation	 of	 missing	 data,	 bootstrapping	 procedures,	
Expectation-Maximization	algorithms,	and	Bayesian	estimation.	The	described	ances-
tral	 state	 reconstruction	 algorithm	 is	 implemented	 in	 the	Rphylopars	 functions	anc.
recon	and	phylopars.
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1  | INTRODUCTION

Phylogenetic	comparative	methods	provide	a	framework	for	studying	
phenotypic	 evolution	 across	 species	while	 accounting	 for	 statistical	
nonindependence	due	to	common	descent	(Felsenstein,	1985;	Martins	
&	 Hansen,	 1997).	 Ancestral	 state	 reconstruction	 offers	 a	 powerful	
context	 for	 studying	 evolutionary	 trajectories,	 such	 as	 the	 number	
of	times	a	particular	phenotype	evolved,	estimating	the	approximate	
timing	of	major	evolutionary	events,	and	inferring	missing	phenotypic	
values	corresponding	to	discovered	fossils	(Garland,	Midford,	&	Ives,	
1999;	Schluter,	Price,	Moores,	&	Ludwig,	1997).	Additionally,	ances-
tral	 reconstruction	 may	 help	 contextualize	 observed	 patterns	 such	
as	 correlated	 shifts	 between	 phenotypic	 and	 environmental	 vari-
ables.	 Principles	 of	 ancestral	 state	 reconstruction	may	 also	 be	 used	
to	 perform	 phylogenetic	 prediction,	 in	which	 phenotypic	 values	 for	
unobserved	or	incompletely	sampled	taxa	are	estimated	based	on	the	
evolutionary	model	and	relative	phylogenetic	position	(Garland	&	Ives,	
2000).

Several	 methods	 have	 been	 developed	 to	 reconstruct	 ances-
tral	 phenotypes,	 including	parsimony-	based,	Bayesian	methods,	 and	
maximum	 likelihood	 (ML)	estimation,	 the	 latter	of	which	constitutes	
the	focus	of	this	paper	(Felsenstein,	1985;	Maddison,	1991;	Revell	&	
Reynolds,	2012;	Schluter	et	al.,	1997).	Like	other	phylogenetic	com-
parative	 methods,	 ancestral	 state	 reconstruction	 becomes	 increas-
ingly	time-	consuming	and	computationally	demanding	as	the	number	
of	species	 increases.	Although	efficient	algorithms	 for	most	applica-
tions	have	existed	since	the	initial	development	of	modern	compara-
tive	methods,	their	importance	has	recently	seen	a	renewed	emphasis	
(FitzJohn,	2012;	Freckleton,	2012;	Ho	&	Ané,	2014).	Fast	 compara-
tive	methods	are	critical	 to	keeping	up	with	the	ever-	increasing	size	
of	phylogenetic	trees	in	studies,	as	well	as	for	statistical	methods	re-
quiring	thousands	or	millions	of	repeated	calculations	(e.g.,	parametric	
bootstrapping,	Bayesian	inference)	(Boettiger	&	Ralph,	2012;	Goolsby,	
2016;	Hadfield	&	Nakagawa,	2010;	Schluter	et	al.,	1997).

Unlike	most	comparative	methods	 (e.g.,	phylogenetic	 regression,	
phylogenetic	 signal,	 estimation	 of	 alternative	 evolutionary	 models),	
computationally	efficient	methods	for	performing	ancestral	state	re-
construction	 are	 severely	 lacking.	This	 is	 because,	 despite	 the	 exis-
tence	of	efficient	comparative	methods	that	avoid	the	need	to	invert	
the	 phylogenetic	 covariance	matrix,	most	R	 implementations	 of	ML	
ancestral	 state	 reconstruction	 rely	 on	 (1)	 rerooting	 the	 tree	 at	 each	
internal	node	and	performing	repeated	calculations	(Revell,	2012),	(2)	
high-	dimensional	numerical	optimization	(Paradis,	Claude,	&	Strimmer,	
2004),	or	(3)	parameterizing	and	manipulating	extremely	large	covari-
ance	matrices	(Ho	&	Ané,	2014;	Paradis	et	al.,	2004).

This	 paper	 introduces	 a	 computationally	 efficient,	 generalizable,	
two-	pass	 algorithm	 for	 performing	 ML	 ancestral	 state	 reconstruc-
tion	which	 outperforms	 existing	 implementations	 by	 several	 orders	
of	 magnitude.	 The	 algorithm	 is	 first	 described	 in	 univariate	 terms	
and	 is	mathematically	 identical	 to	 efficient	 algorithms	 described	 by	
Maddison	(1991),	Felsenstein	 (2004),	and	Elliot	 (2015).	Next,	the	al-
gorithm	 is	 generalized	 to	multivariate	 trait	 evolution,	 non-	Brownian	
models,	missing	data,	and	within-	species	variation.

