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ABSTRACT
Problem solving is a critical skill in many disciplines but is often a challenge for students to 
learn. To examine the processes both students and experts undertake to solve construct-
ed-response problems in genetics, we collected the written step-by-step procedures indi-
viduals used to solve problems in four different content areas. We developed a set of codes 
to describe each cognitive and metacognitive process and then used these codes to de-
scribe more than 1800 student and 149 expert answers. We found that students used some 
processes differently depending on the content of the question, but reasoning was consis-
tently predictive of successful problem solving across all content areas. We also confirmed 
previous findings that the metacognitive processes of planning and checking were more 
common in expert answers than student answers. We provide suggestions for instructors 
on how to highlight key procedures based on each specific genetics content area that can 
help students learn the skill of problem solving.

INTRODUCTION
The science skills of designing and interpreting experiments, constructing arguments, 
and solving complex problems have been repeatedly called out as critical for under-
graduate biology students to master (American Association for the Advancement of 
Science, 2011). Yet each of these skills remains elusive for many students, particularly 
when the skill requires integrating and evaluating multiple pieces of information 
(Novick and Bassok, 2005; Bassok and Novick, 2012; National Research Council, 
2012). In this paper, we focus on describing the steps students and experts take while 
solving genetics problems and determining whether the use of certain processes 
increases the likelihood of success.

The general process of solving a problem has been described as building a 
mental model in which prior knowledge can be used to represent ways of thinking 
through a problem state (Johnson-Laird, 2010). Processes used in problem solv-
ing have historically been broken down into two components: those that use 
domain-general knowledge and those that use domain-specific knowledge. 
Domain-general knowledge is defined as information that can be used to solve a 
problem in any field, including such strategies as rereading and identifying what 
a question is asking (Alexander and Judy, 1988; Prevost and Lemons, 2016). 
Although such steps are important, they are unlikely to be the primary determi-
nants of success when specific content knowledge is required. Domain-specific 
problem solving, on the other hand, is a theoretical framework that considers 
one’s discipline-specific knowledge and processes used to solve a problem (e.g., 
Prevost and Lemons, 2016). Domain-specific knowledge includes declarative 
(knowledge of content), procedural (how to utilize certain strategies), and condi-
tional knowledge (when and why to utilize certain strategies) as they relate to a 
specific discipline (Alexander and Judy, 1988; Schraw and Dennison, 1994; 
Prevost and Lemons, 2016).
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Previous studies on problem solving within a discipline have 
emphasized the importance of domain-specific declarative and 
conditional knowledge, as students need to understand and be 
able to apply relevant content knowledge to successfully solve 
problems (Alexander et al., 1989; Alexander and Judy, 1988; 
Prevost and Lemons, 2016). Our prior work (Avena and Knight 
2019) also supported this necessity. After students solved a 
genetics problem within a content area, they were offered a 
content hint on a subsequent content-matched question. We 
found that content hints improved performance overall for stu-
dents who initially did not understand a concept. In character-
izing the students’ responses, we found that the students who 
benefited from the hint typically used the content language of 
the hint in their solution. However, we also found that some 
students who continued to struggle included the content lan-
guage of the hint but did not use the information in their prob-
lem solutions. For example, in solving problems on predicted 
recombination frequency for linked genes, an incorrect solution 
might use the correct terms of map units and/or recombination 
frequency but not actually use map units to solve the problem. 
Thus, these findings suggest that declarative knowledge is nec-
essary but not sufficient for complex problem solving and also 
emphasize the importance of procedural knowledge, which 
includes the “logic” of generating a solution (Avena and Knight, 
2019). By definition, procedural knowledge uses both cognitive 
processes, such as providing reasoning for a claim or executing 
a task, and metacognitive processes, such as planning how to 
solve a problem and checking (i.e., evaluating) one’s work (e.g., 
Kuhn and Udell, 2003; Meijer et al., 2006; Tanner, 2012). We 
explore these processes in more detail below.

Cognitive Processing: Reasoning
Generating reasoning requires using one’s knowledge to search 
for and explain an appropriate set of ideas to support or refute 
a given model (Johnson-Laird, 2010), so reasoning is likely to 
be a critical component of solving problems. Toulmin’s original 
scheme for building a scientific argument (Toulmin, 1958) 
included generating a claim, identifying supporting evidence, 
and then using reasoning (warrant) to connect the evidence to 
the claim. Several studies have demonstrated a positive rela-
tionship between general reasoning “ability” (Lawson, 1978), 
defined as the ability to construct logical links between evi-
dence and conclusions using conceptual principles, and perfor-
mance (Cavallo, 1996; Cavallo et al., 2004; Johnson and Law-
son, 1998). As elaborated in more recent literature, there are 
many specific subcategories of reasoning. Students commonly 
use memorized patterns or formulas to solve problems: this 
approach is considered algorithmic and could be used to pro-
vide logic for a problem (Jonsson et al., 2014; Nyachwaya et al., 
2014). Such algorithmic reasoning may be used with or without 
conveying an understanding of how an algorithm is used (Frey 
et al., 2020). When an algorithm is not appropriate (or not 
used) in describing one’s reasoning, but instead the solver pro-
vides a generalized explanation of underlying connections, this 
is sometimes referred to as “explanatory” or “causal” reasoning 
(Russ et al., 2008). Distinct from causal reasoning is the 
domain-specific form of mechanistic reasoning, in which a 
mechanism of action of a biological principle is elaborated 
(Russ et al., 2008; Southard et al., 2016). Another common 
form of reasoning is quantitative reasoning, which can also be 

described as statistical or, in other specialized situations, 
graph-construction reasoning (e.g., Deane et al., 2016; Angra 
and Gardner, 2018). The detailed studies of these specific sub-
categories of reasoning have usually involved extensive inter-
views with students and/or very specific guidelines that prompt 
the use of a particular type of reasoning. Those who have 
explored students’ unprompted general use of reasoning have 
found that few students naturally use reasoning to support their 
ideas (Zohar and Nemet, 2002; James and Willoughby, 2011; 
Schen, 2012; Knight et al., 2015; Paine and Knight, 2020). 
However, with explicit training to integrate their knowledge 
into mental models (Kuhn and Udell, 2003; Osborne, 2010) or 
with repeated cueing from instructors (Russ et al., 2008; Knight 
et al., 2015), students can learn to generate more frequent, spe-
cific, and robust reasoning.

