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Abstract

Background

The analysis of gene annotations referencing back to Gene Ontology plays an important

role in the interpretation of high-throughput experiments results. This analysis typically

involves semantic similarity and particularity measures that quantify the importance of the

Gene Ontology annotations. However, there is currently no sound method supporting the

interpretation of the similarity and particularity values in order to determine whether two

genes are similar or whether one gene has some significant particular function. Interpreta-

tion is frequently based either on an implicit threshold, or an arbitrary one (typically 0.5).

Here we investigate a method for determining thresholds supporting the interpretation of the

results of a semantic comparison.

Results

We propose a method for determining the optimal similarity threshold by minimizing the

proportions of false-positive and false-negative similarity matches. We compared the dis-

tributions of the similarity values of pairs of similar genes and pairs of non-similar genes.

These comparisons were performed separately for all three branches of the Gene Ontol-

ogy. In all situations, we found overlap between the similar and the non-similar distribu-

tions, indicating that some similar genes had a similarity value lower than the similarity

value of some non-similar genes. We then extend this method to the semantic particularity

measure and to a similarity measure applied to the ChEBI ontology. Thresholds were eval-

uated over the whole HomoloGene database. For each group of homologous genes, we

computed all the similarity and particularity values between pairs of genes. Finally, we

focused on the PPARmultigene family to show that the similarity and particularity patterns
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obtained with our thresholds were better at discriminating orthologs and paralogs than

those obtained using default thresholds.

Conclusion

We developed a method for determining optimal semantic similarity and particularity thresh-

olds. We applied this method on the GO and ChEBI ontologies. Qualitative analysis using

the thresholds on the PPAR multigene family yielded biologically-relevant patterns.

Introduction

Need for thresholds
Comparing several gene sets to identify and quantify the features they share and the features
that differentiate them is central to the functional analysis of gene sets [1–3]. These operations
hinge on comparing sets of Gene Ontology (GO) terms [4]. The links between genes and GO
terms are provided by the Gene Ontology Annotation (GOA) database for multiple species
[5]. Numerous semantic similarity measures have been developed [6–8]. We recently pro-
posed to combine semantic similarity measures and a new semantic particularity measure to
improve the results of gene set analysis [9]. The analysis of results on similarity and particular-
ity is based on an interpretation that contrasts the genes with particular functions among sim-
ilar genes. The main focus of studies to date has been on defining the measures, but there is no
extensive study on the interpretation of the values obtained with these measures. As a result,
interpretation is frequently based on either an implicit threshold (for example: “a similarity of
0.83 is high enough to consider that two genes are similar”) or an arbitrary one (typically 0.5
for measures in [0;1] even though no mathematical property of the measures supports this
choice). Moreover, the value of these thresholds may vary over time, as both GO and GOA
evolve [10]. Here, we propose a method to define suitable thresholds based on analysis of the
distributions of similarity values. We then extend this method to the semantic particularity
measure and to a similarity measure applied to the Chemical Entities of Biological Interest
ontology (ChEBI) [11].

Metrics background
The GO terms annotating genes describe the biological processes, molecular functions and cel-
lular components each gene is involved in. If these terms were independent, functional gene
characterization could be performed by a straightforward set-based approach such as the Jac-
card index or Dice’s coefficient. However, GO terms are hierarchically-linked, which means
the characterization needs to take into account the underlying ontological structure of the GO
annotations [12]. There are several semantic similarity measures that exploit the formal repre-
sentation of the meaning of the terms by considering the relations between the terms.

Classification of semantic similarity measures
Pesquita et al. classified semantic similarity measures into two categories: node and edge-based
measures, with some hybrid measures [6].

Node-based measures assign an Information Content (IC) value to each ontology term,
with the least-frequent terms given the highest IC value. This IC concept, borrowed from Shan-
non’s information theory [13], was used to measure similarities using ontologies [14–16] such
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as WordNet [17]. Node-based measures consider that the similarity between two terms relies
on their most informative common ancestor. These measures developed in linguistics have
been applied to GO [18, 19], where the IC of a GO term is inversely proportional to the fre-
quency with which it annotates a gene using the Gene Ontology Annotations (GOA) database
[5]. In the context of gene comparisons, IC-based measures carry three main limitations tied to
their dependence on a GOA-based corpus. First, it can prove difficult or even impossible to
obtain a relevant corpus. GOA provides single and multi-species tables of annotation.
Although using a species-specific table is well suited to intra-species comparisons, it becomes
problematic for inter-species comparisons. Second, using a multi-species table (like the Uni-
protKB table) for cross-species studies is biased towards the most extensively annotated species
such as humans or mice. Third, the most extensively studied areas of biology have high annota-
tion frequencies and are therefore less informative and see their importance downgraded,
whereas the less-studied areas are artificially emphasized [20–22].

Edge-based measures compute a distance between GO terms using the directed graph topol-
ogy. This distance can be the shortest path between two compared terms [23] or the length of
the path between the root of the ontology and the lowest common ancestor of the compared
terms [24–28]. This root to ancestor distance makes terms with a deep common ancestor more
similar than terms with a common ancestor close to the root. Unlike node-based measures,
edge-based measures are not corpus-dependent. However, granularity is not uniform in GO,
so terms at the same depth can have different levels of specificity [29].

Hybrid measures combine different aspects of node-based and edge-based measures.
Wang et al.’s measure assigns each term a “semantic value” that represents how informative
the term is, which conforms to the node-based approach [30]. However, the semantic value
of a term is obtained by following the path from this term to the root and summing the
semantic contributions of all the ancestors of this term. As semantic value depends on ontol-
ogy topology, it also conforms to the edge-based approach. Most hybrid measures are
designed to compare terms but not sets of terms (as needed to compare genes). Common
approaches proposed to compare genes consider the average [18], the maximum [31] of all
pairwise similarities, or only the best matching pairs [32, 33]. Pesquita et al. concluded that
best-match average variants are the best overall. They also highlighted a graph-based group-
wise approach that avoids combining pairwise similarities between terms. Several measures
employ this groupwise approach [34–37], including the simUI and simGIC measures used
by Ferreira et al. to compute similarities on ChEBI [38]. Pesquita et al. do not single out any
specific semantic similarity measure as the best, as the optimal measure will depend on the
data to compare and the level of detail expected in the results. The main advantage of
Wang’s measure over pure node-based measures is that unlike the IC, the semantic value is
not GOA-dependent, which thus makes it well suited to cross-species comparisons.

Semantic similarity measures typically focus on what is common between the two com-
pared entities. We recently developed a semantic particularity measure to also take into
account what distinguishes each compared entity from the other one [9]. The semantic
particularity of a set of GO terms “Sg1” compared to another set of GO terms “Sg2” depends
on the informativeness measure of the “Sg1” terms that are not in “Sg2”. This informative-
ness measure is Wang’s semantic values or an IC value. This particularity concept should be
used in combination with semantic similarity in order to improve the functional analysis of
gene sets.

