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Resistance to gemcitabine is the main challenge of chemotherapy for pan-

creatic ductal adenocarcinoma (PDAC). Hence, the development of a

response signature to gemcitabine is essential for precision therapy of

PDAC. However, existing quantitative signatures of gemcitabine are sus-

ceptible to batch effects and variations in sequencing platforms. Therefore,

based on within-sample relative expression ordering of pairwise genes, we

developed a transcriptome-based gemcitabine signature consisting of 28

gene pairs (28-GPS) that could predict response to gemcitabine for PDAC

at the individual level. The 28-GPS was superior to previous quantitative

signatures in terms of classification accuracy and prognostic performance.

Resistant samples classified by 28-GPS showed poorer overall survival,

higher genomic instability, lower immune infiltration, higher metabolic

level and higher-fidelity DNA damage repair compared with sensitive sam-

ples. In addition, we found that gemcitabine combined with phosphoinosi-

tide 3-kinase (PI3K) inhibitor may be an alternative treatment strategy for

PDAC. Single-cell analysis revealed that cancer cells in the same PDAC

sample showed both the characteristics of sensitivity and resistance to gem-

citabine, and the activation of the TGFb signalling pathway could promote

progression of PDAC. In brief, 28-GPS could robustly determine whether

PDAC is resistant or sensitive to gemcitabine, and may be an auxiliary tool

for clinical treatment.
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC), which

accounts for the majority of pancreatic cancer, is a

fatal disease with an extremely poor prognosis [1]. The

5-year survival rate for PDAC is approximately 10%.

Although radical surgical resection may increase the 5-

year survival rate to about 20%, most patients can not

undergo surgery due to late-stage diagnosis and metas-

tases [2,3]. Currently, gemcitabine-based monotherapy

or combination chemotherapy is still the standard

treatment option for PDAC.

A phase III clinical trial showed that the clinical bene-

fit rate of gemcitabine in the treatment of advanced pan-

creatic cancer reached 23.8%, and gemcitabine was

widely used in clinics [4]. As a standard regimen for the

treatment of pancreatic cancer, gemcitabine combined

with drugs such as paclitaxel and erlotinib showed signif-

icantly improved survival in advanced pancreatic cancer

[5,6]. Among patients with resected or metastatic pancre-

atic cancer, the combination chemotherapy regimen con-

sisting of oxaliplatin, irinotecan, fluorouracil and

leucovorin (FOLFIRINOX) showed significantly longer

survival than gemcitabine. However, it is worth noting

that more drugs are accompanied by higher toxicities

[7,8]. Unfortunately, despite the use of adjuvant therapy,

disease-free survival or overall survival of PDAC has not

been improved [9]. The poor prognosis of PDAC is

mainly due to the majority of patients treated with gemc-

itabine chemotherapy eventually showing resistance [10].

Resistance to gemcitabine in PDAC is a complex

biological process, and the underlying mechanism of

resistance is not clear. It is well known that PDAC is

a quite complex disease characterized by molecular

and clinical heterogeneity. Focussing on a single

PDAC driver gene such as KRAS, TP53, SMAD4 or

CDKN2A failed to predict whether patients are sensi-

tive or resistant to gemcitabine [11,12]. Genomic and

epigenomic characteristics jointly regulate gene expres-

sion. Therefore, capturing the gene expression charac-

teristics caused by genomic or epigenomic events may

be more effective than analysing mutations in predict-

ing the patient’s response to gemcitabine. Up to date,

the gemcitabine signatures derived from the transcrip-

tome include 14-gene signature [13] and GemPred sig-

nature [14]. However, current gemcitabine signatures

consisting of a number of genes with different weights

were developed based on absolute expression level of

genes, which were limited by experimental batch

effects, RNA degradation, sequencing platform differ-

ences, data normalization methods and so on [15]. Pre-

vious studies demonstrated that relative expression

ordering (REO)-based signatures were robust across

different data sets [16]. Cheng et al. [17] have demon-

strated that the REO patterns of gene pairs were

insensitive to tumour purities of samples. Moreover,

the REO-based signature could be applied to the indi-

vidual patient using within-sample REOs [18]. Thus,

our study aimed to develop the gene pair signature of

gemcitabine response for PDAC based on REOs.

In this study, based on REO, we developed a quali-

tative transcriptional signature to predict the response

to gemcitabine for PDAC. The prognostic perfor-

mance of the signature was validated in multiple inde-

pendent data sets. Finally, we conducted a systematic

and comprehensive analysis to further explore the

underlying mechanism of gemcitabine resistance.