Metacognitive Processing
Successfully generating possible solutions to problems likely 
also involves metacognitive thinking. Metacognition is often sep-
arated into two components: metacognitive knowledge (knowl-
edge about one’s own understanding and learning) and meta-
cognitive regulation (the ability to change one’s approach to 
learning; Flavell, 1979; Jacobs and Paris, 1987; Schraw and 
Moshman, 1995). Metacognitive regulation is usually defined as 
including such processes as planning, monitoring one’s progress, 
and evaluating or checking an answer (Flavell, 1979; Jacobs 
and Paris, 1987; Schraw and Moshman, 1995; Tanner, 2012). 
Several studies have shown that helping students use metacog-
nitive strategies can benefit learning. For example, encouraging 
the planning of a possible solution beforehand and checking 
one’s work afterward helps students generate correct answers 
during problem solving (e.g., Mevarech and Amrany, 2008; 
McDonnell and Mullally, 2016; Stanton et al., 2015). However, 
especially compared with experts, students rarely use metacog-
nitive processes, despite their value (Smith and Good, 1984; 
Smith, 1988). Experts spend more time orienting, planning, and 
gathering information before solving a problem than do stu-
dents, suggesting that experts can link processes that facilitate 
generating a solution with their underlying content knowledge 
(Atman et al., 2007; Peffer and Ramezani, 2019). Experts also 
check their problem-solving steps and solutions before commit-
ting to an answer, steps not always seen in student responses 
(Smith and Good, 1984; Smith, 1988). Ultimately, prior work 
suggests that, even when students understand content and 
employ appropriate cognitive processes, they may still struggle 
to solve problems that require reflective and regulative skills.

Theoretical Framework: Approaches to Learning
Developing domain-specific conceptual knowledge requires 
integrating prior knowledge and new disciplinary knowledge 
(Schraw and Dennison, 1994). In generating conceptual knowl-
edge, students construct mental models in which they link con-
cepts together to generate a deeper understanding (John-
son-Laird, 2001). These mental constructions involve imagining 
possible relationships and generating deductions and can be 
externalized into drawn or written models for communicating 
ideas (Chin and Brown, 2000; Bennett et al., 2020). Mental 
models can also trigger students to explain their ideas to them-
selves (self-explanation), which can also help them solve prob-
lems (Chi et al., 1989).
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As our goal is to make visible how students grapple with 
their knowledge during problem solving, we fit this study into 
the approaches to learning framework (AtL: Chin and Brown, 
2000). This framework, derived from detailed interviews of 
middle-school students solving chemistry problems, defines five 
elements of how students approach learning and suggests that 
these components promote deeper learning. Three of these ele-
ments are identifiable in the current study: engaging in expla-
nations (employing reasoning through understanding and 
describing relationships and mechanisms), using generative 
thinking (application of prior knowledge and analogical trans-
fer), and engaging in metacognitive activity (monitoring prog-
ress and modifying approaches). The remaining two elements: 
question asking (focusing on facts or on understanding) and 
depth of approaching tasks (taking a deep or a surface approach 
to learning: Biggs, 1987) could not be addressed in our study. 
However, previous studies showed that students who engage in 
a deep approach to learning also relate new information to 
prior knowledge and engage in reasoning (explanations), gen-
erate theories for how things work (generative thinking), and 
reflect on their understanding (metacognitive activity). In con-
trast, those who engage in surface approaches focus more on 
memorized, isolated facts than on constructing mental or actual 
models, demonstrating an absence of the three elements 
described by this framework. Biggs (1987) also previously pro-
vided evidence that intrinsically motivated learners tended to 
use a deep approach, while those who were extrinsically moti-
vated (e.g., by grades), tended to use a surface approach. 
Because solving complex problems is, at its core, about how 
students engage in the learning process, these AtL components 
helped us frame how students’ learning is revealed by their own 
descriptions of their thinking processes.

Characterizing Problem-Solving Processes
Thus far, a handful of studies have investigated the processes 
adult students use in solving biology problems, and how these 
processes might influence their ability to develop reasonable 
answers (Smith and Good, 1984; Smith, 1988; Nehm, 2010; 
Nehm and Ridgway, 2011; Novick and Catley, 2013; Prevost 
and Lemons, 2016; Sung et al., 2020). In one study, Prevost and 
Lemons (2016) collected and analyzed students’ written docu-
mentation of their problem-solving procedures when answering 
multiple-choice questions. Students were taught to document 
their step-by-step thinking as they answered multiple-choice 
exam questions that ranged from Bloom’s levels 2 to 4 (under-
stand to analyze; Bloom et al., 1956), describing the steps they 
took to answer each question. The authors’ qualitative analyses 
of students’ documented problem solving showed that students 
frequently used domain-general test-taking skills, such as com-
paring the language of different multiple-choice distractors. 
However, students who correctly answered questions tended to 
use more domain-specific procedures that required knowledge 
of the discipline, such as analyzing visual representations and 
making predictions, than unsuccessful students. When students 
solved problems that required the higher-order cognitive skills 
of application and analysis, they also used more of these specific 
procedures than when solving lower-level questions. Another 
recent study explored how students solved exam questions on 
the genetic topics of recombination and nondisjunction through 
in-depth clinical interviews (Sung et al., 2020). These authors 

described two approaches that are not conceptual: using algo-
rithms to bypass conceptual thinking and using non–biology 
specific test-taking strategies (e.g., length of answer, specificity 
of terminology). They also showed that students sometimes 
alternate between using an algorithm and a conceptual strat-
egy, defaulting to the algorithm when they do not understand 
the underlying biological concept.

From prior work specifically on students’ understanding of 
genetics, we know that certain content areas are persistently 
challenging despite instructional focus (Smith et al., 2008). On 
these topics, students who enter a course with a particular mis-
understanding are significantly more likely to retain this way of 
thinking at the end of the course than they are to switch to 
another answer (Smith and Knight, 2012). We have focused on 
these topic areas in previous studies (Prevost et al., 2016; Sieke 
et al., 2019) by designing questions to reveal what students are 
thinking and using the results as an instructional tool. In addi-
tion, we recently found that students performed better on 
answering constructed-response questions on chromosome sep-
aration and inheritance patterns than on calculating the proba-
bility of inheritance, although all three areas were challenging 
(Avena and Knight, 2019). To our knowledge, no prior work 
has compared the processes students use when solving different 
types of genetics problems or used a large sample of students to 
characterize all processes in which students engage. In the 
study described here, we ground our work in domain-specific 
problem solving (e.g., Prevost and Lemons, 2016), scientific 
argumentation and reasoning (Toulmin, 1958), and the AtL 
framework (Chin and Brown, 2000). We build upon these prior 
bodies of work to provide a complete picture of the cognitive 
and metacognitive processes described by both students and 
experts as they solve complex problems in four different con-
tent areas of genetics. Our research questions were as follows:

Research Question 1. How do experts and students differ in 
their description of problem-solving processes, using a much 
larger sample size than found in the previous literature (e.g., 
Chi et al., 1981; Smith and Good, 1984; Smith, 1988; Atman 
et al., 2007; Peffer and Ramezani, 2019).
Research Question 2. Are certain problem-solving processes 
more likely to be used in correct than in incorrect student 
answers?
Research Question 3. Do problem-solving processes differ 
based on content and are certain combinations of prob-
lem-solving processes associated with correct student 
answers for each content area?