Data analysis often hinges on a qualitative interpretation of the similarity values in order to
contrast similar and dissimilar pairs of genes. This discretization of the similarity and particu-
larity values makes the interpretation easier. It determines whether a functional difference
between two genes is or is not marginal. However, there has never been a systematic analysis of
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the optimal threshold value separating similar from dissimilar. Some studies avoid the problem
by focusing only on “high” or “low” values (without mentioning when a value reaches this
point). Other studies draw the line at 0.5 (for no other reason than the fact that 0.5 is the mid-
range value of the similarity interval). There are cases where a threshold of 0.5 may be ill-
adapted. For example, the similarity value between protein tyrosine kinase 2 (PTK2) and Ubi-
quitin B (UBB) is 0.502 using Wang’s similarity measure on their Biological Processes (BP)
annotations. This value is just above the intuitive mid-interval threshold. These two genes are
well annotated, with 73 and 79 distinct BP annotations, repectively. According to Entrez Gene,
PTK2 is involved in cell growth and intracellular signal transduction pathways triggered in
response to certain neural peptides or cell interactions with the extracellular matrix while UBB
is required for ATP-dependent, nonlysosomal intracellular protein degradation of abnormal
proteins and normal proteins with rapid turnover. These processes cannot be considered “simi-
lar”. Consequently, the 0.502 value of similarity should not lead to consider PTK2 and UBB as
similar genes according to the BP they participate in.

The main factors influencing the similarity values are: granularity differences in GO, GO
topology differences between BP, MF and CC, quantity and “quality” of gene annotations, GO
temporal evolution [10]. There is a need for a systematic study of semantic measure values in
order to determine optimal similarity and particularity thresholds for the qualitative part of
functional gene set analysis. Note that the method for determining these thresholds should also
be applicable to all semantic similarity categories as well on other ontologies outside GO.

Here we propose a generic method to define a threshold. We applied this method to a node-
based and a hybrid semantic similarity measure as well as to the corresponding semantic par-
ticularity measures. All these measures are able to compare two genes. When comparing more
than two genes, the measures have to be applied on each pair of genes. These measures are
described below.

Semantic similarity
Lin developed a widely-used node-based similarity measure that employs the IC concept [15].
Several of the tools available have implemented this measure. The IC of a term t depends on its
log probability P(t). Working with GO terms, this IC is inversely proportional to the frequency
with which the terms annotate a gene using the Gene Ontology Annotations (GOA) database.
When comparing two GO terms t1 and t2 having a most informative common ancestor t0, Lin
defines their similarity as follows:

Simðt1; t2Þ ¼ 2� logPðt0Þ
logPðt1Þ þ logPðt2Þ

Wang’s hybrid measure depends solely on GO graph and does not need an annotation cor-
pus, thus allowing cross-species comparisons [30]. For each term, the first step of the measure
is to compute the semantic contributions of its ancestors, following:

SAðAÞ ¼ 1

SAðtÞ ¼ maxfwe � SAðt0Þ  j  t0 2 children  of   ðtÞg  if   t 6¼ A

(

where SA(t) is the semantic contribution of term t to term A and we is the semantic contribu-
tion factor for edge e linking term t to its child term t’. Following Wang, we used a semantic
contribution factor of 0.8 for the “is a” relations and 0.6 for the “part of” relations, and we
added a 0.7 factor for the “[positively] [negatively] regulates” relations. Then, for each target
term to compare, the semantic value (SV) is the sum of the semantic contributions of all its
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ancestors:

SVðAÞ ¼
X
t2TA

SAðtÞ

The comparison of two terms A and B is computed as follows:

SGOðA;BÞ ¼

X
t2TA\TB

ðSAðtÞ þ SBðtÞÞ

SVðAÞ þ SVðBÞ

The similarity between a GO term “go” and a set of GO terms “Sg” is:

Simðgo; SgÞ ¼ max
1⩽i⩽k

ðSGOðgo; goiÞÞ

Finally, the similarity between two genes G1 and G2 is:

SimðG1;G2Þ ¼

X
1�i�m

ðSimðgo1i; Sg2ÞÞ þ
X
1�j�n

ðSimðgo2j; Sg1ÞÞ

mþ n

Gentleman developed a graph-based measure for the R package GOstats called simUI [36].
simUI defines the semantic similarity between two sets of terms corresponding to two sub-
graphs of the ontology as the ratio of the number of terms in the intersection of those graphs to
the number of GO terms in their union.

Pesquita et al. proposed simGIC, a method combining the graph-based simUI metric with the
IC of the terms involved in the computation [37]. In simGIC, each term is weighted by its IC.

Semantic particularity
In a previous article, we defined the semantic particularity of a set of GO terms Sg1 compared
to another set of GO terms Sg2 [9].

Some of the terms of Sg1 that are not members of Sg2 may be linked in the graph. Taking
several linked terms into account would result in considering them several times over. To over-
come this issue, the particularity measure focuses only on those terms of Sg1 that do not have
any descendant in Sg1 and that are not members of Sg2. Some of these terms might be ances-
tors of terms of Sg2 and should be considered common to Sg1 and Sg2. Sg� is the union of Sg
and the sets of ancestors of each term of Sg. MPT(Sg1, Sg2) is the set of the most particular
terms of Sg1 compared to Sg2, i.e. the set of terms of Sg1 that do not have any descendant in
Sg1 and that are not members of Sg2�. PI(Sg1, Sg2) is the particular informativeness (PI) of a
set of GO terms Sg1 compared to another set of GO terms Sg2, i.e. the sum of the differences
between the informativeness (I) of each term tp of MPT(Sg1, Sg2) and the informativeness of
the most informative common ancestor (MICA) between tp and Sg2. The informativeness mea-
sure can be a Wang’s semantic value or an IC value. The PI of a set of terms is the information
that is not shared with the other set.

PIðSg1; Sg2Þ ¼
X

tp2MPTðSg1;Sg2Þ
IðtpÞ � IðMICAðtp; Sg2ÞÞ

PI is normalized to compute Par(Sg1, Sg2), the semantic particularity of the set of GO terms
Sg1 compared to the set of GO terms Sg2. MCT(Sg1, Sg2) is the set of the most informative
common terms of Sg1 and Sg2, i.e. the set of the terms belonging to the intersection of Sg1�

and Sg2� that do not have any descendant in either Sg1� or Sg2�. Par(Sg1, Sg2) is the ratio of PI
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(Sg1, Sg2) and the sum of the informativeness of most informative Sg1 terms (i.e. those that are
Sg1-specific and those that are common with Sg2; the MICA in the PI formula for Sg1-specific
terms guarantees that the informativeness of common terms is not counted twice).