2. Material and methods

2.1. PDAC data and preprocessing

The transcriptome data were downloaded from pub-

licly available databases, including The Cancer Gen-

ome Atlas (TCGA), International Cancer Genome

Consortium (ICGC, https://dcc.icgc.org/), ArrayEx-

press (https://www.ebi.ac.uk/arrayexpress/) and Gene

Expression Omnibus (GEO, http://www.ncbi.nlm.nih.

gov/geo/) (Table 1). PDAC samples from TCGA and

ICGC were used as the training cohort to develop the

gemcitabine signature. The validation data sets

included GSE62452, GSE57495, GSE71729,

GSE28735, GSE17891 and E-MATB-6134. The multi-

omics and drug information of TCGA were downloaded

from cBioPortal (https://www.cbioportal.org/) and

FIREHOSE (http://gdac.broadinstitute.org/). Each

chemotherapy drug was accompanied with

Table 1. The PDAC data sets used in this study.

Data Data type

PDAC

samples Data source

PACA-CA mRNA 213 https://icgc.org/

PACA-AU mRNA 242 https://icgc.org/

GSE62452 mRNA 65 http://www.ncbi.nlm.nih.gov/geo

GSE57495 mRNA 63 http://www.ncbi.nlm.nih.gov/geo

GSE71729 mRNA 125 http://www.ncbi.nlm.nih.gov/geo

GSE28735 mRNA 45 http://www.ncbi.nlm.nih.gov/geo

GSE17891 mRNA 19 http://www.ncbi.nlm.nih.gov/geo

E-MATB-6134 mRNA 288 https://www.ebi.ac.uk/arrayexpress

TCGA mRNA 146 https://www.cbioportal.org/

TCGA Mutation 147 https://www.cbioportal.org/

TCGA Methylation 152 https://www.cbioportal.org/

TCGA DNA copy

number

152 https://www.cbioportal.org/
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corresponding response information in the TCGA drug

information. We only retained samples with response

information to gemcitabine chemotherapy, and for sam-

ples with multiple rounds of gemcitabine treatments, we

only kept the samples with first response information to

gemcitabine. Pancreatic cancer-CA (PACA-CA)

patients’ chemotherapy information was obtained from

the ICGC. In our study, only PDAC samples with sur-

vival information were used. Silent mutations were

excluded from TCGA mutation data. In PACA-CA

expression data, only tumour-related specimens were

retained. The probe-level expression values of pancreatic

cancer-AU (PACA-AU) and GEO data sets were anno-

tated to gene-level with matched platform information

according to the following criteria: if multiple probe-sets

were mapped to the same gene, the gene expression val-

ues were averaged, and multiple gene expression values

were mapped to the same probe-set were excluded. In

addition, the gene expression data were filtered by the

HUGO Gene Nomenclature Committee database to

retain the protein-coding genes.

2.2. Cell line data and preprocessing

Gene expression data of PDAC cell lines were down-

loaded from the Cancer Dependency Map (https://

depmap.org/portal/) and corresponding annotation

files were obtained from the Cancer Cell Line Encyclo-

pedia (CCLE, https://sites.broadinstitute.org/ccle)

(Table S1). Only primary ductal adenocarcinoma cell

lines were retained. Gene expression data were directly

used after retaining 49 PDAC cell lines. In addition,

pharmacological data of gemcitabine were downloaded

from the Genomics of Drug Sensitivity in Cancer

(GDSC, https://www.cancerrxgene.org), the Cancer

Therapeutics Response Portal (CTRP, https://ctd2-

data.nci.nih.gov/Public/Broad) and the work of Cancer

Genome Project (CGP) [19] (Table S2).

2.3. Single-cell data and preprocessing

Single-cell data of 24 PDAC tumour samples were

obtained from Peng et al. [20]. R package ‘Seurat’

(v4.0.4) was used for data preprocessing and subse-

quent analysis [21]. All functions were run with default

parameters. To filter low-quality cells, only cells with

≥ 1000 transcripts per cell, ≥ 3 cells per transcript and

≤ 10% mitochondrial transcripts were included for the

following analysis. Cell type identification was per-

formed using known cell type markers derived from

the literature or the CellMarker and PanglaoDB data-

bases [20,22,23].

2.4. Development of the REO-based gemcitabine

signature

In the TCGA data set, PDAC samples were classified

into the resistant and sensitive groups based on their

response to gemcitabine, where patients with complete

response (CR), partial response (PR) and stable disease

(SD) comprised the sensitive group and progressive dis-

ease (PD) belonged to the resistant group. Differentially

expressed genes (DEGs) were identified between

gemcitabine-resistant and -sensitive groups using the

Wilcoxon rank-sum test. For a gene pair composed of

DEGs, Gi and Gj were used to represent the expression

value of gene i and gene j, respectively. Fisher’s exact test

was used to evaluate whether the frequency of a specific

REO pattern (Gi > Gj or Gi < Gj) in the resistant group

was significantly higher than the frequency in the sensi-

tive group (P < 0.05). A panel of DEG-related gene pairs

was screened out by pairwise comparisons of all DEGs.