METHODS
Mixed-Methods Approach
This study used a mixed-methods approach, combining both 
qualitative and quantitative research methods and analysis to 
understand a phenomenon more deeply (Johnson et al., 2007). 
Our goal was to make student thinking visible by collecting 
written documentation of student approaches to solving prob-
lems (qualitative data), in addition to capturing answer correct-
ness (quantitative data), and integrating these together in our 
analyses. The student responses serve as a rich and detailed 
data set that can be interpreted using the qualitative process of 
assigning themes or codes to student writing (Hammer and 
Berland, 2014). In a qualitative study, the results of the coding 
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process are unpacked using examples and detailed descriptions 
to communicate the findings. In this study, we share such qual-
itative results but also convert the coded results into numerical 
representations to demonstrate patterns and trends captured in 
the data. This is particularly useful in a large-scale study, 
because the output can be analyzed statistically to allow com-
parisons between categories of student answers and different 
content areas.

Subjects
Students in this study were enrolled in an introductory-level 
undergraduate genetics course for biology majors at the Univer-
sity of Colorado in Spring 2017 (n = 416). This course is the 
second in a two-course introductory series, with the first course 
being Introduction to Cell and Molecular Biology. The students 
were majority white, 60% female, and 63% were in their first or 
second year. Ninety percent of the students were majoring in 
biology or a biology-related field (neuroscience, integrative 
physiology, biochemistry, biomedical engineering). Of the stu-
dents enrolled in the course, 295 students consented to be 
included in the study; some of the student responses have been 
previously described in the prior study (Avena and Knight, 
2019). We recruited experts from the Society for the Advance-
ment of Biology Education Research Listserv by inviting gradu-
ate students, postdoctoral fellows, and faculty to complete an 
anonymous online survey consisting of the same questions that 
students answered. Of the responses received, we analyzed 
responses from 52 experts. Due to the anonymous nature of the 
survey, we did not collect descriptive data about the experts.

Problem Solving
As part of normal course work, students were offered two prac-
tice assignments covering four content areas related to each of 
two course exams (also described in Avena and Knight, 2019). 
Students could answer up to nine questions in blocks of three 
questions each, in randomized order, for three of the four con-
tent areas. Expert participants answered a series of four ques-
tions, one in each of the four content areas. All questions were 
offered online using the survey platform Qualtrics. All partici-
pants were asked to document their problem-solving processes 
as they completed the questions (as in Prevost and Lemons 
2016), and they were provided with written instructions and an 
example in the online platform only (see Supplemental Mate-
rial); no instructions were provided in class, and no explicit dis-
cussion of types of problem-solving processes to use were pro-
vided in class throughout the semester. Students could receive 
extra credit up to ∼1% of the course point total, obtaining two-
thirds credit for explaining their answer and an additional one-
third if they answered correctly. All students who completed the 
assignment received credit regardless of their consent to partic-
ipate in the research.

We used questions developed for a prior study (Avena and 
Knight, 2019) on four challenging genetics topics: calculation 
of the probability of inheritance across multiple generations 
(Probability), prediction of the cause of an incorrect chromo-
some number after meiosis (Nondisjunction), interpretation of 
a gel and pedigree to determine inheritance patterns (Gel/Ped-
igree), and prediction of the probability of an offspring’s geno-
type using linked genes (Recombination; see example in 
Figure 1; all questions presented in Supplemental Material). 

These content areas have previously been shown to be challeng-
ing based on student performance (Smith et al., 2008; Smith 
and Knight, 2012; Avena and Knight, 2019). Each content area 
contained three isomorphic questions that addressed the same 
underlying concept, targeted higher-order cognitive processes 
(Bloom et al., 1956), and contained the same amount of infor-
mation with a visual (Avena and Knight, 2019). Each question 
had a single correct answer and was coded as correct (1) or 
incorrect (0). For each problem-solving assignment, we ran-
domized 1) the order of the three questions within each content 
area for each student and 2) the order in which each content 
area was presented. During each set of three isomorphic ques-
tions, while solving one of the isomorphic problems, students 
also had the option to receive a “content hint,” a single most 
commonly misunderstood fact for each content area. We do not 
discuss the effects of the content hints in this paper (instead, 
see Avena and Knight, 2019).

Process Coding
Students may engage in processes that they do not document in 
writing, but we are limited to analyzing only what they do pro-
vide in their written step-by-step descriptions. For simplicity, 
throughout this paper, a “process” is a thought documented by 
the participant that is coded as a particular process. When we 
refer to “failure” to use a process, we mean that a participant 
did not describe this thought process in the answer. Our initial 
analysis of student processes used a selection of codes from Pre-
vost and Lemons (2016) and Toulmin’s (1958) original codes of 
Claim and Reason. We note that all the problems we used can 
potentially be solved using algorithms, memorized patterns 
previously discussed and practiced in the class, which may have 
limited the reasoning students supplied. Because of the com-
plexity of identifying different types of reasoning, we did not 
further subcategorize the reasoning category in the scheme we 
present, as this is beyond the scope of this paper. We used an 
emergent coding process (Saldana, 2015) to identify additional 
and different processes, including both cognitive and metacog-
nitive actions. Thus, our problem-solving processes (PsP) coding 

FIGURE 1.  Sample problem for students from the Gel/Pedigree 
content area. Problems in each content area contain a written 
prompt and an illustrated image, as shown in this example.
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scheme captures the thinking that students document while 
solving genetics problems (see individual process codes in 
Table 1). We used HyperRESEARCH software (ResearchWare, 
Inc.) to code each individual’s documented step-by-step pro-
cesses. A step was typically a sentence and sometimes con-
tained multiple ideas. Each step was given one or more codes, 
with the exception of reasoning supporting a final conclusion 
(see Table 2 for examples of coded responses). Each individual 
process code captures when the student describes that process, 
regardless of whether the statement is correct or incorrect. Four 
raters (J.K.K., J.S.A., O.N.W., B.B.M.) coded a total of 24 stu-
dent answers over three rounds of coding and discussion to 
reach consensus and identify a final coding scheme. Following 

agreement on the codes, an additional 12 answers were coded 
by the four raters to determine interrater agreement. Specifi-
cally, in these 12 answers, there were 150 instances in which a 
code for a step was provided by one or more raters. For each of 
these 150 instances, we identified the number of raters who 
agreed. We then calculated a final interrater agreement of 83% 
by dividing the total number of raters who agreed for all 150 
instances (i.e., 524) by the total number of possible raters to 
agree for four raters in 150 instances (i.e., 600). We excluded 
answers in which students did not describe their problem-solv-
ing steps and those in which students primarily or exclusively 
used domain-general processes (i.e., individual process codes 
within the General strategy category in Table 1) or made claims 

TABLE 1.  Problem-solving process (PsP): Code categories, definitions, and examplesa

Strategy category Individual process codes Description Example

Orientation Notice Identifying components in the 
question stem.

“I’m underlining that this is autosomal recessive.”

Identify Similarity Noticing similarity between 
problems.

“This is like the last problem.”

Identify Concept Explicitly describing the type of 
problem.

“This is a meiosis problem.”

Recall Remembering a fact or definition 
without direct application to the 
problem.

“Nondisjunction in meiosis 1 yields two different alleles 
in one gamete.”

Metacognition Plan Outlining next steps. “First, I need to figure out who the disease carriers are, 
determine the probabilities that they are affected, and 
then use the product law to determine the likelihood 
the child will be affected.”