ParðSg1; Sg2Þ ¼ PIðSg1; Sg2Þ
PIðSg1; Sg2Þ þP

tc2MCTðSg1;Sg2ÞIðtcÞ

Method
We first describe our generic method for determining the optimal threshold for a semantic
similarity measure. We then used it on GO for a node-based measure and for a hybrid measure.
Finally, we generalize our approach by applying the method to another semantic measure of
particularity and to another ontology.

Similarity threshold determination process
Fig 1 illustrates the process for determining a similarity threshold. This process is composed of
three steps:

1. Define at least two different groups of genes for species of interest. Within a group, the
genes should share some common characteristics. Genes from different groups should share
as few characteristics as possible.

2.

a. In each group, compute the similarities between each pair of genes (i.e. the intra-group
similarities). Gather all the similarity results to obtain an S distribution of similar genes.

b. Compute the similarities between each combination of a gene from the first group and a
gene from a second group (i.e. the inter-group similarities). Gather all the similarity
results to obtain an N distribution of non-similar genes.

3. If the S and N distributions have no overlap between the ranges (min, max), define the
threshold τsim using any value between τS (the lowest value of S) and τN (the highest value of
N). Else, there are some false negatives (FN) and some false positives (FP):

a. Compute the proportion of FN in the S distribution for all samples of the similarity
threshold between τN to τS. In this step, consider every value under the similarity thresh-
old as a FN.

b. Compute the proportion of FP in the N distribution for all samples of the similarity
threshold between τN to τS. In this step, consider every value above the similarity thresh-
old as a FP.

c. For each possible threshold value, sum the FN and FP proportions obtained in steps 3a
and 3b. The similarity threshold τsim is the threshold that minimizes this sum.

We ran a statistical test to determine whether the S and N distributions obtained at step 2
are significantly different. As we cannot consider that the S and N variances are similar, we
used an unequal variance t-test (Welch’s t-test) which is the recommended test when consider-
ing different-sized distributions like S and N. Welch’s t-test performs better than Student’s t-
test when the variances are unequal yet still performs on a par with the Student’s t-test when
the variances are equal [39]. If the test concludes that the S and N distributions are non signifi-
cantly different, the process has to be restarted at its first step.
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Fig 1. Flowchart for threshold determination. 1) Define at least two distinct groups of genes expected to be similar. 2) Compute the intra- and inter-group
similarities and compile the results into S and N distributions. If these two distributions are significantly different, the groups of genes are relevant. 3) If S and
N do not overlap, define threshold τsim using any value between τS (the lowest value of S) and τN (the highest value of N). Else, considering every value under
the threshold as FN and every value above the threshold as FP, compute the FN proportion in the S distribution (3a) and the FP proportion in the N
distribution (3b) for all samples of the similarity threshold between τN to τS. 3c) For each possible threshold value, sum the FN and FP proportions obtained in
steps 3a and 3b. The similarity threshold τsim is the one that minimizes this sum.

doi:10.1371/journal.pone.0133579.g001
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The minimization at step 3c has to be done on FN and FP proportions as the N and S distri-
butions have different sizes.

We applied this method to compute Lin’s and Wang’s semantic similarity thresholds on
GO, the corresponding IC-based and SV-based semantic particularity thresholds on GO, and
the simUI and simGIC thresholds on ChEBI. For all the pairs of genes compared, we used the
GO annotations from the August 2013 version of GOA. We computed Lin’s similarity with the
GOSemSim R package [40] (version 1.18.0) using its GO and IC tables and the best-match
average approach to compare genes. Pesquita et al. showed that the best-match average
approach performs best [6]. We computed Wang’s similarity, IC-based particularity and SV-
based particularity using an in-house implementation of each measure and the August 2013
version of GO. We computed simUI and simGIC similarities using the web tool CMPSim pro-
vided by the XLDB research group [41]. CMPSim implements both measures for ChEBI.

Similarity threshold determination using two groups of similar genes
We first applied our method to determine the similarity threshold for the Biological Processes
(BP) using two groups of similar genes. We determined thresholds using first Wang’s and then
Lin’s similarity measures.

Group determination. We composed two groups of similar genes from two families of the
Protein ANalysis THrough Evolutionary Relationships database (PANTHER). The union of the
pairs of genes within each family constituted the S distribution. The PANTHER database classi-
fies proteins (and their genes) to facilitate high-throughput analysis [42]. PANTHER families
are composed of genes sharing evolutionary history, molecular functions and biological pro-
cesses annotations, and involvment in the same biological pathways. We assumed that genes
belonging to a same PANTHER family share enough features to be considered as involved in
similar biological processes. Conversely, we assumed that two genes belonging to two different
PANTHER families should not be considered as involved in similar biological processes.

Intra-group and inter-group similarity measure. We computed the similarity values for
each pair of genes of the first family and for each pair of genes of the second family, and com-
piled them together in the S distribution. We then computed the N distribution composed of the
similarity values between each gene from the first family and each gene from the second family.

Similar and non-similar distribution comparison. When comparing the distributions of
similar genes (S) to non-similar genes (N), if the minimum value of S is smaller than the maxi-
mum value of N, then the S and N distributions overlap and any threshold would lead to FPs
or FNs.

Fig 2 illustrates the case without overlap, where min(S) = a, max(N) = b and a> b. A simi-
larity value greater than ameans that the genes compared are similar. A similarity value lower
than bmeans that the genes compared are non-similar. A similarity value between a and b
means that the genes compared are nearly similar and thus require expert opinion to interpret
the result.

Fig 3 illustrates the case where the S and N distributions overlap, meaning that there are
some FPs (i.e. pairs of genes from N that are non-similar but that have a similarity value greater
than a) and FNs (i.e. pairs of genes from S that are similar but have a similarity value lower
than b). In this case, a similarity value lower than ameans that the genes compared are non-
similar. A similarity value greater than bmeans that the genes compared are similar. Again,
expert opinion would be required to interpret the result in this interval. However, in this case,
it is possible to determine the threshold value that minimizes both FP and FN.

We established a general framework that proves suitable to the two cases described in this
section. Under this framework, we define three thresholds values:
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• τS = max(a, b) is the threshold value above which the two compared genes are similar. There
can not be any FP above τS, but there may be some FN below τS if a< b.

• τN = min(a, b) is the threshold value under which the two compared genes are non-similar.
There cannot be any FN below τN, but there may be some FP above τN if a< b.