To improve the accuracy of the prediction, DEG-related

gene pairs were filtered by maintaining the consistency of

the REO pattern and the direction of average rank differ-

ence. Using univariate Cox proportional hazards model,

the DEG-related gene pairs were further filtered in

TCGA, PACA-CA and PACA-AU data sets to obtain a

set of prognosis-related gene pairs. Finally, the common

gene pairs of the three data sets were defined as the gemc-

itabine signature.

2.5. Defining resistant and sensitive sample

The classification threshold was obtained from the

receiver operating characteristic (ROC) curve, which

was drawn by the R package ‘pROC’. A single sample

was classified into the resistant group when the num-

ber of 28-GPS voting for resistance was no less than

the classification threshold; otherwise, the sensitive

group. Specifically, for a given gene pair in 28-GPS, if

Gi was greater than Gj, it would be scored as 1. Then,

the scores of all gene pairs in 28-GPS were added and

recorded as resistance score. The classification thresh-

old should be correspondingly adjusted with the num-

ber of matched gene pairs within the sample.

2.6. Multiomics feature analysis

Fisher’s exact test was used to identify genes with sig-

nificantly differential mutation frequencies between

gemcitabine-resistant and -sensitive groups. The Wil-

coxon rank-sum test was applied to detect DEGs and

differentially expressed methylations (DEMs) between

the two groups with a false discovery rate (FDR)
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< 0.05. The P value was adjusted using the Benjamini–
Hochberg (BH) procedure. Tumour mutational burden

(TMB) was calculated based on the number of nonsyn-

onymous somatic mutations. Homologous recombina-

tion defect score (HRDscore) was derived from the

work of Thorsson et al. [24]. TMB, HRDscore and

copy number variation (CNV) between the two groups

were compared using the Wilcoxon rank-sum test.

2.7. Functional enrichment analysis

Functional enrichment analysis of the genes with cor-

responding deregulation direction of DEGs and DEMs

was performed using the R package ‘clusterProfiler’

(version 4.0.5) [25]. Metabolism and immune system-

related pathways were obtained from the Kyoto Ency-

clopedia of Genes and Genomes (KEGG) database. A

panel of DNA damage response (DDR) related genes

was collected from the KEGG database and two pub-

lished literatures [26,27]. Subsequently, the enrichment

scores of the metabolic pathway, immune pathway

and DDR pathway for each sample were calculated

using single sample gene set enrichment analysis

(ssGSEA).

2.8. Immune infiltration analysis

The proportion of infiltrating immune cells in the

tumour immune microenvironment was estimated

using transcriptome-based algorithms CIBERSORTx

[28], EPIC [29], TIMER [30], QUANTISEQ [31] and

XCELL [32] on the Website CIBERSORTx (https://

cibersortx.stanford.edu/) and TIMER 2.0 (http://timer.

cistrome.org/). T-cell receptors (TCR) richness was

obtained from Thorsson et al. [24]. Immune-related

signatures were obtained from Chen et al. [33]. The

Wilcoxon rank-sum test was used to compare the dif-

ference in immune cell infiltration proportion, TCR

richness and immune-related signature scores between

gemcitabine-resistant and -sensitive groups. Forty-five

immune checkpoint genes with known activation or

inhibition effects were obtained from Auslander et al.

[34]. Differentially expressed immune checkpoint genes

were identified using the Wilcoxon rank-sum test.

2.9. Network analysis

Spearman rank correlation, with |r| > 0.4 and

P < 0.05, was used to calculate the correlation between

DEGs and differentially expressed immune checkpoint

genes or differentially expressed DDR genes. The cor-

relations among metabolic pathway, immune pathway

and DDR type were also calculated by Spearman rank

correlation. CYTOSCAPE software (version 3.8.2, https://

cytoscape.org/) was used to visualize the correlation

network.

2.10. Survival analysis

The overall survival time curves were estimated by the

Kaplan–Meier method, and tested using the log-rank

test.

2.11. Single-cell CNV analysis

CNV analysis was carried out using the R Package

‘InferCNV’ [35]. The CNVs were calculated for each

sample by expression level from single-cell sequencing

data with following parameters: cut-off = 0.1, clus-

ter_by_groups = TRUE, denoise = TRUE and

HMM = TRUE. The cells, except ductal and acinar

cells, were used as reference cells. For each sample, the

CNV score of each cell was calculated as a quadratic

sum of CNVregion - 1.

2.12. Cell communication analysis

Cell–cell communication was investigated via the R

package ‘CellChat’ (v1.1.3) [36]. After creating Cell-

Chat objects, we set the Secreted Signalling pathways

as the reference database and used default parameters

to identify putative interaction pairs.