Check Checking solution steps and/or 
final answer.

“I had to go back and make sure I understood what I 
need to answer this question correctly.”

Assess Difficulty Expressing perceived difficulty or 
unfamiliarity.

“This is a difficult problem and I’m not sure how to get 
started.”

Execution Use Information Applying a single piece of 
information related to the 
problem.

“Individual A has a band that migrated slower than 
Individual B’s band.”

Integrate Linking visual representations with 
other information

“Looking at the gel and table together, I notice that Lily 
and Max are both affected, even though Lily has 2 
copies of the disease gene and Max has only 1 copy.”

Draw Drawing or visualizing problem 
components.

“I’m drawing a Punnett Square in my head.”

Calculate Using any mathematical statement. “Together, there is a ⅔ chance that both parents are 
heterozygous since 1 × ⅔ is ⅔.”

Reasoning Reason Providing a logical explanation for 
a preliminary or final conclu-
sion.

“I determined that II-6 has a 100% chance of being a 
carrier, because II-6 is not affected, but has a mother 
that is affected.”

Conclusion Eliminate Ruling out a final answer. “It couldn’t be X-linked dominant.”
Claim Providing an answer statement. “There is a ⅔ chance that the child will be affected.”

Error Misinterpret Misunderstanding the question 
stem.

“The problem was asking for the band that causes the 
disease.” [Question was asking for the mode of 
inheritance]

General Clarify Clarifying the question stem and 
problem.

“I identified what the question was asking.”

State the Process Stating an action abstractly (no 
details).

“I am determining the genotypes.”

Restate Restating a previously stated 
process

aExamples of student responses are to a variety of content areas and have been edited for clarity. Each individual process code captures the student’s description, regard-
less of whether the statement is correct or incorrect.
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without any other supporting codes. The latter two exclusion 
criteria were used because such responses lacked sufficient 
description to identify the thought processes. The final data set 
included a total of 1853 answers from 295 students and 149 
answers from 52 experts. We used only correct answers from 
experts to serve as a comparison to student answers, excluding 
an additional 29 expert answers that were incorrect.

After initial coding and analyses, we identified that student 
use of drawing was differentially associated with correctness 
based on content area. Thus, to further characterize drawing 
use, two raters (J.S.A. and J.K.K.) explored incorrect student 
answers from Probability and Recombination. One rater exam-
ined 33 student answers to identify an initial characterization, 
and then two raters reviewed a subset of answers to agree upon 
a final scheme. Each rater then individually categorized a por-
tion of the student answers, and the final interrater agreement 

on 10 student answers was 90%. Interrater agreement was cal-
culated as described earlier, with each answer serving as one 
instance, so we divided the total number of raters agreeing for 
each answer (i.e., 18) by the total possible number of raters 
agreeing (i.e., 20).

Statistical Analyses
The unit of analysis for all models considered is an individual 
answer to a problem. We investigate three variations of linear 
models, specified below. The response variable in all cases is 
binary (presence/absence of process or correct/incorrect 
answer). Thus, the models are generalized linear models, and, 
more specifically, logistic regression models. Because our data 
contain repeated measures in the form of multiple answers per 
student, we specifically use generalized linear mixed models 
(GLMM) to include a random effect on the intercept term in all 

TABLE 2.  Examples of expert and student documented problem solving on a Gel/Pedigree problem with associated process codesa

Expert answer: Eliot Process

The question states that the mutation is a deletion in a single gene. Clarify
We don’t know yet if one copy of the mutation can cause the disease. Use Information
We have a gel to look at and a pedigree, so there’s lots of information, and I can use both to make sure I have the 

inheritance right.
Plan

I look at the pedigree and think it looks like a dominant disease because of the inheritance pattern. Claim and Reason
Actually, it has to be dominant, just from the pedigree, because otherwise Zach could not be unaffected. Claim and Reason
I need the gel to decide if it’s X linked or autosomal. Plan
The gel shows two alleles for just about everyone, so that almost answers the question right off the bat—the smaller 

allele is the mutant allele, and Rose, Jon and Max all have one copy of this allele and one copy of the normal, larger 
allele, and they have the disease.

Integrate

Sounds like autosomal dominant to me. Claim
To be sure I check out just the males in the pedigree— Check
Zach has only normal allele copies and all the other males have two different alleles. Use Information
Thus, the disease cannot be caused by a gene on the X chromosome; since males only have one copy of the X, they would 

only have one allele.
Eliminate and Reason

It must be autosomal dominant. Claim

Correct student answer: Cassie Process

The gel shows that Lily and Zach do not have two separate alleles for the gene, they both only have one. Use Information
I read that the question mentions a missing exon. Notice
This means that the missing exon probably codes for something that, when missing, causes a disease phenotype. Use Information
Lily has the disease, and Zach doesn’t, as seen in the pedigree. Use Information
Rose and Jon, the parents, have both alleles. Integrate
This means they are heterozygous for the disease Use Information
If both parents are heterozygous for the disease, then it is probably inherited in a dominant manner. Claim and Reason
Everyone with the smaller segment of the gene (Rose, Jon, Max, and Lily) has the disease. This must be the dominant 

allele that causes the phenotype.
Integrate and Reason

Since Zach doesn’t have that gene, he is normal. Integrate
The disease doesn’t have any seeming tie to the X chromosome, so it is autosomal. It is inherited autosomal dominant. Eliminate and Claim

Incorrect student answer: Ian Process

Read question Clarify
Look at gel and pedigree Clarify
Notice both son and daughter are affected. Use Information
One son is not. Use Information
Do a X-linked dominant cross. Draw
Outcome was 1/2 daughters homozygous dominant and 1/2 heterozygous. Integrate
1/2 sons affected and 1/2 not. Integrate
[Final answer indicated in a section following this documentation: X-linked dominant]
aThe responses above are all solutions to the question in Figure 1.
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models, grouped by participant identifier (Gelman and Hill, 
2006; Theobald, 2018). This component of the model accounts 
for variability in the baseline outcome between participants. In 
our case, we can model each student’s baseline probability of 
answering a problem correctly or each participant’s baseline 
probability of using a given process (e.g., one student may use 
Reason more frequently than another student). Accounting for 
this variation yields better estimates of the fixed effects in the 
models.

In these logistic regression models, the predicted value of the 
response variable is the log odds of the presence of a process or 
correctness. The log odds can take on any real number and can 
be transformed into a more interpretable probability using the 

logistic function f(x) e
1 e

x

x=
+

, as they are in some tables pre-

sented in this study (Gelman and Hill, 2006). For additional 
ease of interpretation, we report cumulative predicted probabil-
ities for each predictor group by adding the relevant combina-
tion of coefficient estimates to the intercept, which represents 
the baseline case.