The	first	pass	of	the	algorithm	is	identical	to	the	linear-	time	algo-
rithm	described	 in	Ho	and	Ané	(2014),	which	computes	quantities	at	
the	 root	of	 the	 tree	using	a	postorder	 (tips	 to	 root)	 tree	 traversal	al-
gorithm.	The	second	pass	of	the	algorithm	operates	by	holding	values	
computed	at	 the	 root	constant	and	 recursively	 traversing	 the	 tree	 in	
preorder	(root	to	tips)	to	compute	quantities	of	interest	at	each	internal	
node.	The	algorithm	is	implemented	in	the	R	package	Rphylopars	in	the	
functions	anc.recon	and	phylopars	(Goolsby,	Bruggeman,	&	Ané,	2017).

2  | METHODS

2.1 | Fast algorithm for ML ancestral state 
reconstruction

Here,	we	define	a	two-	pass	(postorder–preorder)	recursive	algorithm	
for	calculating	several	quantities	of	 interest	 related	 to	ML	ancestral	
state	reconstruction	at	each	node	of	the	tree.	The	postorder	portion	
of	the	algorithm	as	described	in	Ho	and	Ané	(2014)	partitions	the	phy-
logeny	 into	recursively	defined	subtrees.	For	a	 terminal	node	 (a	 tip)	
on	the	tree,	the	corresponding	subtree	consists	of	a	single	node	(i.e.,	
the	tip	of	the	subtree	 is	also	the	root	of	the	subtree),	and	the	edge	
giving	 rise	 to	 the	 tip	 on	 the	 original	 phylogeny	 is	 the	 root	 edge	 of	
the	subtree.	For	a	bifurcating	 internal	node,	the	corresponding	sub-
tree	has	 two	tips	and	a	single	 internal	node	with	a	 root	edge	 (for	a	
polytomous	 internal	 node,	 the	 subtree	 has	multiple	 tips	 and	 a	 root	
edge).	Like	the	PIC	algorithm	(Felsenstein,	1985),	the	postorder	por-
tion	of	the	algorithm	recursively	computes	 locally	parsimonious	val-
ues	for	quantities	of	interest,	including	the	expected	variance	due	to	
phylogeny	and	estimated	ancestral	states	at	each	internal	node	(Ho	&	
Ané,	2014).	In	other	words,	 local	quantities	that	are	calculated	for	a	
given	node	represent	the	global	quantities	that	would	be	obtained	if	
the	tree	consisted	only	of	the	given	node	and	its	descendants.	At	the	
root	of	the	original	phylogeny,	the	computed	local	quantity	is	equiva-
lent	 to	 the	 global	 quantity,	 corresponding	 to	 globally	 parsimonious	
and		maximum	likelihood	estimates	(Felsenstein,	1985;	Garland	et	al.,	
1999;	Ho	&	Ané,	2014;	Maddison,	1991).	Conversely,	the	local	quan-
tities	obtained	for	all	other	internal	nodes	are	not	global	quantities	be-
cause	they	do	not	account	for	the	information	contained	in	the	rest	of	
the	phylogeny.	However,	because	the	postorder	algorithm	computes	
global	quantities	for	the	root	of	the	tree,	we	can	hold	the	root	quan-
tities	 constant	 and	 solve	 for	 values	 at	 its	 descendent	 nodes,	which	
can	then	themselves	be	held	constant	to	solve	for	their	descendent	
nodes,	and	so	on,	until	we	reach	the	tips	of	 the	 tree.	The	two-	pass	
algorithm	is	mathematically	equivalent	to	rerooting	strategies	for	ob-
taining	global	estimates	for	each	node	(which	are	the	current	method-	
of-	choice	for	rapid	ancestral	state	reconstruction	in	R	(Revell,	2012)),	
but	the	proposed	algorithm	avoids	redundant	time-	consuming	opera-
tions	and	is	accordingly	several	orders	of	magnitude	faster.