2.13. Statistical analysis

All statistical analyses in this study were performed

using R software (v 4.1.1). The significance of the P

value is shown in the following way: *P < 0.05;

**P < 0.01; ***P < 0.001; ns: No significance.

3. Results

3.1. REO-based gemcitabine signature for PDAC

The steps of identifying the gemcitabine signature are

summarized in the flow chart (Fig. S1). Based on the

response to gemcitabine, PDAC samples were divided

into resistant and sensitive groups, and 282 DEGs

were identified between the two groups (P < 0.05, Wil-

coxon rank-sum test). Among all gene pairs composed

of DEGs, we screened out 2516 candidate gene pairs

(P < 0.05, Fisher’s exact test), of which 1028 gene

pairs had REO patterns consistent with the direction

of average rank difference. Subsequently, 407, 153 and

164 prognosis-related gene pairs were identified from
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the TCGA, PACA-CA and PACA-AU data sets,

respectively (P < 0.05, univariate Cox regression

model). Finally, the common 28 gene pairs (28-GPS)

of the three data sets were defined as gemcitabine sig-

nature (Table S3).

3.2. Gemcitabine-resistant samples classified by

28-GPS showed worse prognosis

According to the classification threshold 11.5 derived from

the ROC in TCGA training set (Fig. 1A), resistant samples

classified by 28-GPS showed significantly poorer overall

survival (OS) than sensitive samples (P = 0.024, log-rank

test, Fig. 1B). Furthermore, in TCGA gemcitabine-treated

and all samples, resistant samples were also accompanied

with a worse prognosis (P = 0.015 for gemcitabine-treated

samples and P = 0.001 for all samples, log-rank test,

Fig. 1C,D).Moreover, in independent PDAC samples from

the GEO, ArrayExpress and ICGC, the Kaplan–Meier sur-

vival curve uncovered poorer OS in resistant samples classi-

fied by 28-GPS (PACA-CA: P = 3.10e-08; PACA-AU:

P = 5.26e-05; GSE62452: P = 6.67e-04; E-MTAB-6134:

P = 0.044; GSE57495: P = 0.063; GSE71729: P = 0.300;

GSE28735:P = 0.054; GSE17891:P = 0.206; log-rank test,

Fig. 1E–L).

3.3. 28-GPS could predict the response to

gemcitabine in PDAC cell lines

Among the 49 PDAC cell lines from the CCLE data-

base, 44 cell lines were classified into the resistant

group and five cell lines were classified into the sensi-

tive group based on 28-GPS (Fig. 2A). For PDAC cell

lines treated with gemcitabine in GDSC1, resistant cell

lines classified by 28-GPS presented higher AUC val-

ues than sensitive cell lines (P = 0.041, Wilcoxon rank-

sum test, Fig. 2B). Similar results were found in

GDSC2 and CTRP data sets, respectively (GDSC2:

P = 0.032; CTRP: P = 0.032; Wilcoxon rank-sum test,

Fig. 2B). In CGP data, resistant cell lines classified by

28-GPS presented higher IC50 values than sensitive

cell lines (P = 0.044, Wilcoxon rank-sum test,

Fig. 2B).

In the GDSC and CTRP data sets, a group of drugs

whose pharmacological values in resistant cell lines

were significantly lower than that in sensitive cell lines

was obtained (P < 0.05, Wilcoxon rank-sum test,

Fig. 2C). Some of these drugs are phosphoinositide 3-

kinase (PI3K) inhibitors, such as taselisib, alpelisib,

pictilisib, AZD6482 and AZD8186 (Fig. 2C). The

PI3K inhibitor taselisib showed higher potency against

PIK3CA-mutant tumours and inhibition of the PI3K

pathway could be a target for PDAC [37,38]. In

addition, the novel Akt inhibitor MK2206 combined

with gemcitabine demonstrated inhibitory effect on

Akt phosphorylation at the cell line level [39]. The

DNA-PK inhibitor NU7441and Chk1 inhibitor

AZD7762 were proved to be potential combinational

partners of gemcitabine [40,41].

3.4. 28-GPS showed better performance than

other gemcitabine signatures

Two published gemcitabine signatures, 14-Gene signa-

ture and Gempred signature, have been reported

[13,14]. We compared the survival differences between

samples classified by 28-GPS, 14-Gene signature and

Gempred signature in GSE62452, and the results

showed that 28-GPS had the best prognostic classifica-

tion performance (28-GPS: P = 6.67e-04, Fig. 1G; 14-

Gene signature: P = 0.039; Gempred signature:

P = 0.205, log-rank test, Fig. 2D-2E). Then, the area

under curve (AUC) value of the ROC was used to

assess the binary classification performance of these

three signatures. The highest classification accuracy

was achieved by the 28-GPS (AUC = 0.818) in the

TCGA data set (Fig. 2F). In addition, the 28-GPS

reached the second highest classification accuracy

(AUC = 0.783) in the PACA-CA data set (Fig. 2G).