The fitted models give some, but not all, pairwise compari-
sons among predictor groups. We conducted pairwise post hoc 
comparisons (e.g., expert vs. correct student, expert vs. incor-
rect student, correct student vs. incorrect student, or among the 
four content areas) to draw inferences about the differences 
among all groups. In particular, we performed Tukey pairwise 
honestly significant difference (HSD) tests for all pairs of 
groups, comparing estimated marginal means (estimated using 
the fitted model) on the logit scale. Using estimated marginal 
means corrects for unbalanced group sample sizes, and using 
the Tukey HSD test provides adjusted p values, facilitating com-
parison to a significance level of α = 0.05.

To ease reproducibility, we use “formula” notation conven-
tionally used in R to specify the models we employ in this paper, 
which has the following general form: outcome = fixed effect + 
(1 | group). The random effects component is specified within 
parentheses, with the random effect on the left of the vertical 
bar and the grouping variable on the right.

To address whether the likelihood of process use differs 
among experts, correct students, and incorrect students 
(research questions 1 and 2), we used the following model 
(model 1):

Process present = Expert/Student answer status + (1| ID)

where “Process present” is the binary factor response variable: 
absent (0)/present (1); “Expert/Student answer status” is the 
fixed effect: Factor-level grouping: incorrect student (0)/correct 
student (1)/correct expert (2); and “(1|ID)” is the random 
effect intercept based on participant ID. This random effect 
intercept accounts for variability in the baseline outcome 
between participants. To address whether the likelihood of pro-
cess use differs by content area (research question 3), we used 
the following model (model 2):

Process present = Content area + (1| ID)

where “Process present” is the response variable as described 
for model 1; “Content area” is the fixed effect: Factor-level 
grouping: Probability (1)/Nondisjunction (2)/Gel-Pedigree 
(3)/Recombination (4); and “(1|ID)” is the random effect as 
described for model 1.

To examine what combination of factors are associated with 
correctness within each content area (research question 3), we 
used a GLMM model with a lasso penalty (Groll and Tutz, 2014; 
Groll, 2017). The lasso model was used for variable selection 
and to prevent overfitting when many predictors are available 
(the model is not used specifically to identify significance of 
predictors). We used a lasso model in this case to find out which 
of the process variables, in combination, were most predictive 
of student answer correctness in the GLMM, using the following 
model (model 3):

Student answer correctness = Process 1 �+ Process 2 + … 
+ Process X + (1| ID)

where “Student answer correctness” is the response variable: 
incorrect (0)/correct (1); “Process 1 + Process 2 + … + Process 
X” is the list of process factors entered into the model as the 
fixed effect: absent (0)/present (1); and “(1|ID)” is the random 
effect as described for models 1 and 2. We identified which 
components were associated with correctness by seeing which 
predictor coefficients remained non-zero in a representative 
lasso model. We identified a representative model for each con-
tent area by first identifying the lasso penalty with the lowest 
Akaike information criterion (AIC) to reduce variance and then 
identifying a lasso penalty with a similar AIC that could be used 
across all content areas. Because a penalty parameter of 25 and 
the penalty parameter with the lowest AIC for each content 
area had similar AIC values, we consistently used a penalty 
parameter of 25. Note that when the penalty parameter is set to 
zero, the GLMM model is recovered. On the other hand, when 
the penalty parameter is very large, no predictors are included 
in the model. Thus, the selected penalty parameter forced 
many, but not all, coefficients to 0, giving a single representative 
model for each content area.

All models and tests were performed in R (v. 3.5.1). We used 
the lme4 package in R (Bates et al., 2015) for models 1 and 2, 
and estimation of parameters was performed using residual 
maximum likelihood. For model 3, we used the glmmLasso 
package, and the model was fit using the default EM-type esti-
mate. Post hoc pairwise comparisons were performed using the 
emmeans package.

Human Subjects Approval
Human research was approved by the University of Colorado 
Institutional Review Board (protocols 16-0511 and 15-0380).

RESULTS
The PsP Coding Scheme Helps Describe Written Cognitive 
and Metacognitive Processes
We developed a detailed set of codes, which we call the PsP 
scheme to characterize how individuals describe their solutions 
to complex genetics problems. Table 1 shows the 18 unique pro-
cesses along with descriptions and examples for each. With the 
support of previous literature, we grouped the individual pro-
cesses into seven strategies, also shown in Table 1. All strategies 
characterized in this study were domain specific except the 
General category, which is domain general. We categorized a 
set of processes as Orientation based on a previously published 
taxonomy for think-aloud interviews (Meijer et al., 2006) and 
on information management processes from the Metacognitive 
Awareness Inventory (Schraw and Dennison, 1994). Orienting 
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processes include: Notice (identifying important information in 
the problem), Recall (activating prior knowledge without 
applying it), Identify Similarity (among question types), and 
Identify Concept (the “type” of problem). Orientation processes 
are relatively surface level, in that information is observed and 
noted, but not acted on. The Metacognition category includes 
the three common elements of planning (Plan), monitoring 
(Assess Difficulty), and evaluating (Check) cited in the meta-
cognitive literature (e.g., Schraw and Moshman, 1995; Tanner, 
2012). The Execution strategy includes actions taken to explic-
itly solve the problem, including Use Information (apply infor-
mation related to the problem), Integrate (i.e., linking together 
two visual representations provided to solve the problem or 
linking a student’s own drawing to information in the problem), 
Draw, and Calculate. The Use Information category is distin-
guished from Recall by a student applying a piece of informa-
tion (Use Information) rather than just remembering a fact 
without directly using it in the problem solution (Recall). Stu-
dents may Recall and then Use Information, just Recall, or just 
Use Information. If a student used the Integrate process, Use 
Information was not also coded (i.e., Integrate supersedes Use 
Information). The Reasoning strategy includes just one general 
process of Reason, which we define as providing an explanation 
or rationale for a claim, as previously described in Knight et al. 
(2013), Lawson (2010), and Toulmin (1958). The Conclusion 
strategy includes Eliminate and Claim, processes that provide 
types of responses to address the final answer. The single pro-
cess within the Error strategy category, Misinterpret, character-
izes steps in which students misunderstand the question stem. 
Finally, the General category includes the codes Clarify, State 
the Process, and Restate, all of which are generic statements of 
execution, representing processes that are domain general 
(Alexander and Judy, 1988; Prevost and Lemons, 2016).

To help visualize the series of steps students took and how 
these steps differed across answers and content areas, we pro-
vide detailed examples in Tables 2 and 3. In Table 2, we provide 
three examples of similar-length documented processes to the 
same Gel/Pedigree problem (Figure 1) from a correct expert, a 
correct student, and an incorrect student. Note the multiple 
uses of planning and reasoning in the expert answer, multiple 
uses of reasoning in the correct student answer, and the absence 
of both such processes in the incorrect student answer. The rea-
soning used in each case provides a logical explanation for the 
claim, which either immediately precedes or follows the reason-
ing statement. For example, in the second incident of Claim and 
Reason for Eliot, “because otherwise Zach could not be unaf-
fected” is a logical explanation for the claim “it has to be domi-
nant.” Similarly, for Cassie’s Claim and Reason code, “If both 
parents are heterozygous for the disease” is a logical explana-
tion for the claim “it is probably inherited in a dominant man-
ner.” Table 3 provides additional examples of correct student 
answers to the remaining three content areas. Note that for 
Probability and Recombination questions, the Reason process 
often explains why a certain genotype or probability is assigned 
(e.g., “otherwise all or none of the children would have the 
disease” explains why “Both parents of H and J must be Dd” in 
Li’s Probability answer) or how a probability is calculated, for 
example, “using the multiplication rule” (Li’s Probability expla-
nation) or “multiply that by the 100% chance of getting ‘af’ 
from parent 2” (Preston’s Recombination explanation). In Non-

disjunction problems, a student may claim that a nondisjunc-
tion occurred in a certain stage of meiosis (the Claim) because 
it produces certain gamete genotypes consistent with such an 
error (the Reason), as seen in Gabrielle’s answer.