The	 two-	pass	 algorithm	 described	 here	 computes	 the	 following	
quantities:	 �̂(e)
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and	 the	 log	 determinant	 of	 the	 species	 covariance	matrix	 (log|C(e)|),	
where 1	 is	 a	vector	 of	 ones,	 �̂(e)	 is	 the	ML	 ancestral	 estimate	 for	Y 
at	the	node	arising	from	edge	e,	C(e)	 is	the	species	covariance	matrix	
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obtained	by	 rerooting	 the	phylogeny	 at	 the	node	 arising	 from	edge	
e,	 and	L	 and	R	 are	matrices	 of	 compatible	 dimensions	 in	 the	 prod-
uct	L�C(e)−1

R	(e.g.,	L = 1	and	R = Y).	These	quantities	are	computed	via	
preorder	 tree	traversal	 following	postorder	computation	of	 the	 local	

quantities	 �̃(e)
=

(
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� ̃C

(e)−1

1

)−1
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and	log | ̃C
(e)
|,	where	 ̃C

(e)
	 is	the	species	covariance	matrix	obtained	by	

pruning	the	tree	to	only	the	descendants	arising	from	(but	not	includ-
ing)	edge	e.	Note	that	1∕p̃(e)	 is	equivalent	to	the	transformed	branch	
lengths	 obtained	 using	 the	 phylogenetically	 independent	 contrasts	
(PIC)	algorithm	and	�̃(e)	is	equivalent	to	PIC-	based	(locally	parsimoni-
ous)	ancestral	state	reconstruction	(Felsenstein,	1985).

1. Initialization:	 for	 edge	 e	 of	 length	 t(e)	 giving	 rise	 to	 a	 terminal	
taxon,	 define	 as	 follows:

2. Postorder	 recursion:	 for	 edge	 e	 of	 length	 t(e)	 giving	 rise	 to	 an	
internal	 node,	 define	 for	 all	 immediate	 descendants	 (d)	 of	 edge	 e:

3. At	 the	 root	 edge	 of	 the	 tree,	 denote	 as	 follows:

4.	 Preorder	recursion:	for	edge	e	(which	arises	from	the	node	
arising	 from	 ancestral	 edge	 a)	 of	 length	 te	 giving	 rise	 to	 an	 internal	
node,	define	as	follows:

For	a	 linear	 regression	model,	we	may	also	compute	 the	 regres-
sion	parameters	�̂(e)=

(

Q
(e)

XX

)−1

Q
(e)

XY
 where X	is	a	design	matrix	(for	an	

intercept-	only	model,	X = 1	as	above;	for	a	regression	model,	the	first	
column	typically	consists	of	ones	and	the	remaining	columns	consist	of	
values	for	predictor	variables).

Ho	 and	Ané	 (2014)	 proved	 that	 the	 postorder	 recursion	 algorithm	
yields	 the	 global	 quantities	 �̂(r), p(r),Q

(r),	 and	 log	|	C(r)	|,	 and	 it	 has	 been	
long-	established	that	rerooting	the	tree	yields	global	estimates	of	these	
quantities	 for	 any	 node	 of	 the	 tree	 (Garland	 &	 Ives,	 2000;	Maddison,	
1991;	Swofford	&	Maddison,	1987).	The	preorder	recursion	step	works	
by	 mathematically	 rerooting	 each	 subtree	 recursively	 at	 each	 node.	
To	demonstrate	 the	properties	of	 the	preorder	 recursion,	 first	consider	
that	the	original	phylogeny	lacks	a	root	edge	(t(r)	=	0),	so	step	3	reduces	
to	 p(r)=Σp̃(d).	 Therefore,	 we	 may	 treat	 the	 current	 subtree	 as	 being	
composed	 of	 two	 descendent	 edges	 which	 we	 denote	 e	 and	 other, 
such	 that	 p(r)=Σp̃(d)= p̃(e)+ p̃(other),	 which	 can	 also	 be	 expressed	 as	
p(r)= p̃(e)+

(

p(r)− p̃(e)
)

	to	avoid	having	to	keep	track	of	p̃(other)	(note	that	this	
holds	true	even	if	the	subtree	arising	from	other	were	in	fact	polytomous).

To	 compute	 the	 quantity	 p(e),	 we	 could	 reroot	 the	 original	 tree	
at	 the	 node	 arising	 from	 edge	 e	 and	 then	 perform	 steps	 1–3	 of	
the	 postorder	 algorithm	 (Garland	 et	al.,	 1999;	 Ho	 &	 Ané,	 2014).	
However,	 the	 majority	 of	 these	 steps	 would	 be	 redundant,	 as	 we	
have	 already	 computed	 all	 of	 these	 quantities	 up	 to	 our	 node	 of	
interest.	To	 see	 this,	note	 that	had	 the	original	 tree	been	 rooted	at	
the	node	arising	from	edge	e	rather	than	r,	the	original	computation	
for	 p̃(e)	 would	 have	 been	 p̃(e)∗ =p