• τsim is the threshold value located between τS and τN that that minimizes the proportion of
FP and FN. As τsim gets closer to τS, there will be more FN and fewer FP. Conversely, as τsim

Fig 2. Ideal case of threshold determination. The threshold should be located between the lowest whisker
of the similar distribution (a) and the upmost whisker of the non-similar distribution (b).

doi:10.1371/journal.pone.0133579.g002

Fig 3. Overlap case of threshold determination. The similar and non-similar boxes overlap. In this case,
there are false-positive and false-negative results between the lowest whisker of the similar distribution (a)
and the upmost whisker of the non-similar distribution (b).

doi:10.1371/journal.pone.0133579.g003
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gets closer to τN, there will be more FP and fewer FN. τsim has to be computed using the pro-
portions of FP and FN as the S and N distributions have different sizes.

Threshold stability study
Extension to multiple families. The more groups we build to constitute the S and N dis-

tributions, the more reliable the thresholds obtained become. We generalized the above-
described process using five groups of similar genes for CC and six groups for BP and MF in
order to determine τS, τN and τsim for Wang’s and Lin’s measures.

For BP, we computed the S distribution gathering the similarity values of each pair of genes
inside six different PANTHER families. We computed the fifteen distributions corresponding
to all the combinations of genes similarity values from two of the previous six families. Each of
these distributions is composed of the similarity values between each gene from the first family
and each gene from the second family. We combined all these inter-family similarity values
into a global N distribution.

For MF, we used the same six genes families to compute our S and N distributions, as the
PANTHER families are also homogeneous in term of molecular functions.

For CC, we used the genes from five different pathways, each located in a different cellular
compartment, to compute our S and N distributions. The lists of genes were borrowed from
the Reactome database [43].

Robustness of threshold determination. We validated our study using a leave-one-out
approach that consisted in successively recomputing the thresholds using all the sets but one.
This approach provides an evaluation of threshold stability.

Generalization
We generalized the approach by applying the method to another semantic measure and
another ontology.

Particularity threshold. In addition to the similarity thresholds determination, we used
the same approach to compute semantic particularity thresholds on BP, CC and MF in order
to determine the comparison profile of two genes G1 and G2. The procedure consisted in com-
paring each value of the triple (Similarity(G1, G2); Particularity(G1, G2); Particularity(G2,
G1)) with its respective threshold (noted “+” if the value is greater than the threshold, and “-”

Table 1. Patterns of similarity and particularity.

Notation sim(A, B) par(A, B) par(B, A)

+ + + ⩾ τsim ⩾ τpar ⩾ τpar

+ + - ⩾ τsim ⩾ τpar < τpar

+ - + ⩾ τsim < τpar ⩾ τpar

+ - - ⩾ τsim < τpar < τpar

- + + < τsim ⩾ τpar ⩾ τpar

- + - < τsim ⩾ τpar < τpar

- - + < τsim < τpar ⩾ τpar

- - - < τsim < τpar < τpar

The results of a semantic comparison of gene annotations can be classed into eight macro-patterns

according to similarity and particularity values. The first sign is a “+” if the similarity is greater than or equal

to the similarity threshold τsim, or a “-” otherwise. The two other signs depends on the two particularity

values, a “+” for a particularity greater than the particularity threshold τpar or a “-” otherwise.

doi:10.1371/journal.pone.0133579.t001
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otherwise). The results of comparing two genes on their similarity and particularity values can
be classified into eight distinct patterns described in Table 1. A comparison should not result in
a “+ + +” nor a “- - -” pattern. Indeed, a “+ + +” pattern would mean that the two genes com-
pared share enough features to be considered similar yet, at the same time, that each have
enough particular features to both be considered particular. Conversely, a “- - -” pattern would
mean that the two genes compared are neither similar nor particular.

We applied the threshold determination process described in Fig 1 to obtain a particularity
threshold. For the first step, we composed the same gene groups as those used to compute the
similarity threshold. For the second step, we computed all the intra-group and inter-group par-
ticularity values between all possible pairs of genes. At the third step, we did not consider any
FPs nor FNs as genes belonging to the same group can have some degree of particularity even
if they are similar. However, knowing the similarity threshold, we computed the proportion of
“+ + +” and “- - -” patterns found in the results while particularity threshold varied. For this
step, three similarity thresholds were available: τN, τS and τsim. Let sim be the result of a seman-
tic similarity measure between two genes G1 and G2.

• If sim is lower than τN, we can conclude that G1 and G2 are strictly non-similar. Conversely,
if sim is greater than τN, we can only conclude that G1 and G2 are possibly similar but with
no certainty.

• If sim is greater than τS, we can conclude that G1 and G2 are strictly similar. Conversely, if
sim is lower than τS, we only can conclude that G1 and G2 are possibly non-similar but with
no certainty.

• Using τsim cannot lead to a conclusion with absolute certainty, but it does lead to the smallest
number of errors.

Using τN can result in a lot of FPs and using τS can result in a lot of FNs. Consequently, we
computed the particularity threshold τpar using the similarity threshold τsim. For step 3c, we
summed the “+ + +” and “- - -” proportions for each possible particularity threshold value. The
particularity threshold τpar was the one that minimized this sum.

ChEBI. As the threshold determination process is neither specific to GO nor to the previ-
ously used measures, we applied our method to another ontology using two other similarity
measures. We compared families of molecules using the ChEBI ontology and the simUI and
the simGIC similarity measures. We composed our S and N distributions from the pairwise
similarities obtained comparing all the children of two ChEBI entities. These entities were two
distinct general (i.e. with no common descendants) ChEBI terms, each of which is the parent
of numerous specific terms in the ChEBI ontology. This process allowed us to compare two dis-
tinct families of molecules.

Evaluation
The evaluation study involved first quantifying the extent of the changes resulting from using
the threshold computed by our method instead of the default 0.5 and then determining
whether these changes are biologically relevant.

The first part of this study focused on the changes in the results of the whole HomoloGene
database intra-group gene comparisons. HomoloGene is a system that automatically detects
homologs, including paralogs and orthologs, among the genes of 21 fully-sequenced eukaryotic
genomes [44].

In the second part of this study, we computed the similarity and particularity measures on
the well annotated peroxisome proliferator activated receptor (PPAR) multigene family.

Optimal Threshold for Semantic Similarity and Particularity Measures

PLOS ONE | DOI:10.1371/journal.pone.0133579 July 31, 2015 11 / 30



PPARα, PPARβ and PPARγ are involved in different processes [45] as transcription factors.
Each member of this family uses the same molecular mechanisms in different metabolic path-
ways. The family is evolutionarily well conserved [46]. We expected a similarity value above
the threshold for BP when comparing PPAR orthologs in several species. However, the ortho-
log conjecture assumes that orthologs generally share more functions than paralogs. We conse-
quently expected some similarity values below the threshold when comparing PPAR paralogs
within a species and between species. The goal was to determine whether our similarity and
particularity thresholds lead to biologically more relevant interpretations than the default
approach.