Across All Content Areas, Expert Answers Are More 
Likely Than Student Answers to Contain Orientation, 
Metacognition, and Execution Processes
For each category of answers (expert, correct student, and 
incorrect student), we calculated the overall percent of answers 
that contained each process and compared these frequencies. 
Note that, in all cases, frequency represents the presence of a 
process in an answer, not a count of all uses of that process in 
an answer. The raw frequency of each process is provided in 
Table 4, columns 2–4. To determine statistical significance, we 
used GLMM to account for individual variability in process use. 
The predicted likelihood of each process per group and pairwise 
comparisons between groups from this analysis is provided in 
Table 4, columns 5–10. These comparisons show that expert 
answers were significantly more likely than student answers to 
contain the processes of Identify concept, Recall, Plan, Check, 
and Use Information (Table 4 and Supplemental Table S1). The 
answers in Table 2 represent some of the typical trends identi-
fied for each group. For example, expert Eliot uses both Plan 
and Check, but these metacognitive processes are not used by 
either student, Cassie (correct answer) or Ian (incorrect 
answer).

Across All Content Areas, Correct Student Answers Are 
More Likely Than Incorrect Answers to Contain the 
Processes of Reason and Eliminate
Students most commonly used the processes Use Information, 
Reason, and Claim, each present in at least 50% of both correct 
and incorrect student answers (Table 4). The processes Notice, 
Recall, Calculate, and Clarify were present in 20–50% of both 
correct and incorrect student answers (Table 4). In comparing 
correct and incorrect student answers across all content areas, 
we found that Integrate, Reason, Eliminate, and Clarify were 
more likely used in correct compared with incorrect answers 
(Table 4). As illustrated in Table 2, the problem-solving pro-
cesses in Cassie’s correct answer include: reasoning for a claim 
of dominant inheritance and eliminating when ruling out the 
possibility of an X-linked mode of inheritance. However, in 
describing the incorrect answer, Ian fails to document use of 
either of these processes.

Process Use Varies by Question Content
To determine whether student answers contain different pro-
cesses depending on the content of the problem, we separated 
answers, regardless of correctness, by content area. We then 
excluded some processes: we did not analyze the Error and 
General codes, as well as Claim, which was seen in virtually 
every answer across content areas. We also excluded the very 
rarely seen processes of Identify Similarity and Identify Con-
cept, which were present in 5% or fewer of both incorrect and 
correct student answers. For the remaining 11 processes, we 
found that each content area elicited different frequencies of 
use, as shown in Table 5 and Supplemental Table S2. Some 
processes were nearly absent in a content area: Calculate was 
rarely seen in answers to Nondisjunction and Gel/Pedigree 
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questions and Eliminate was rarely seen in answers to Probabil-
ity and Recombination questions. Furthermore, in answering 
Probability questions, students were more likely to use the pro-
cesses Plan and Use Information than in any other content area. 
Recall was most likely in Recombination and least likely in Gel/
Pedigree. Examples of student answers showing some of these 
trends are shown in Table 3.

The Combination of Processes Linked to Correctness 
Differs by Content Area
Performance varied by content area. Students performed best on 
Nondisjunction problems (75% correct), followed by Gel/Pedi-
gree (73%), Probability (54%), and then Recombination (45%). 
Table 6 shows the raw data of process prevalence for correct and 
incorrect student answers in each of the four content areas. To 
examine the combination of problem-solving processes associ-
ated with correct student answers for each content area, we 
used a representative GLMM model with a lasso penalty. This 

type of analysis measures the predictive value of a process on 
answer correctness, returning a coefficient value. The presence 
of a factor with a higher positive coefficient increases the proba-
bility of answering correctly more than a factor with a lower 
positive coefficient. With each additional positive factor in the 
model, the likelihood of answering correctly increases in an 
additive manner (Table 7 and Supplemental Table S3). To inter-
pret these values, we show the probability estimates (%) for 
each process, which represent the probability that an answer will 
be correct in the presence of one or more processes (Table 7). 
The strength of association of the process with correctness, mea-
sured by positive coefficient size, is listed in descending order. 
Thus, for each content area, the process with the strongest posi-
tive association to a correct answer is listed first. A process with 
a negative coefficient (a negative association with correctness) is 
listed last, and models with negative associations are highlighted 
in gray in Table 7. An example of how to interpret the GLMM 
model is as follows. For the content area of Probability, Calculate 

TABLE 3.  Examples of correct student documented problem solving with associated process codes for each content areaa

Correct student answer: Li for Probability (Wilson’s disease question) Process

We must initially conclude that Hillary and Justin’s parents are carriers for the disease, because they both 
have children who are affected.

Use Information and Reason

However, neither Hillary nor Justin has the disease, so they must not be recessive for it (dd). Use Information and Reason
Both parents of H and J must be Dd, otherwise all or none of the children would have the disease. Use Information and Reason
Chance of Hillary/Justin being Dd is 2/3. Chance being DD is 1/3. Use Information
If Hillary and Justin are Dd, then their child has a 1/4 chance of being diseased. Use Information
So, using the multiplication rule, the child has a 2/3*2/3*1/4 chance of being diseased, which is 1/9. Reason and Calculate and Claim

Correct student answer: Preston for Recombination (Aldose gene question) Process
Write down the intended offspring which would be Af/af Use Information
See if you have to use recombination (Are the goal alleles already paired in the parents?) Plan
Yes they are we need one of the alleles to be af which one parents has two of and the other needs to be Af 

which the other parent has one of
Use Information

What is the probability the offspring will inherit af from one parent? Plan
100% because that is the only allele he has to give Use Information
What is the probability the offspring will inherit Af from the other parent? Plan
The offspring should be able to inherit Af 50% because its either one or the other Use Information and Reason
BUT we have to consider the possibility of recombination Use Information
Since the two genes are 10 map units apart it means that there is a 10% chance they will recombine Recall
So now instead of 50% of inheriting Af from the first parent, there is a 10% of recombination meaning there 

is a 90% chance of getting either of the non-recomb alleles
Eliminate and Claim

So now split 90% in half Calculate
There is now a 45% chance of either Af or aF from parent 1 Use Information
Multiply that by the 100% chance of getting af from parent 2 Reason and Calculate
The answer is there is a 45% chance the offspring will be able to only produce Aldose Claim