(e)

A
	 instead	 of	 p̃(e)=p

(e)

A
∕

(

1+ t(e)p
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A

)

 
because	 t(e)	would	have	equaled	 zero	 (the	 length	of	 t(e)	would	have	
instead	 been	 added	 to	 the	 length	 of	 t(other)).	 To	 adjust	 for	 this,	 we	
cancel	 out	 the	 contribution	 of	 t(e)	 as	 follows:	 p̃(e)∗ = p̃(e)∕

(

1− t(e)p̃(e)
)

.  
Now,	 we	 must	 add	 the	 contribution	 of	 t(e)	 to	 p̃(other),	 as	 follows:	
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∗

= p̃(other)∕
(

1+ t(e)p̃(other)
)

=

(

p(r)− p̃(e)
)

∕

(

1+ t(e)(p(r)− p̃(e))
)

.	There-
fore,	we	have	now	obtained	the	quantities	necessary	to	compute	p(r)∗	(i.e.,	
had	the	tree	been	rooted	at	the	node	arising	from	edge	e)	without	actu-
ally	having	to	reroot	the	tree	or	perform	any	redundant	calculations:	
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The	same	procedure	immediately	follows	for	the	computations	of	U(e)′,	 
V(e),	Q(e),	and	log	|	C(e)	|		because	at	the	root	of	the	tree,	these	quanti-
ties	are	simply	composed	of	the	sums	of	their	descendant	quantities	
(because	t(r)	=	0).	The	ancestral	state	reconstruction	�̂(e)	is	an	algebraic	
simplification	of	the	quantity	�̂(e)

=

(

Q
(e)

11

)−1

Q
(e)

1Y
 where Q(e)

11
=1

�

C
(e)−1

1 
and	Q(e)

1Y
=1

�

C
(e)−1

Y.	By	repeating	step	4	recursively	from	the	root	to	
the	tips,	we	obtain	global	ML	estimates	for	each	internal	node.

The	covariance	of	a	given	estimate	can	be	computed	as	follows:	
cov

�̂(e) = �̂∕p(e) where �̂	 is	 the	ML	or	 restricted	ML	evolutionary	 rate	
matrix:	�̂=

(

(

Y−1�̂(r)
)�

C
(r)−1 (

Y−1�̂(r)
)

)

∕(N−REML),	N	is	the	number	
of	species,	and	REML	=	1	if	the	restricted	ML	estimate	is	desired	and	
REML	=	0	 otherwise.	 95%	 confidence	 intervals	 for	 an	 estimate	 can	
then	be	computed	as	follows:	95%C.I.

�̂(e) = �̂
(e)
±1.96

√

var
�̂(e) 	(Garland	

&	Ives,	2000;	Garland	et	al.,	1999;	Rohlf,	2001).

2.2 | Multivariate data, alternative evolutionary 
models, within- species variation, and missing data

The	 described	 algorithm	 can	 be	 easily	 modified	 to	 incorporate	 a	
wide	 variety	 of	 models	 with	 various	 features	 such	 as	 missing	 data,	
	intraspecific	variation,	and	alternative	evolutionary	model	specifications	
(Bruggeman,	Heringa,	&	Brandt,	2009;	Felsenstein,	2008;	Goolsby	et	al.,	
2017;	Ives,	Midford,	&	Garland,	2007).	For	a	multivariate	model	of	evo-
lution,	 the	N	×	M	matrix	Y	 (where	M	 is	 the	number	of	 traits)	 is	 rear-
ranged	 into	 an	NM-	length	 column	vector	 y,	 the	matrix	1	 is	 replaced	
with	an	NM	×	M	matrix	describing	which	observations	of	y	 are	 from	
which	trait,	and	the	covariance	of	each	observation	is	described	by	an	
NM	×	NM	species-	trait	 covariance	matrix	W.	 For	 a	Brownian	motion	
model	of	evolution,	W = Σ ⊗ C,	where	Σ	is	the	evolutionary	rate	matrix,	
⊗		denotes	the	Kronecker	product,	and	W	is	partitioned	into	M2	blocks	
of	size	N ×	N.	For	example,	at	block	i,	j,	Wi,j	=	Σi,jC.	When	considering	the	
node	arising	from	a	single	edge	e,	we	are	left	with	an	M ×	M	matrix	of	
transformed	heights	(root-	to-	node	distance):	H(e) = Ca,bΣ,	and	the	node	
arising	form	edge	e	 is	the	most	recent	common	ancestor	of	species	a 
and	b.	The	height	matrix	He	can	be	converted	into	an	edge	length	matrix	
T(e)	 as	 follows:	T(e) = H(a)	−	H(e)	 (which	also	equals	 t(e)Σ	 for	a	Brownian	
motion	model),	where	the	node	arising	from	edge	a	is	the	parent	of	edge	
e.	For	Brownian	motion	models,	we	can	simply	use	T(e) = t(e)Σ.	To	accom-
modate	rate	shift	models,	the	estimated	regime-	specific	rate	matrices	
Σ(s)	may	be	used:	T(e) = t(e)Σ(s).	For	more	complex	evolutionary	models	
(e.g.,	 multivariate	 Ornstein–Uhlenbeck	 on	 an	 ultrametric	 tree),	W	 is	
scaled	according	to	block-	specific	transformations,	and	we	must	com-
pute	T(e) = H(a)	−	H(e)	for	each	edge	(for	a	derivation,	see	Goolsby	et	al.,	
2017;	Appendix	S1).	It	should	be	noted	that	the	algorithm	requires	an	
ultrametric	 tree	 if	 an	Ornstein–Uhlenbeck	model	 is	 specified;	 other-
wise,	a	complex	series	of	branch	length	and	data	transformations	must	
be	made	to	maintain	three-	point	structure	as	described	in	Ho	and	Ané	
(2014).	The	multivariate	algorithm	proceeds	as	follows:

1. Initialization:	 for	 edge	 e	 with	 length	 matrix	 T(e)	 giving	 rise	 to	 a	
terminal	 taxon,	 for	 the	 subset	 of	 variables	 k	 on	 which	 data	 are	
available	 (nonmissing)
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k
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k,k
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2. Postorder	 recursion:	 for	 edge	 e	 with	 length	 matrix	 T(e)	 giving	
rise	 to	 an	 internal	 node,	 define	 for	 all	 immediate	 descendants	
(d)	 of	 edge	 e:

3. At	 the	 root	 edge	 of	 the	 tree,	 denote:

4. Preorder	 recursion:	 for	 edge	 e	 (which	 arises	 from	 the	 node	
arising	 from	 ancestral	 edge	 a)	 of	 length	 T(e)	 giving	 rise	 to	 an	
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5. For	 edge	 e	 (which	 arises	 from	 the	 node	 arising	 from	 ancestral	
edge a)	 of	 length	 T(e)	 giving	 rise	 to	 a	 terminal	 node	 (a	 tip)	 with	
missing	 data	 on	 a	 subset	 of	 variables	 (u)	 and	 nonmissing	 data	
for	 subset	 k,	 define

To	 accommodate	within-	species	 variation	when	 only	 summary	
data	 are	 available,	 the	 above	 algorithm	 is	 identical	 except	 that	 in	
steps	1,	T(e)	 is	 replaced	with	T(e) + B(e) where B(e)	 is	 an	estimate	of	
within-	species	covariance	(e.g.,	a	diagonal	matrix	with	squared	stan-
dard	errors)	(Ives	et	al.,	2007).	For	species	mean	imputation	in	step	
5,	B(e)	 is	not	 added	 to	T(e)	 (Bruggeman	et	al.,	 2009;	Goolsby	et	al.,	
2017).

To	 accommodate	 within-	species	 variation	 when	 raw	 data	 are	
available,	the	algorithm	is	nearly	identical	as	above	except	that	ini-
tialization	 (step	1)	 and	 imputation	of	missing	data	 (step	5)	 is	 per-
formed	on	raw	data	 (i.e.,	an	 individual	within-	species	observation)	
rather	than	on	species	means,	and	T(e)	replaced	entirely	with	B(e)	in	