Results and Discussion

BP similarity threshold using two groups of similar genes
We studied the similarity values obtained when comparing genes known to be functionally
close and genes without functional proximity. This study was performed using a hybrid seman-
tic similarity measure (Wang) and a node-based measure (Lin).

Fig 4 presents the distribution of the BP similarity values obtained for two intra-family com-
parisons and the corresponding inter-family comparisons. The two PANTHER families were
“neurotransmitter gated ion channel” (pthr18945) and “tyrosine-protein kinase receptor”
(pthr24416).

As expected, similarity values obtained using either Wang’s (Fig 4A) or Lin’s measure (Fig
4B) were significantly higher in the intra-family comparisons than the inter-family compari-
sons (Welch’s t-tests; see S1 File). We observed an overlap between the S and N distributions,
which corresponds to the situation shown in Fig 3. τN was located at the lowest whisker of the
intra-family S blue box, i.e. 0.096 with Wang’s measure and 0.364 with Lin’s measure. τS was
located at the upmost whisker of the inter-family N yellow box, i.e. 0.519 with Wang’s measure
and 0.588 with Lin’s measure.

We also determined the optimal similarity threshold value τsim that minimizes the sum of
FP and FN proportions. Fig 5 reports the results for Wang’s measure and Fig 6 reports the
results for Lin’s measure. The minimum ordinate value of the curve of Figs 5 and 6 gives the
threshold for BP using Wang’s (0.42) and the Lin’s (0.49) measures, respectively.

Threshold stability
A threshold determined using only two groups of genes is exposed to bias. In order to obtain a
more reliable threshold, we extended the threshold determination process by including the
genes from six PANTHER families for BP and MF and the genes from five metabolisms for
CC. We then performed a leave-one-out study to assess the stability of the threshold.

Extension to multiple families. Fig 7 presents the distribution of the BP similarity values
obtained for six intra family comparisons and the corresponding fifteen inter-family compari-
sons. These families were “histone h1/h5 (pthr11467)”, “g-protein coupled receptor”
(pthr12011), “neurotransmitter gated ion channel” (pthr18945), “tyrosine-protein kinase
receptor” (pthr24416), “phosphatidylinositol kinase” (pthr10048) and “sulfate transporter”
(pthr11814). As expected, the similarity values obtained were significantly higher using either
Wang’s (Part A) or Lin’s (Part B) measure in the intra-family comparisons than in the inter-
family comparisons (Welch’s t-tests; see S2 File). As the S and N distributions overlap, τN was
located at the lowest whisker of the intra-family S blue box, i.e. 0.164 with Wang’s measure and
0.325 with Lin’s measure. τS was located at the upmost whisker of the inter-family N yellow
box, i.e. 0.618 with Wang’s measure and 0.794 with Lin’s measure. These results obtained using
six PANTHER families were close to those obtained using two families.
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Fig 4. Intra- and inter-family semantic similarity distributions using two families of similar genes. Part A presents the results obtained usingWang’s
measure and part B presents the results obtained using Lin’s measure. In both parts, the left side separately presents the two intra-family distributions in blue
and the inter-family distribution in yellow. The right side presents the S distribution that gathers all the intra-family similarity values in blue and the N
distribution that gathers all the inter-family similarity values in yellow.

doi:10.1371/journal.pone.0133579.g004
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Fig 8 presents the distribution of the MF similarity values obtained for the same six intra-
PANTHER family comparisons and the corresponding fifteen inter-family comparisons.
Again and as expected, similarity values obtained were significantly higher using Wang’s (Part
A) or Lin’s (Part B) measure in the intra-group similarity than the inter-group comparison
(Welch’s t-tests; see S3 File). As the S and N distributions overlap, τN was located at the lowest
whisker of the intra-family S blue box, i.e. 0.251 with Wang’s measure and 0.506 with Lin’s
measure. τS was located at the upmost whisker of the inter-family N yellow box, i.e. 0.671 with
Wang’s measure and 0.725 with Lin’s measure.

Fig 5. Determination of Wang’s similarity threshold using two families of similar genes. The minimum of false-positive and false-negative proportions
gives the similarity threshold (τsim).

doi:10.1371/journal.pone.0133579.g005
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Fig 9 presents the distribution of the CC similarity values obtained for five intra-pathway
comparisons and the corresponding ten inter-pathway comparisons. The five pathways chosen
were: “chromosome maintenance” (nucleoplasm and nuclear membrane), “mitochondrial pro-
tein import” (mitochondrial inter-membrane space, membrane and matrix), “potassium chan-
nel” (cellular membrane), “protein folding” (cytosol) and “termination of O-glycan
biosynthesis” (Golgi lumen). Similarity values obtained were again significantly higher using
either Wang’s (Part A) or Lin’s (Part B) measure in the intra-groups similarity than the inter-
group comparison (Welch’s t-tests; see S4 File). As the S and N distributions overlap, τN was
located at the lowest whisker of the intra-family S blue box, i.e. 0.166 with Wang’s measure and

Fig 6. Determination of Lin’s similarity threshold using two families of similar genes. The minimum of false-positive and false-negative proportions
gives the similarity threshold (τsim).

doi:10.1371/journal.pone.0133579.g006

Optimal Threshold for Semantic Similarity and Particularity Measures

PLOS ONE | DOI:10.1371/journal.pone.0133579 July 31, 2015 15 / 30



Fig 7. BP distribution of similarity values comparing similar and non-similar genes. Part A gives results using Wang’s similarity measure. Part B gives
results using Lin’s similarity measure.

doi:10.1371/journal.pone.0133579.g007
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Fig 8. MF distribution of similarity values comparing similar and non-similar genes. Part A gives results usingWang’s similarity measure. Part B gives
results using Lin’s similarity measure.

doi:10.1371/journal.pone.0133579.g008
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Fig 9. CC distribution of similarity values comparing similar and non-similar genes. Part A gives results usingWang’s similarity measure. Part B gives
results using Lin’s similarity measure.

doi:10.1371/journal.pone.0133579.g009
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0.28 with Lin’s measure. τS was located at the upmost whisker of the inter-family N yellow box,
i.e. 0.773 with Wang’s measure and 0.938 with Lin’s measure.