Correct student answer: Gabrielle for Nondisjunction (chromosome 7 Q/q gene question) Process
Read the question Clarify
Observe the chromosomes present in Daryl’s normal diploid cell Clarify
Observe the chromosomes present in Daryl’s genotype and understand a nondisjunction occurred Claim
Draw a Daryl’s diploid cell going through meiosis with a nondisjunction in meiosis 1 and normal meiosis 2 Draw
See that it produces gametes with genotypes BBQ and q or QqB and B. Recognize these do not match the 

genotype of the gamete
Integrate and Eliminate

Draw Daryl’s diploid cell going through meiosis with nondisjunction in meiosis 2 and regular meiosis 1 Draw
See that it produces gametes with genotypes QQB and B, qqB and B, qqB and B or BBq and q Reason
Recognize that the nondisjunction in meiosis 2 creates the genotype seen in the gamete. Conclude that meiosis 

2 was affected
Claim

aResponses edited slightly for clarity. See Table 2 for a correct student documented solution to the Gel/Pedigree problem.
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(strongest association with correctness), Use Information, and 
Reason (weakest association with correctness) in combination 
are positively associated with correctness; Draw is the only neg-
ative predictor of correctness. For this content area, the intercept 
indicates a 7.31% likelihood of answering correctly in the 
absence of any of the processes tested. If an answer contains 
Calculate only, there is a 40.19% chance the answer will be cor-
rect. If an answer contains both Calculate and Use Information, 
there is a 58.60% chance the answer will be correct, and if the 
answer contains the three processes of Calculate, Use Informa-
tion, and Reason combined, there is a 67.56% chance the answer 
will be correct. If Draw is present in addition to these three pro-
cesses, the chance the answer will be correct slightly decreases 
to 66.40%. For Recombination, the processes of Calculate, 
Recall, Use Information, Reason, and Plan in combination are 
associated with correctness, and Draw and Assess Difficulty are 
negatively associated with correctness. For Nondisjunction, the 
processes of Eliminate, Draw, and Reason in combination are 
associated with correctness. For Gel/Pedigree, only the process 
of Reason was associated with correctness. The examples of cor-

rect student answers for each content area, as shown in Tables 2 
and 3, were selected to include each of the positively associated 
processes described.

To identify why drawing may be detrimental for Probability 
and Recombination problems, we further characterized how 
students described their process of Draw in incorrect answers 
from these two content areas. We identified two categories: 
Inaccurate drawing and Inappropriate drawing application. 
Table 8 provides descriptions and student examples for each 
category. For Probability problems, 49% of the incorrect student 
answers that used Draw were Inaccurate, as they identified 
incorrect genotypes or probabilities while drawing a Punnett 
square. Thirty-one percent of the answers contained Inappro-
priate drawing applications such as drawing a Punnett square 
for each generation of a multiple-generation pedigree rather 
than multiplying probabilities. Five percent of the answers dis-
played both Inaccurate and Inappropriate drawing (Figure 2). 
For Recombination, 83% of incorrect student answers using 
Draw used an Inappropriate drawing application, typically 
treating linked genes as if they were unlinked by drawing a 

TABLE 4.  Comparison of students’ and experts’ process use across all four content areasa

Prevalence of process  
(% of answers)

Predicted probability (%)  
from GLMM

GLMM p value  
(pairwise comparisons)

Process
Incorrect 
student

Correct 
student

Correct 
expert

Incorrect 
student (i)

Correct 
student (c)

Correct 
expert (e) i–c i–e c–e

Orientation
Notice 29.69 32.28 32.21 26.29 22.08 23.52 ns ns ns
Identify Similarity 3.64 5.31 0.67 0.52 0.83 0.11 ns ns ns
Identify Concept 3.64 4.59 20.13 0.08 0.09 1.39 ns ** **
Recall 24.16 28.42 45.64 21.40 22.19 44.77 ns *** ***

Metacognition
Plan 18.62 25.81 51.68 15.43 17.28 53.49 ns *** ***
Check 6.34 10.43 47.65 2.50 4.06 46.23 ns *** ***
Assess Difficulty 7.29 4.41 14.09 1.55 0.83 4.29 * ns **

Execution
Use Information 70.85 70.41 91.28 75.53 71.39 93.28 ns *** ***
Integrate 16.46 23.47 30.20 13.30 19.40 27.33 ** ** ns
Draw 20.38 16.28 24.83 10.83 7.61 16.49 ns ns ns
Calculate 44.13 40.65 41.61 45.93 38.66 40.40 * ns ns

Reasoning
Reason 82.05 92.36 93.29 91.80 96.68 97.40 *** * ns

Conclusion
Eliminate 4.45 12.86 16.78 2.85 8.56 12.72 *** *** ns
Claim 97.44 98.38 96.64 99.96 99.97 99.94 ns ns ns

Error
Misinterpret 2.29 0.18 0.67 0.02 0.00 0.01 NA NA NA

General
Clarify 37.79 50.99 73.83 17.80 39.74 99.06 *** *** ns
State the Process 5.80 3.42 14.09 0.55 0.35 2.22 ns ns **
Restate 3.91 4.95 4.03 2.81 3.56 2.91 ns ns ns
n answers 741 1112 149      

aPairwise comparison: incorrect students to correct students (i–c), incorrect students to correct experts (i–e), correct students to correct experts (c–e). NA, no comparison 
made due to predicted probability of 0 in at least one group. ***p < 0.001; **p < 0.01; *p < 0.05; ns: p > 0.05. See Supplemental Table S1 for standard error of coefficient 
estimates. Interpretation example: 82.05% and 92.36% of incorrect and correct student answers, respectively, contained Reason. The GLMM, after accounting for indi-
vidual variability, predicts the probability of an incorrect student using Reason to be 91.80%, while the probability of a correct student using Reason is 96.68%.
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TABLE 6.  Prevalence of processes in correct and incorrect student answers by content areaa

Prevalence of process (% of correct and incorrect student answers)

Probability Recombination Nondisjunction Gel/Pedigree

Process
Incorrect 
student

Correct 
student

Incorrect 
student

Correct 
student

Incorrect 
student

Correct 
student

Incorrect 
student

Correct 
student

Orientation
Notice 32.81 39.37 31.21 34.94 24.07 26.93 25.22 30.43
Recall 21.88 29.86 29.70 60.22 24.07 19.50 11.71 8.36

Metacognition
Plan  26.04 37.56 13.94 22.30 18.52 21.05 19.82 25.42
Check  4.17 7.24 5.15 5.95 10.19 12.38 9.91 14.72
Assess Difficulty 5.21 3.62 6.97 2.60 11.11 6.50 8.11 4.35

Execution
Use Information 88.54 98.19 73.94 92.57 37.96 36.22 63.06 66.89
Integrate 18.75 22.62 10.30 5.95 5.56 17.34 41.44 46.49
Draw 28.65 17.65 21.52 2.97 12.96 34.06 9.91 8.03
Calculate 58.33 95.02 65.15 89.59 0.00 0.00 0.00 0.33

Reasoning
Reason 90.10 98.19 79.70 91.45 75.93 87.62 81.08 93.98

Conclusion
Eliminate 0.52 0.45 0.00 0.00 2.78 13.00 26.13 33.44
n answers 192 221 330 269 108 323 111 299
aAll student answers (correct and incorrect) are reported. Processes excluded from analyses include Claim, those within the Error and General strategies, processes that 
were present in 5% or fewer of both correct and incorrect student answers.