steps	1	and	5.	B(e)	may	be	set	to	an	a	priori	determined	value	(Ives	
et	al.,	2007)	or	jointly	estimated	during	maximum	likelihood	optimi-
zation	(Felsenstein,	2008).	Typically,	B(e)	is	assumed	to	be	identical	
across	species	 if	B(e)	 is	to	be	estimated	via	numerical	optimization	
(Felsenstein,	2008).	Steps	2–4	proceed	as	normal,	except	that	spe-
cies	nodes	are	treated	as	“internal	nodes”	since	the	“tips”	of	the	tree	
are	individual	observations,	and	hence	edges	giving	rise	to	species	
nodes	are	 included	in	the	postorder	and	preorder	recursion	steps.	
When	e	gives	rise	to	a	species	node,	step	4	provides	estimates	of	
species	means,	and	step	5	provides	raw	data	imputations	for	miss-
ing	values.
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F IGURE  1 Computation	times	(left)	for	univariate	ancestral	state	reconstruction	using	the	described	fast	two-	pass	algorithm	(anc.recon 
function,	Rphylopars	package),	numerical	optimization	(ace	function,	ape	package),	generalized	least	squares	(GLS)	with	matrix	inversion	(Martins	
&	Hansen,	1997),	GLS	without	matrix	inversion	(Ho	&	Ané,	2014),	and	the	rerooting	method	implemented	in	the	fastAnc	function	in	phytools. 
The	right	panel	consists	of	ratios	of	computation	times	for	optimization,	GLS	with	and	without	inversion,	and	rerooting	relative	to	the	described	
fast	algorithm.	All	anc.recon	run	times	completed	in	fewer	than	10	ms,	whereas	the	next-	fastest	method	(fastAnc)	ran	from	141	to	13,104	times	
slower	than	anc.recon,	and	the	slowest	method	(ace)	ranged	from	537	to	nearly	three	million	times	slower	than	anc.recon	(right	panel).	Error	bars	
(where	visible)	indicate	standard	deviation	of	five	replicate	runs	per	simulated	number	of	species
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TABLE  1 Mean	computation	times	for	anc.recon	ancestral	state	
reconstruction	on	univariate	datasets	with	256	to	2,097,152	(28	to	
221)	species.	For	each	number	of	species,	five	simulated	phylogenies	
and	datasets	were	generated

Number of species Computation time (s) Standard deviation

256 0.0003 1.87E-	05

512 0.0004 1.67E-	05

1,024 0.0007 1.14E-	05

2,048 0.001 3.36E-	05

4,096 0.003 8.29E-	05

8,192 0.006 0.0004

16,384 0.011 0.0006

32,768 0.021 0.0004

65,536 0.052 0.0084

131,072 0.110 0.0071

262,144 0.222 0.0148

524,288 0.520 0.0418

1,048,576 1.136 0.0929

2,097,152 2.422 0.4268
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3  | RESULTS AND DISCUSSION

3.1 | R implementation

The	 proposed	 ancestral	 state	 reconstruction	 algorithm	 is	 imple-
mented	 in	the	R	package	Rphylopars	 (Goolsby	et	al.,	2017).	For	sim-
ple	 Brownian	 motion	 evolution	 on	 univariate	 or	 multivariate	 data,	
	maximum	likelihood	ancestral	states	and	confidence	intervals	may	be	
fit	using	the	Rphylopars	function	anc.recon.	For	more	complex	models	
with	missing	data,	within-	species	variation,	or	alternative	evolutionary	
model	 specifications	 (e.g.,	 Ornstein–Uhlenbeck	 or	 Early-	Burst),	 the	
Rphylopars	function	phylopars	must	be	used	to	fit	evolutionary	model	
parameters,	which	are	then	used	to	compute	maximum	likelihood	an-
cestral	states	using	the	fast	algorithm.

3.2 | Speed comparisons: univariate data

Here,	we	compare	the	speed	of	the	proposed	algorithm	is	implemented	
in	anc.recon	with	four	standard	methods	as	implemented	in	R	for	per-
forming	ML	ancestral	state	reconstruction:	(1)	numerical	optimization	
(ace	function	in	the	R	package	ape,	Paradis	et	al.,	2004),	(2)	generalized	
least	squares	with	direct	matrix	 inversion	(Martins	&	Hansen,	1997),	
(3)	generalized	least	squares	avoiding	matrix	inversion	using	the	linear-	
time	algorithm	described	in	Ho	and	Ané	(2014),	and	(4)	the	rerooting	
method	implemented	in	the	fastAnc	function	in	the	phytools	package	
(Revell,	 2012).	 Univariate	 traits	 were	 simulated	 on	 phylogenies	 of	
size	32,	64,	128,	256,	512,	1,024,	2,048,	and	4,096	species	using	the	
rTraitCont	 and	 rtree	 functions	 in	ape	 (Paradis	 et	al.,	 2004).	 For	 each	
tree	size,	five	simulated	phylogenies	and	datasets	were	generated,	and	
the	mean	and	standard	deviation	of	computation	time	was	recorded	
for	each	method.	 In	order	to	be	able	to	distinguish	the	computation	
time	of	the	algorithm	described	here	from	0	s	 (using	the	system.time 
function,	which	has	a	resolution	of	10	ms),	speed	assessments	using	
anc.recon	were	performed	on	1,000	replicated	function	calls	and	the	
total	computation	time	was	subsequently	divided	by	1,000.