Although no genes were overlapped among 28-GPS,

14-gene signature and Gempred signature, all the sig-

natures were related to the lysosome pathway, where

inhibition of lysosome could enhance gemcitabine-

induced apoptosis [42] (Fig. S2A,B).

3.5. Gemcitabine-resistant samples classified by

28-GPS showed high genomic instability

In the TCGA data set, among the genes whose muta-

tion frequencies were not less than 5%, resistant sam-

ples classified by 28-GPS showed significantly higher

mutation frequencies in three PDAC driver genes:

KRAS, TP53 and CDKN2A (P < 0.05, Fisher’s exact

test, Fig. 3A). The resistant samples also displayed

significantly higher TMB (P = 9.61e-06, Wilcoxon

rank-sum test, Fig. 3B) and HRDscore (P = 4.17e-04,

Wilcoxon rank-sum test, Fig. 3C) than the sensitive

samples. The resistance score of 28-GPS was applied

to investigate resistant mechanisms underlying muta-

tion of four driver genes in PDAC (KRAS, TP53,

SMAD4 and CDKN2A). As a frequent KRAS muta-

tion type observed in PDAC, we found that p.G12D

mutation exhibited significantly higher resistance

scores of 28-GPS than other types of mutation

(P = 0.015, Wilcoxon rank-sum test, Fig. 3D). In

addition, samples with p.P278S and p.Q38* in TP53
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and p.Y44* in CDKN2A reached the highest scores of

28-GPS respectively, which was not observed in

SMAD4 (Fig. S2C–E). CNV analysis showed the fre-

quencies of amplification and deletion in the resistant

samples were significantly higher than those in the

sensitive samples (P < 2.20e-16, Wilcoxon rank-sum

test, Fig. 3E, Fig. S2F).

By comparing the methylation profiles between

gemcitabine-resistant and -sensitive PDAC samples

classified by 28-GPS in TCGA, 1720 hypermethylated

and 2613 hypomethylated genes were detected, respec-

tively (FDR < 0.05, Wilcoxon rank-sum test, Fig. 3F).

Subsequently, 2053 genes with corresponding deregula-

tion direction with DEGs were retained (Fig. 3G,

Fig. S2G,H). KEGG pathway enrichment analysis

showed that 1035 underexpressed and hypermethylated

genes were enriched in multiple immune-related path-

ways, such as T-cell receptor signalling pathway, and

leukocyte transendothelial migration (Fig. 3H). In

addition, the 1018 overexpressed and hypomethylated

genes were not only enriched in the immune-related

pathway, but also enriched in metabolic pathways,

such as central carbon metabolism and glycosphin-

golipid biosynthesis (Fig. 3I).

3.6. Gemcitabine-resistant samples classified by

28-GPS showed low immune infiltration

The above KEGG pathway enrichment results inspired

us to investigate the difference in immunity between

gemcitabine-resistant and -sensitive PDAC samples.

Here, five current transcriptome-based assessment algo-

rithms for immune cell infiltration were applied to esti-

mate the fraction of infiltrating immune cells in TCGA

samples (Fig. 4A). Compared with sensitive samples,

resistant samples classified by 28-GPS showed a
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Fig. 1. The prognostic performance of 28-GPS. 28-GPS: 28 gene pairs. (A) The ROCs for the TCGA training cohort (59 samples). The purple

point represents the best classification threshold. ROC, receiver operating characteristic; TCGA, the cancer genome atlas; (B–D) Kaplan–
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consistent low immune infiltration of CD8+ T cells in the

five algorithms (Fig. 4A, Fig. S3). The CD4+ T cells

exhibited low immune infiltration by TIMER and EPIC

in the gemcitabine-resistant samples (Fig. S3). By com-

paring the immune-related signatures, resistant samples

displayed significantly lower immune-related signature

scores (P < 0.05, Wilcoxon rank-sum test, Fig. 4B). We

also observed significantly lower TCR richness levels

(P = 1.70e-4, Wilcoxon rank-sum test, Fig. 4C) and

immune system scores (P < 0.05, Wilcoxon rank-sum

test, Fig. 5a) in the resistant PDAC samples.

Among 45 immune checkpoint genes, 19 were

detected to be differentially expressed and generally

downregulated in the resistant samples (P < 0.05, Wil-

coxon rank-sum test, Fig. 4D). The correlation net-

work between differentially expressed immune
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checkpoint genes and DEGs was constructed to fur-

ther explore potential mechanisms involved in resis-

tance to gemcitabine. We identified a differential

correlation network in the resistant group and only

retained the DEGs with a log2 fold change > 1.5

(Fig. 4E). Among the immune genes with activation

effects, we found DEGs frequently interacted with

TNFSF14, which was primarily expressed on activated

T cells, activated natural killer (NK) cells, and imma-

ture dendritic cells (DC). In addition, PDAC cell lines

with high TNFSF14 expression were accompanied by

high AUC or IC50 values of gemcitabine (Fig. 4F).