In each previous case, the S and N distributions overlapped so defining a threshold in this
interval yields some FPs and some FNs. We determined the optimal similarity threshold value
that minimizes the sum of FP and FN proportions. Fig 10 reports the results for Wang’s SV-
based measure and Fig 11 reports the results for Lin’s IC-based measure. The minimum ordinate
value of each curve of Figs 10 and 11 gives the threshold for BP, MF and CC using Wang’s and
Lin’s measures, respectively. Table 2 summarizes the values obtained for the boxplots (Figs 7, 8
and 9 giving τS and τN) and the threshold variation curves (Figs 10 and 11 giving τsim). These
similarity thresholds differed according to similarity measure used. They also differed between
BP, MF and CC. This can be explained by the different level of complexity between these three
branches [10]. It is possible to use one of the three proposed thresholds (τN, τS and τsim)

Fig 10. Determination of Wang’s similarity threshold. The minimum of false-positive and false-negative proportions gives the similarity threshold (τsim).
The overlapping parts of the boxplots (between τN and τS) from part A of Figs 7, 8 and 9 are shown in the lower part of the figure. The thresholds are located
between the similar and non-similar boxes.

doi:10.1371/journal.pone.0133579.g010
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Fig 11. Determination of Lin’s similarity threshold. The minimum of false positive and false negative proportions gives the similarity threshold (τsim). The
overlapping parts of the boxplots (between τN and τS) from part B of Figs 7, 8 and 9 are shown in the lower part of the figure. The thresholds are located
between the similar and non-similar boxes.

doi:10.1371/journal.pone.0133579.g011

Table 2. Semantic similarity thresholds for Wang’s and Lin’s measures.

Wang Lin

τN Genes are not
similar under

τS Genes are
similar above

τsim Threshold
minimizing FP and FN

τN Genes are not
similar under

τS Genes are
similar above

τsim Threshold
minimizing FP and FN

BP 0.164 0.618 0.4 0.325 0.794 0.54

MF 0.251 0.671 0.41 0.506 0.725 0.535

CC 0.166 0.773 0.475 0.28 0.938 0.52

For each measure, τN and τS respectively give the value of the lowest whisker of the blue box and the upmost whisker of the yellow box of the boxplots

reported in the Figs 7, 8 and 9. For each measure, τsim is the threshold value that minimizes the proportions of false-positive and false-negative results,

corresponding to the minimum ordinate of the curves in Figs 10 and 11.

doi:10.1371/journal.pone.0133579.t002

Optimal Threshold for Semantic Similarity and Particularity Measures

PLOS ONE | DOI:10.1371/journal.pone.0133579 July 31, 2015 20 / 30



depending on the accuracy needed to interpret the semantic similarity results. None of these
thresholds is equal to the intuitive “default” threshold of 0.5.

S5 File provides a detailed How To guide to compute a similarity threshold, taking as exam-
ple the computation of BP similarity threshold using Wang’s measure.

Robustness of threshold determination. In order to study the robustness of our optimi-
zation, we successively removed one gene set from our datasets and re-computed the similarity
threshold. We performed this analysis on BP, MF and CC. Tables 3 and 4 present the results
for Wang’s and Lin’s measures, respectively, giving the τsim and the FP and FN proportions for
each complete dataset and for all the groups of a dataset except one. The thresholds varied
slightly over the different datasets.

BP similarity threshold varied between 0.4 and 0.435. MF similarity threshold remained sta-
ble at 0.41, except when not taking into account the family of genes related to neurotransmitter
gated ion channels (0.49). CC similarity threshold was between 0.475 and 0.515.

The MF case diverged from BP and CC on its similarity (FP + FN proportions) curve. Indeed,
the minimum value of 0.41 was located at the extreme left of a part of the curve where (FP + FN
proportions) varied slightly. Consequently, leaving out the “neurotransmitter gated ion chan-
nels” dataset that was causing this specific minimum position greatly affected the threshold.
However, some perspective is needed: first, there was a relatively long interval in which the sum
of FP and FN remained low, and second, the minimum of 0.49 obtained without the “neuro-
transmitter gated ion channels” set was located at the opposite part of this range of stability.

Table 3. Similarity threshold variations considering full and partial datasets (Wang’s measure).

Set τsim FN(%) FP(%)

BP set 0.4 18.688 19.7

BP set without histone 0.42 23.429 16.372

BP set without g-protein coupled receptor 0.405 16.103 17.626

BP set without neurotransmitter gated ion channel 0.4 19.276 17.03

BP set without tyrosine-protein kinase receptor 0.435 27.708 14.451

BP set without phosphatidylinositol-kinase 0.4 18.954 19.908

BP set without sulfate transporter 0.42 23.642 14.784

MF set 0.41 1.602 14.15

MF set without histone 0.41 1.625 14.763

MF set without g-protein coupled receptor 0.41 1.831 13.842

MF set without neurotransmitter gated ion channel 0.49 4.599 8.668

MF set without tyrosine-protein kinase receptor 0.41 2.666 12.419

MF set without phosphatidylinositol-kinase 0.41 1.625 12.666

MF set without sulfate transporter 0.41 1.63 14.993

CC set 0.475 17.864 21.443

CC set without chromosome maintenance 0.475 27.342 20.251

CC set without mitochondrial protein import 0.475 18.041 21.114

CC set without potassium channels 0.515 15.987 17.133

CC set without protein folding 0.475 17.417 19.082

CC set without termination of O-glycan biosynthesis 0.475 17.867 21.717

This table summarizes the similarity thresholds τsim obtained considering each complete dataset or all the groups of a dataset except one, when using

Wang’s similarity measure. The numbers given for FP and FN are the proportions of false-positives and false-negatives that the threshold admits in the

comparison results.

doi:10.1371/journal.pone.0133579.t003
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Considering Figs 10 and 11, the minimum ordinate value of the sums FP + FN proportions
was in each case located in a relatively large range within which the ordinate varied only
slightly. Consequently, we concluded that the similarity could be located in the range where the
sum of the FP and FN proportions varied the least. Finally, note that each threshold presented
here was source of errors (FP and FN) in the proportions described in Tables 3 and 4.

Generalization. We applied our threshold determination method to obtain a particularity
threshold on GO and a similarity threshold for two measures on the ChEBI ontology.

Particularity threshold. We used the semantic particularity measure of Bettembourg et al.
with SV and IC, respectively, to compute the particularity values for the same genes used in the
similarity study. The variation of the “+ + +” and “- - -” profiles in our datasets was studied
using the similarity threshold τsim obtained in the previous section and sampling the value of
τpar, the particularity threshold. Table 5 gives the particularity thresholds (τpar) minimizing the

Table 4. Similarity threshold variations considering full and partial datasets (Lin’s measure).