For	all	simulated	datasets,	anc.recon	computation	time	was	below	
10	ms,	whereas	 the	 fastanc	 function	 took	up	 to	36	s	 for	 the	 largest	
simulated	 dataset	 (4,096	 taxa),	 with	 a	 polynomial	 increase	 in	 com-
putation	time	as	 the	number	of	species	 increased	 (Figure	1a).	Other	
methods	were	even	slower,	including	numerical	optimization,	in	which	
anc.recon	 performed	 approximately	3,000,000	 times	 faster	 than	ace 
(Figure	1b).	 Even	 on	 the	 smallest	 simulated	 datasets	 (32	 taxa),	 anc.
recon	was	approximately	140	times	faster	than	fastAnc	(the	next	fast-
est	method),	 and	 for	 the	 largest	dataset,	anc.recon	was	over	13,000	
times	faster	than	fastAnc.	Additionally,	a	decrease	in	precision	was	ob-
served	for	numerical	optimization	in	the	ace	function,	something	not	
shared	by	the	method	described	here	(which	algorithmically	computes	
exact	maximum	 likelihood	 estimates).	 Speed	 assessments	were	 also	
performed	using	only	anc.recon	on	phylogenies	ranging	from	256	to	
2,097,152	 (28	 to	221)	 taxa,	 the	 largest	of	which	completed	 in	 fewer	
than	 3	s.	Across	 all	 simulations,	 anc.recon	 exhibited	 linear	 increases	
in	computation	time	(Table	1).	R	code	for	performing	the	simulations	
used	to	generate	all	figures	is	supplied	in	Appendix	S1.

4  | CONCLUSION

The	algorithm	described	here	generalizes	existing	efficient	algorithms	
(Elliot,	 2015;	 Felsenstein,	 2004;	Maddison,	 1991)	 and	 is	 capable	 of	
performing	 maximum	 likelihood	 ancestral	 state	 reconstruction	 on	
phylogenies	containing	one	million	taxa	in	fewer	than	2	s,	using	mod-
est	computational	resources	(i.e.,	a	standard	laptop).	The	method	can	
be	expanded	to	incorporate	a	variety	of	models,	including	multivariate	
generalizations,	within-	species	variation,	non-	Brownian	evolutionary	
models,	rate	heterogeneity,	and	more.	As	the	number	of	taxa	in	phy-
logenetic	comparative	studies	continues	to	rise,	efficient	 linear-	time	
algorithms	will	become	increasingly	critical.	Additionally,	frameworks	
requiring	thousands	or	millions	of	repeated	calculations,	such	as	para-
metric	bootstrapping	and	Bayesian	analyses,	will	also	benefit	from	the	
continued	improvement	of	fast	algorithms.

ACKNOWLEDGMENTS

EWG	wishes	to	thank	Cécile	Ané	and	Devon	P.	Humphreys	for	thought-	
provoking	discussions	on	efficient	phylogenetic	comparative	methods,	
as	well	two	anonymous	reviewers	for	helpful	feedback.	This	work	was	
supported	in	part	by	the	National	Science	Foundation	[DEB-	1501215].

CONFLICT OF INTEREST

None	declared.

REFERENCES

Boettiger,	C.,	&	Ralph,	P.	(2012).	Is	your	phylogeny	informative?	Measuring	
the	power	of	comparative	methods.	Evolution,	66,	2240–2251.

Bruggeman,	J.,	Heringa,	J.,	&	Brandt,	B.	W.	 (2009).	PhyloPars:	Estimation	
of	missing	parameter	values	using	phylogeny.	Nucleic Acids Research,	
37,	W179–W18.

Elliot,	M.	 J.	 (2015).	 Identical	 inferences	 about	 correlated	 evolution	 arise	
from	ancestral	state	reconstruction	and	independent	contrasts.	Journal 
of Theoretical Biology,	364,	321–325.

Felsenstein,	J.	(1985).	Phylogenies	and	the	comparative	method.	American 
Naturalist,	125,	1–15.

Felsenstein,	J.	(2004).	Brownian	motion	and	gene	frequencies.	In	Inferring 
phylogenies	(pp.	391–414).	Sunderland,	MA:	Sinauer	Associates.

Felsenstein,	 J.	 (2008).	 Comparative	 methods	 with	 sampling	 error	 and	
within-	species	 variation:	 Contrasts	 revisited	 and	 revised.	 American 
Naturalist,	171,	713–725.

FitzJohn,	R.	J.	 (2012).	Diversitree:	Comparative	phylogenetic	 analyses	of	
diversification	in	R.	Methods in Ecology & Evolution,	3,	1084–1092.