3.7. Gemcitabine-resistant samples classified by

28-GPS showed high-fidelity DNA damage repair

As gemcitabine mainly interfered with DNA synthesis

and the metabolism also affected drug response, we

tried to explore the resistant mechanism of gemc-

itabine from the perspective of DNA damage repair

(DDR) and metabolism. Using ssGSEA, resistant

samples classified by 28-GPS reached significantly

higher DDR and metabolic pathway enrichment

scores than sensitive samples (P < 0.05, Wilcoxon

rank-sum test, Fig. 5A). Combined with the immune

difference observed above, the correlation analysis

between DDR, metabolic and immune-related path-

ways was conducted on the resistant group and sensi-

tive group, respectively. The sensitive group showed

frequent associations between different pathways. As

a tolerant DNA damage repair process, translesion

synthesis (TLS) had multiple positive correlations

with immune-related pathways in the sensitive group,

which did not appear in the resistant group (Fig. 5B,

C).

3.8. Single-cell analysis revealed the intra- and

inter-tumoural heterogeneity

In light of the immune difference between

gemcitabine-resistant and -sensitive PDAC samples, we

aimed to investigate the effect of cell composition

heterogeneity on gemcitabine resistance at the single-

cell level. After quality control, 42 063 cells from

PDAC samples were retained and annotated into 10

clusters (Fig. 6A). Canonical cell markers were used to

identify the cell types of different clusters (Fig. S4A).

We found that cell composition presented substantial

heterogeneity among different samples (Fig. 6B).

Through CNV analysis, we observed elevated CNV

scores in the ductal populations (Fig. S4B). Although

the majority of genes in 28-GPS had similar expression

patterns across all cell types, there were also some cells

that specifically expressed genes, such as CEP55 for

Alpha cell (Fig. 6C). Using 28-GPS, ductal cells were

classified into two subtypes (Fig. 6D), and the ductal

cells in the same sample showed both the characteris-

tics of sensitivity and resistance to gemcitabine

(Fig. 6E), which was consistent with a recent report

from Lee et al. [43].

Fig. 3. The multiomics landscape between gemcitabine-resistant and -sensitive PDAC samples classified by 28-GPS in TCGA. PDAC, pan-

creatic ductal adenocarcinoma; 28-GPS, 28 gene pairs; TCGA, the cancer genome atlas; (A) Oncoplot shows 22 genes with mutation fre-

quencies not less than 5% in the TCGA (R: 88; S: 52). Rows represent genes and columns represent samples. The genes in the red font

indicate that the mutation frequencies in the resistant samples are significantly higher than that in the sensitive samples (P < 0.05, Fisher’s

exact test). The left bar shows the mutation percentage between gemcitabine-resistant and -sensitive samples and the top bar shows the

total number of mutations. Clinical characteristics are also provided at the top. R, resistant samples; S, sensitive samples. (B) TMB differ-

ence between gemcitabine resistant and sensitive samples in the TCGA (R: 88; S: 52). In the violin plot, the centre line represents the med-

ian and the upper and lower lines represent the upper and lower quartiles. The vertical line reaches the maximum and minimum values.

TMB, tumour mutational burden; R, resistant samples; S, sensitive samples. (C) HRDscore difference between gemcitabine resistant and

sensitive samples in the TCGA (R: 88; S: 52). The centre line represents the median and the upper and lower lines represent the upper and

lower quartiles. Each dot represents a sample. HRDscore, homologous recombination defect score; R, resistant samples; S, sensitive sam-

ples. (D) 28-GPS resistance scores of different KRAS somatic mutations in TCGA (G12D: 43; G12C/R/V: 45; Q61H: 6; Q61R: 2;

G13C + G12A: 1). The centre line represents the median and the upper and lower lines represent the upper and lower quartiles. The vertical

line reaches the maximum and minimum values. Each dot represents a sample. (E) The amplification and deletion difference of CNV

between gemcitabine resistant and sensitive samples in the TCGA (R: 88; S: 52). The centre line represents the median and the upper and

lower lines represent the upper and lower quartiles. The vertical line reaches the maximum and minimum values. CNV, copy number varia-

tion; Amp_R, amplification in resistant samples; Amp_s, amplification in sensitive samples; Del_R, deletion in resistant samples; Del_S, dele-

tion in sensitive samples; (F) Volcano plot depicts hypermethylated and hypomethylated genes between gemcitabine resistant and sensitive

samples in the TCGA (R: 88; S: 52). The horizontal dotted line shows the adjusted P value of 0.05. The vertical dotted line shows the fold

change value of 1. (G) Venn map shows the intersection of DEMs and DEGs. DEMs, differentially expressed methylations; DEGs, differen-

tially expressed genes; (H, I) KEGG pathway enrichment analyses on the intersection genes of DEMs and DEGs, representing underex-

pressed and hypermethylated genes (H), and overexpressed and hypomethylated genes (I), respectively. The red arrows represent immune-

related pathways. DEGs, differentially expressed genes; DEMs, differentially expressed methylations.
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3.9. Cell–cell communication in the resistant

group could promote progression of PDAC

In addition to the intrinsic cell information, cell–cell
communication might also have effect on gemcitabine

resistance. We found that there was frequent communi-

cation between ductal cells and fibroblasts in the resis-

tant group, while in the sensitive group, ductal cells had

frequent communication with macrophages (Fig. 7A).