Set τsim FN(%) FP(%)

BP set 0.54 16.401 12.88

BP set without histone 0.54 16.465 12.326

BP set without g-protein coupled receptor 0.525 14.101 16.081

BP set without neurotransmitter gated ion channel 0.525 15.556 15.887

BP set wihout tyrosine-protein kinase receptor 0.54 14.403 12.969

BP set without phosphatidylinositol-kinase 0.525 14.687 14.071

BP set without sulfate transporter 0.54 16.633 12.144

MF set 0.535 2.514 7.799

MF set without histone 0.535 2.584 5.756

MF set without g-protein coupled receptor 0.565 0.9 9.016

MF set without neurotransmitter gated ion channel 0.535 4.258 8.661

MF set without tyrosine-protein kinase receptor 0.535 2.514 7.849

MF set without phosphatidylinositol-kinase 0.535 2.514 7.817

MF set without sulfate transporter 0.52 2.431 7.265

CC set 0.52 11.838 19.538

CC set without chromosome maintenance 0.545 15.222 19.971

CC set without mitochondrial protein import 0.52 12.266 17.596

CC set without potassium channels 0.52 16.347 18.905

CC set without protein folding 0.52 8.072 20.313

CC set without termination of O-glycan biosynthesis 0.52 11.641 18.463

This table summarizes the similarity thresholds obtained considering each complete dataset or all the groups of a dataset except one, when using Lin’s

similarity measure. The numbers given for FP and FN are the proportions of false-positives and false-negatives that the threshold admits in the

comparison results.

doi:10.1371/journal.pone.0133579.t004

Table 5. Semantic SV-based and IC-based particularity thresholds.

SV-based particularity threshold IC-based particularity threshold

BP 0.515 0.68

MF 0.485 0.66

CC 0.335 0.6

These thresholds minimize the proportions of non-informative “+ + +” or “- - -” patterns according to Table 1.

doi:10.1371/journal.pone.0133579.t005
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sum of “+ + +” and “- - -” patterns for SV-based and IC-based approaches. S6 File presents the
values that supported the thresholds determination.

These thresholds differed between BP, MF and CC and between approaches. We performed
the leave-one-out study in order to assess stability of the particularity threshold by removing
one gene set from our datasets and re-computing the particularity threshold. This analysis was
performed on BP, MF and CC. We obtained τpar and the proportions of non-informative “+ +
+” and “- - -” cases for each complete dataset and for all the groups of a dataset except one. The
thresholds varied slightly among the different datasets. BP particularity threshold was between
0.49 and 0.515. MF particularity threshold was between 0.35 and 0.485. CC particularity
threshold was between 0.28 and 0.335. S6 File provides the detailed results of the leave-one-out
study using SV and IC as informativeness measures.

With both SV-based and IC-based approaches, the minimum ordinate value of the sums “+
+ +” + “- - -” was located in a relatively large range within which the ordinate varied only
slightly. Consequently, we concluded that the particularity thresholds should be located in the
range where the sum of the “+ + +” and “- - -” proportions varied the least.

simUI and simGIC thresholds for ChEBI molecular entities. Fig 12 presents the distri-
bution of the similarity values obtained for the intra and inter-groups comparisons using the
two ChEBI groups composed of children of “monocarboxylic acid” (chebi:25384) and “glyco-
side” (chebi:24400). As expected, similarity values obtained were significantly higher using
either the simUI (Part A) or simGIC (Part B) measures in the intra-group comparisons than
the inter-group comparisons (Welch’s t-tests; see S7 File). Unlike the results obtained on the
GO, the S and N distributions did not overlap. We were this time in the situation described by
Fig 2. Consequently, τS was located at the lowest whisker of the intra-family S blue box, i.e.
0.554 for simUI and 0.051 for simGIC. τN was located at the upmost whisker of the inter-family
N yellow box, i.e. 0.383 for simUI and 0.021 for simGIC. It is possible to choose any value
between τN and τS as similarity threshold. Note that weighting by the IC in the simGIC mea-
sure resulted in a very low threshold.

Evaluation
We evaluated the GO similarity and particularity thresholds in two different use-cases. First,
we compared the interpretation of the results of semantic measures performed on homolog
genes using a default threshold of 0.5 vs our new thresholds. Second, we studied whether the
thresholds determined via our new method led to biologically-relevant interpretations.

Large-scale evaluation of the impact of threshold changes. We evaluated the impact of
our new GO similarity and particularity thresholds over a large dataset characterization. We
compared the distribution of semantic measures results among the different patterns proposed
in Table 1 for the whole HomoloGene database considering an arbitrary 0.5 threshold and our
new method thresholds. Tables 6, 7 and 8 summarize the results for BP, MF and CC, respec-
tively. They provide the number of pairs of genes changing from one pattern of Table 1 to
another using τsim and τpar instead of the default value of 0.5. We have not distinguished the “+
+ -” and “+ - +” categories nor the “- + -” and “- - +” categories as the order of particularity val-
ues in the results of this study is meaningless. All categories of the pattern described in Table 1
were impacted by the change of threshold. As the new thresholds were different between BP,
MF and CC, the transitions observed were also different. For example, the number of “+ + -”
increased for BP but decreased for MF and CC. However, in all cases, the greatest size increase
concerned the “+ + - or + - +” category, at +26.2%, +18.5% and + 36.7% for BP, MF and CC,
respectively. The number of “+ + +” and “- - -” cases, that are the least-informative cases,
decreased for BP (-11.2%) and MF (-34.8%) but increased for CC (+49%). This situation can
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Fig 12. Distribution of similarity values comparing similar and non-similar ChEBI entities. Part A gives results using the simUI similarity measure. Part
B gives results using the simGIC similarity measure. The S and N distributions did not overlap. For both measures, τsim was between τS (lowest whisker of the
intra-family S blue box) and τN (upmost whisker of the inter-family N yellow box).

doi:10.1371/journal.pone.0133579.g012
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be explained by the fact that the CC particularity threshold of 0.335 was the lowest of all the
computed thresholds, making the increase of “+ + +” cases more important than the decrease
of the “- - -” cases. Furthermore, the average number of CC terms that annotate a gene in
HomoloGene was only 1.38 against 2.45 for BP and 1.63 for MF. Consequently, the similarity
and particularity values measured on HomoloGene were less reliable for CC than for BP and
MF. This situation could be attributed to a lack of CC annotations in our dataset. However, in
the three branches of GO, the proportions of the least-informative cases were low at just 1.62%,
0.39% and 1.30% for BP, MF and CC, respectively. Overall, the change of thresholds deeply
impacted the distribution the HomoloGene intra-group comparison results between the differ-
ent patterns.

Relevance of the method on the PPAR multigene family. Wemeasured similarity and
particularity values of PPARα, PPARβ and PPARγ between six species. S8 File provides two
tables reporting the results of this study for BP and MF, respectively. Each gene was only anno-
tated by one or two CC terms, so we kept CC results out of this study. All our similarity values
were greater than τsim. Consequently, in order to emerge similarity differences between ortho-
logs and paralogs, we had to use τS. This threshold guarantees that the results above it indicate
two similar genes. However, the only conclusion that can be inferred for the gene comparisons

Table 6. Evolution in patterns in results on HomoloGene intra-group BP comparisons.