Freckleton,	R.	P.	(2012).	Fast	likelihood	calculations	for	comparative	analy-
ses.	Methods in Ecology & Evolution,	3,	940–947.

Garland,	 T.,	 &	 Ives,	A.	 R.	 (2000).	 Using	 the	 past	 to	 predict	 the	 present:	
Confidence	intervals	for	regression	equations	in	phylogenetic	compar-
ative	methods.	American Naturalist,	155,	346–364.

Garland,	T.,	Midford,	P.	E.,	&	Ives,	A.	R.	(1999).	An	introduction	to	phyloge-
netically	based	statistical	methods,	with	a	new	method	for	confidence	
intervals	on	ancestral	values.	American Zoologist,	39,	374–388.

Goolsby,	 E.	 W.	 (2016).	 Likelihood-	based	 parameter	 estimation	 for	
high-	dimensional	 phylogenetic	 comparative	 models:	 Overcoming	
the	 limitations	of	 ‘distance-	based’	methods.	Systematic Biology,	65,	
852–870.



     |  2797GOOLSBY

Goolsby,	E.	W.,	Bruggeman,	J.,	&	Ané,	C.	(2017).	Rphylopars:	Fast	multivar-
iate	phylogenetic	 comparative	methods	 for	missing	data	 and	within-	
species	variation.	Methods in Ecology and Evolution,	8,	22–27.

Hadfield,	J.	D.,	&	Nakagawa,	S.	(2010).	General	quantitative	genetic	meth-
ods	 for	 comparative	 biology:	 Phylogenies,	 taxonomies	 and	 multi-	
trait	 models	 for	 continuous	 and	 categorical	 characters.	 Journal of 
Evolutionary Biology,	23,	494–508.

Ho,	 L.	T.	H.,	&	Ané,	C.	 (2014).	A	 linear-	time	 algorithm	 for	Gaussian	 and	
non-	Gaussian	trait	evolution	models.	Systematic Biology,	63,	397–408.

Ives,	A.	 R.,	Midford,	 P.	 E.,	 &	Garland,	T.	 Jr	 (2007).	Within-	species	 varia-
tion	 and	 measurement	 error	 in	 phylogenetic	 comparative	 methods.	
Systematic Biology,	56,	252–270.

Maddison,	W.	P.	(1991).	Squared-	change	parsimony	reconstructions	of	an-
cestral	states	for	continuous-	valued	characters	on	a	phylogenetic	tree.	
Systematic Zoology,	40,	304–314.

Martins,	 E.	 P.,	 &	Hansen,	T.	 F.	 (1997).	 Phylogenies	 and	 the	 comparative	
method:	A	 general	 approach	 to	 incorporating	 phylogenetic	 informa-
tion	 into	 the	 analysis	 of	 interspecific	 data.	American Naturalist,	149,	
646–667.

Paradis,	E.,	Claude,	J.,	&	Strimmer,	K.	(2004).	APE:	Analyses	of	phylogenet-
ics	and	evolution	in	R	language.	Bioinformatics,	20,	289–290.

Revell,	L.	J.	 (2012).	phytools:	An	R	package	for	phylogenetic	comparative	
biology	(and	other	things).	Methods in Ecology & Evolution,	3,	217–223.

Revell,	 L.	 J.,	 &	 Reynolds,	 G.	 (2012).	 A	 new	 Bayesian	 method	 for	 fitting	
evolutionary	models	 to	comparative	data	with	 intraspecific	variation.	
Evolution,	66,	2697–2707.

Rohlf,	F.	J.	(2001).	Comparative	methods	for	the	analysis	of	continuous	vari-
ables:	Geometric	interpretations.	Evolution,	55,	2143–2160.

Schluter,	D.,	 Price,	T.,	Moores,	A.	O.,	&	 Ludwig,	D.	 (1997).	 Likelihood	of	
ancestral	states	in	adaptive	radiation.	Evolution,	51,	1699–1711.

Swofford,	D.	L.,	&	Maddison,	W.	P.	(1987).	Reconstructing	ancestral	character	
states	under	Wagner	parsimony.	Mathematical Biosciences,	87,	199–229.

SUPPORTING INFORMATION

Additional	 Supporting	 Information	 may	 be	 found	 online	 in	 the	
	supporting	information	tab	for	this	article.

How to cite this article:	Goolsby	EW.	Rapid	maximum	
likelihood	ancestral	state	reconstruction	of	continuous	
characters:	A	rerooting-	free	algorithm.	Ecol Evol. 
2017;7:2791–2797.	https://doi.org/10.1002/ece3.2837

https://doi.org/10.1002/ece3.2837