However, there was no difference in ductal cells commu-

nication with T cells between gemcitabine-resistant and -

sensitive groups (Fig. 7A). Next, the context-specific sig-

nalling pathways were identified between gemcitabine-

resistant and -sensitive groups by comparing the interac-

tion strength for each signalling pathway. Signalling

pathways such as WNT and TGFb were specifically

active in the resistant group (Fig. 7B). Specific to TGFb
signalling pathway, ligand TGFB3 and TGFB1 with their

multi-subunit receptor ACVR1B/TGFBR2 were active in

resistant group from fibroblasts and stellate cells to duc-

tal cells. In contrast, ligand ANGPTL4 and multiple

receptors, such as SDC2, SDC1 and CDH11, were active

in the resistant group from ductal cells to fibroblasts

(Fig. 7C-7D). Ligand SPP1 and its multi-subunit recep-

tor ITGAV/ITGB6 were found to be highly active in the

sensitive group from T cells to ductal cells (Fig. 7D). In

addition, ligand–receptor pair HBEGF-EGFR was also

found to act as major signalling from macrophages to

ductal cells (Fig. 7D).

4. Discussion

Identifying the response signature of PDAC to gemc-

itabine is essential in determining the chemotherapy

regimen. Here, we developed a qualitative gemcitabine

signature for PDAC based on transcriptome, termed

as 28-GPS. Compared with existing signatures, 28-

GPS is robust to sequencing platforms or batch

effects, and can be applied to PDAC at the individual

level. Compared with gemcitabine-sensitive PDAC

samples, gemcitabine-resistant PDAC samples classi-

fied by 28-GPS showed lower immune infiltration,

such as CD8+ T cell. Single-cell analysis indicated can-

cer cells in the same PDAC sample showed both the

characteristics of sensitivity and the resistance to gemc-

itabine.

In this study, the results suggest some possible com-

bination regimens for PDAC. In the TCGA data,

resistant samples classified by 28-GPS showed lower

immune infiltration and down-regulation of the

immune checkpoint genes. PDAC cell lines with higher

expression of immune activating gene TNFSF14 were

sensitive to gemcitabine, suggesting that activating

immunity might benefit PDAC from the treatment

with gemcitabine. Chimeric antigen receptor T cells

(CAR-T) likewise serve as a hot spot for immunother-

apy and two CAR-T drugs Kymriah and Yescarta

have been approved by the Food and Drug Adminis-

tration (FDA) [44,45]. An ongoing phase II trial indi-

cated that CD8+ cells with targeting KRAS mutation

showed effective treatment against cancer with mutant

KRAS G12D [46]. And, PDAC samples with KRAS

G12D in our study achieved a higher 28-GPS resis-

tance score. Therefore, gemcitabine combined with

CAR-T may be a promising approach for PDAC

treatment. Genomic analysis in TCGA indicated that

resistant samples classified by 28-GPS displayed higher

genomic instability, such as high HRDscore. In addi-

tion, as a tolerant DNA damage repair process accom-

panied by mutagenesis [47], TLS was found to be

frequently and positively related to immune-related

pathways in sensitive samples, suggesting that lacking

high-fidelity DNA damage repair mechanisms might

have a combined effect with gemcitabine to treat

PDAC. And, the POLO (Pancreatic Cancer Olaparib

Ongoing) trial has demonstrated that the olaparib

group had significantly longer survival compared to

the placebo group (7.4 months vs. 3.8 months) [48].

Fig. 4. The immune landscape between gemcitabine-resistant and -sensitive samples classified by 28-GPS in TCGA. 28-GPS, 28 gene pairs;

TCGA, The cancer genome atlas; (A) Radar chart shows the proportion of CD8+ T cells identified by five immune infiltration assessment

algorithms between gemcitabine-resistant and -sensitive samples. R, resistant samples; S, sensitive samples. (B) Comparison of immune-

related signatures between gemcitabine resistant and sensitive samples in the TCGA (R: 87; S: 51; ***P < 0.001, Wilcoxon rank-sum test).