BP↱ + - - + + - or + - + + + + - + + - + - or - - + - - - Total using 0.5 thresholds

+ - - 268,471 0 0 0 0 0 268,471

+ + - or + - + 1,780 54,168 0 0 0 0 55,948

+ + + 7 270 2,623 0 0 0 2,900

- + + 2 154 2,254 10,374 304 1 13,089

- + - or - - + 177 16,027 0 0 32,578 102 48,884

- - - 2,883 0 0 0 0 1,401 4,284

Total using new thresholds 273,320 70,619 4,877 10,374 32,882 1,504 T = 393,576

Numbers of pairs of genes changing from one pattern to another when considering our optimal similarity and particularity thresholds instead of the default

value of 0.5. The most important transition consists in 16,027 results moving from the “- + - or - - +” category (size decreased by 32.7%) to the “+ + - or + -

+” category (size increased by 26.2%). The new thresholds give more “+ + +” results but fewer “- - -” results. Globally, the sum of the numbers of the “+ +

+” and “- - -” patterns has decreased (-11.2%).

doi:10.1371/journal.pone.0133579.t006

Table 7. Evolution in patterns in results on HomoloGene intra-group MF comparisons.

MF↱ + - - + + - or + - + + + + - + + - + - or - - + - - - Total using 0.5 thresholds

+ - - 377,017 2,197 14 0 0 0 379,228

+ + - or + - + 0 37,680 56 0 0 0 37,736

+ + + 0 0 666 0 0 0 666

- + + 0 0 297 8,507 0 0 8,804

- + - or - - + 0 4,738 15 34 12,953 0 17,740

- - - 1,189 87 0 0 25 672 1,973

Total using new thresholds 378,206 44,702 1,048 8,541 12,978 672 T = 446,147

Numbers of pairs of genes changing from one pattern to another when considering our optimal similarity and particularity thresholds instead of the default

value of 0.5. After the change of threshold, the most important transition consists in 4,738 results moving from the “- + - or - - +” category (size decreased

by 26.8%) to the “+ + - or + - +” category (size increased by 18.5%). The new thresholds give more “+ + +” results but fewer “- - -” results. Globally, the

sum of the numbers of the “+ + +” and “- - -” patterns has decreased (-34.8%).

doi:10.1371/journal.pone.0133579.t007
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resulting in values between τsim and τS is that there is doubt over whether these genes are simi-
lar. The results of inter-orthologs comparisons systematically matched a “+ - -” pattern, as
expected. In contrast, the results of inter-paralog comparisons included some values lower
than τS and greater than τpar, resulting in “+ + -”, “- + -” and “- - +” patterns. In a recent paper,
Thomas et al. “strongly encourage careful consideration of the interpretations” of GO-related
analysis [47]. Consequently, the only possible conclusion here is that the actual state of the
PPAR annotation is consistent with the ortholog conjecture, according to a similarity and a
particularity measure, using our new thresholds.

Limitations
As in any annotation-related domain, the threshold determination for a semantic measure is
limited by the number of annotations available. There is strong variation in the quantity, gran-
ularity and reliability of annotations between different species and different metabolisms,
which make it difficult to determine a good threshold when the domain of interest has few
annotations. However in such cases, the results of a semantic similarity or particularity mea-
sure would not be accurate anyway.

The appropriate choice of “S” and “N” distributions is crucial to the threshold determina-
tion process, and it hinges on having some degree of knowledge in the domain of interest. The
more these distributions differ from the data to interpret using the threshold, the less accurate
this threshold will be.

These two limitations can co-occur if studying a poorly-annotated and little-known species
using a threshold obtained from a better-known but not-so-close species.

Generic method and domain-dependent thresholds
We computed thresholds for several semantic measures. We used them to interpret data from
different mammal species. The gene groups used to compute the thresholds were related to six
different families (BP and MF thresholds) and five pathways located in a different cell compart-
ment (CC threshold). We believe that these thresholds are more relevant for the comparison of
any mammal genes than the arbitrary threshold of 0.5 used to date.

We do not claim that these thresholds are universal. It is preferable to recompute the thresh-
olds in order to compare genes for other species or simply to use thresholds that are up-to-date
with the evolution of GO and GOA.

Table 8. Evolution in patterns in results on HomoloGene intra-group CC comparisons.

CC↱ + - - + + - or + - + + + + - + + - + - or - - + - - - Total using 0.5 thresholds

+ - - 250,826 25,089 948 0 0 0 276,863

+ + - or + - + 0 67,349 2,103 0 0 0 69,452

+ + + 0 0 1,237 0 0 0 1,237

- + + 0 0 104 2,746 0 0 2,850

- + - or - - + 0 2,292 90 1,191 19,956 0 23,529

- - - 118 196 34 69 470 369 1,256

Total using new thresholds 250,944 94,926 4,516 4,006 20,426 369 T = 375,187

Numbers of pairs of genes changing from one pattern to another when considering our optimal similarity and particularity thresholds instead of the default

value of 0.5. After the change of threshold, the most important transition consists in 25,089 results moving from the “+ - -” category (size decreased by

9.4%) to the “+ + - or + - +” category (size increased by 36.7%). The new thresholds give more “+ + +” results but fewer “- - -” results. Globally, the sum of

the numbers of the “+ + +” and “- - -” patterns has increased (+49%).

doi:10.1371/journal.pone.0133579.t008
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Overall, even if the thresholds are domain-dependent, our threshold computation method
can be applied to any domain. It only requires some degree of domain expertise to build the
most relevant “S” and “N” distributions. Once a threshold is determined with the help of an
expert to compose the relevant datasets, the leave-one-out study indicates that the threshold is
applicable to other similar datasets and is in this regard application-independent. However, the
user should consider whether the original datasets are still relevant in their own application
context (which may be different from the context used to formulate the threshold).

Conclusion
Here we propose a method for determining a threshold for the interpretation of values
obtained with semantic measures. We applied this method to obtain the similarity and particu-
larity thresholds for BP, MF and CC branches of GO and the similarity threshold for the
ChEBI ontology. These new thresholds provide new insight on semantic measure results.
Using the new thresholds, we showed that the results of comparisons in the HomoloGene data-
base were classified into very different patterns. These new thresholds also better separated
orthologs and paralogs in the multigene PPAR family. The new thresholds we proposed are
not absolute. As the curves used to define them were rather flat around the minima, we can
pick our thresholds from within a relatively large range. The precise threshold values proposed
here are only the minimum values of this range. Furthermore, a threshold value should be con-
sidered in its biological context and warrants revaluation according to this context and to evo-
lutions in GO and GOA and the semantic measure used.
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