R, resistant samples; S, sensitive samples. (C) TCR richness difference between gemcitabine-resistant and -sensitive samples in the TCGA

(R: 88; S: 52). The centre line represents the median and the upper and lower lines represent the upper and lower quartiles. The vertical line

reaches the maximum and minimum values. TCR, T cell receptors; R, resistant samples; S, sensitive samples. (D) Heatmap displays 19 dif-

ferentially expressed immune checkpoint genes in the TCGA (R: 88; S: 52). R, resistant samples; S, sensitive samples. (E) The correlation

network between differentially expressed immune checkpoint genes and DEGs. DEGs, differentially expressed genes; (F) Dot plot shows

the difference in the response to gemcitabine between TNFSF14 high and low expression PDAC cell lines in GDSC1 (high: 8; low: 18),

GDSC2 (high: 8; low: 18), CTRP (high: 6; low: 22) and CGP (high: 2; low: 8). The point represents the median. The vertical line reaches the

maximum and minimum values. CGP, cancer genome project; CTRP, cancer therapeutics response portal; GDSC, genomics of drug sensitiv-

ity in cancer; PDAC, pancreatic ductal adenocarcinoma.
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Although some immune cells showed inconsistent

infiltration proportion between gemcitabine-resistant

and -sensitive samples, most of the immune cell infil-

tration presented no statistical significance. For exam-

ple, Tregs exhibited high immune infiltration by

CIBERSORTx and low immune infiltration by

XCELL and QUANTISEQ in gemcitabine-resistant

samples, but the differences in Tregs infiltration

showed no significance between resistant and sensitive

samples detected by CIBERSORTx and XCELL

(Fig. S3). A comprehensive evaluation of different

immune infiltration methods by Sturm et al. [49]

showed that there were differences in method perfor-

mance between different cell types. Therefore, the con-

sistent results produced by five immune infiltration

methods were considered with high confidence in our

work.

Compared with the gemcitabine-sensitive PDAC

samples, the gemcitabine-resistant PDAC samples

achieved higher enrichment scores in the DDR and

metabolic pathways and lower enrichment scores in

the immune pathways. As reported by Jain et al. [50],

gemcitabine-resistant PDAC showed up-regulation in

glycolysis, pentose phosphate pathway, fatty acid syn-

thesis and purine/pyrimidine synthesis. And, up-

regulation of glycolysis could maintain the EMT phe-

notype and reduce responsiveness to the therapeutic

agent for PADC cells [51]. In addition, the activation

of DDR pathways may counteract toxic effects

induced by gemcitabine [50]. For example, the ERCC1

gene is involved in multiple DDR pathways and over-

expression of ERCC1 is well documented in poor

gemcitabine responders [52]. Delvecchio et al. [53]

observed that the combination of gemcitabine and

chemokine (CXCL13 and CCL21) could potentiate

antitumour activity of chemotherapy and increase the

infiltration of CD8+ T cells. Xiao et al. [54] found

that the high-risk group with gemcitabine resistance

showed increased macrophages M0 infiltration and

decreased CD8+ T-cell infiltration. Indeed, in our

results, the sensitive PDAC samples achieved high

enrichment scores in the chemokine signalling path-

way and consistently high infiltration proportion in

CD8+ T cells.

In single-cell analysis, cancer cells in the same

PDAC sample had both resistant and sensitive cancer

cells, which could be used to explain why PDAC

patients who responded to gemcitabine at the begin-

ning will develop secondary resistance later. Zou et al.

[55] also proposed complete responses to drug thera-

pies are rare in tumours, and only some but not all

subpopulations in a given tumour response to therapy.

Single-cell analysis revealed that most genes in the 28-

GPS were not only expressed in cancer cells but also

in stromal cells. Thus, the 28-GPS may represent a

tumour stromal component and could be considered

as a dictate of response to gemcitabine. In addition,

some carcinogenic genes or pathways, such as

ANGPTL4 gene and TGFb signalling pathway, were

reflected in cell communication of the resistant group.

ANGPTL4 has been found to play an important role

in the process of tumour metastasis [56]. The activa-

tion of TGFb signalling pathway could promote resis-

tance to gemcitabine in PDAC cells in a coculture

assay in vitro [57].

Although our work was limited by the independent

PDAC data sets with gemcitabine information to

investigate the robustness of 28-GPS, we used PDAC

samples with prognostic information and PDAC cell

lines with gemcitabine-used information to validate the

28-GPS. In addition, resistant samples in our work

showed high metabolic levels and high-fidelity DNA

damage repair, which warrants our future detailed bio-

logical experiments to validate those discoveries.

5. Conclusions

In summary, we developed the 28-GPS for gemc-

itabine based on transcriptome, which could be

applied to predict response to gemcitabine chemother-

apy for PDAC. The resistant samples classified by 28-

GPS in TCGA showed multidimensional resistance-

related characteristics compared with the sensitive

samples. Collectively, it is worthwhile to further eval-

uate the clinical applications of 28-GPS, which may

assist clinicians to make a suitable strategy for PDAC

patients.
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