TABLE 7.  The combination of processes associated with the probability of a correct student answer varies by content areaa

Content area

Predicted 
probability 
of correct 

answer (%) Combination of processes present

Probability 7.31 Intercept
40.19 Calculate
58.60 Calculate + Use Information
67.56 Calculate + Use Information + Reason
66.40 Calculate + Use Information + Reason + Draw [negative predictor]

Recombination 6.31 Intercept
17.57 Calculate
38.83 Calculate + Recall
63.02 Calculate + Recall + Use Information
74.91 Calculate + Recall + Use Information + Reason
76.17 Calculate + Recall + Use Information + Reason + Plan
44.29
40.81

Calculate + Recall + Use Information + Reason + Plan + Draw [negative predictor]
Calculate + Recall + Use Information + Reason + Plan + Draw [negative predictor] + Assess Difficulty 

[negative predictor]

Nondisjunction 70.48 Intercept
86.34 Eliminate
89.96 Eliminate + Draw
90.22 Eliminate + Draw + Reason

Gel/Pedigree 56.95 Intercept

71.56 Reason
aBased on a representative GLMM model with a lasso penalty predicting answer correctness with a moderate penalty parameter (lambda = 25). The intercept represents 
the likelihood of a correct answer in the absence of all processes initially entered into the model: Notice, Plan, Recall, Check, Assess Difficulty, Use Information, Integrate, 
Draw, Calculate, Reasoning, Eliminate. Shaded rows indicate the inclusion of negative predictors in combination with positive predictors. Probabilities were calculated 
using the inverse logit of the sum of the combination of log odds coefficient estimates and the intercept from Supplemental Table S3.[AQ 5]
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Punnett square to calculate probability. Ten percent of answers 
used both Inappropriate and Inaccurate drawing (Figure 2).

DISCUSSION
In this study, we identified and characterized the various 
processes that a large sample of students and experts used to 
document their answers to complex genetics problems. Over-
all, although their frequency of use differed, experts and stu-
dents used the same set of problem-solving strategies. 
Experts were more likely to use orienting and metacognitive 
strategies than students, confirming prior findings on expert–
novice differences (e.g., Chi et al., 1981; Smith and Good, 
1984; Smith, 1988; Atman et al., 2007; Smith et al., 2013; 
McDonnell and Mullally, 2016; Peffer and Ramezani, 2019). 
For students, we also identified which strategies were most 
associated with correct answers. The use of reasoning was 
consistently associated with correct answers across all con-
tent areas combined as well as for each individual content 
area. Students used other processes more or less frequently 
depending on the content of the question, and the combina-
tion of processes associated with correct answers also varied 
by content area.

Domain-Specific Problem Solving
We found that most processes students used (i.e., all but those 
in the General category) were domain specific, relating directly 
to genetics content. Prevost and Lemons (2016), who examined 
students’ process of solving multiple-choice biology problems, 
found that domain-general processes were more common in 
answers to lower-order than higher-order questions. They also 
found that using more domain-specific processes was associ-

ated with correctness. In our study, students solved only high-
er-order problems that asked them to apply or analyze informa-
tion. Students also had to construct their responses to each 
problem, rather than selecting from multiple predetermined 
answer options. These two factors may explain the prevalence 
of domain-specific processes in the current study, which allowed 
us to investigate further the types of domain-specific processes 
that lead to correct answers.

Metacognitive Activity: Orienting and Metacognitive 
Processes Are Described by Experts but Not Consistently 
by Students
Our results support several previous findings from the literature 
comparing the problem-solving tactics of experts and students: 
experts are more likely to describe orienting and metacognitive 
problem-solving strategies than students, including planning 
solutions, checking work, and identifying the concept of the 
problem.

Planning.  While some students used planning in their correct 
answers, experts solving the same problems were more likely to 
do so. Prior studies of solutions to complex problems in both 
engineering and science contexts found that experts more often 
used the orienting/planning behavior of gathering appropriate 
information compared with novices (Atman et al., 2007; Peffer 
and Ramezani, 2019). Experts likely have engaged in authentic 
scientific investigations of their own, and planning is more 
likely when the problem to be solved is more complex (e.g., 
Atman et al., 2007), so experts are likely more familiar with and 
see value in planning ahead before pursuing a certain prob-
lem-solving approach.

TABLE 8.  Drawing use categorization

Categories Description Example
Inaccurate 

drawing
Drawing contains incorrect 

components or is 
incorrectly interpreted.

Student draws a Punnett square/cross and identifies the incorrect offspring probability.
In the Probability Giraffe question, we know that II-6 is heterozygous, but the student answer here 

indicates II-6 is 2/3 likely to be heterozygous: “I look at the pedigree and try to decide what 
the genotypes of the parents are. I do tests crosses for Rrxrr and RR x rr for II-6. I determine 
that II-7s parents are both Rr since one of their kids is rr, or short necked. So both II-6 and II-7 
have a 2/3 chance of being a carrier. Doing a cross for their kid, if both parents are Rr, she will 
have a 1/4 chance of being short necked. The total probability of the kid being short necked is 
(2/3)x(2/3)x(1/4), 1/9.” —Incorrect student answer: Ingrid

Inappropriate 
drawing 
application

The type of drawing used 
was not appropriate 
for the concept,

Student draws multiple Punnett squares instead of using the Product Rule to take into account the 
probability of parent genotypes.

In the Probability Dimples problem, we know that Pritya has a 2/3 likelihood of being heterozy-
gous, but the student answer here creates two separate accurate Punnett squares to account 
for the uncertainty in Pritya’s genotype instead of using genotype probabilities multiplied over 
multiple generations: “1. read the question and look at the pedigree 2. try to give genotypes to 
people 2a. Narayan has to be heterozygous because she has to have one recessive allele from 
her mother but she is not affected with the dimple phenotype, so she has one dominant allele. 
2b. Pritya can be either homozygous dominant or heterozygous because her parents were 
heterozygotes and she has dimples. 3. drew a punnett square of the possible crosses between 
Pritya and Narayan (Dd x Dd and DD x Dd). 3a. if Pritya is homozygous dominant, the child 
will have dimples. 3b. if Pritya is heterozygous, the child has a 1/4 chance of not having 
dimples. 4. final answer: we have to know the genotype of Pritya before making a conclusion 
on the child, so 1/4 or 0.”—Incorrect student answer: Isabella

Student draws a Punnett square of unlinked genes for a scenario in which genes are linked.
In the Recombination Aldose gene question, the distance between genes (e.g., map units) must be 

considered, but the student answer here does not account for linked genes: “1. Read through 
the question 2. Examined the cross 3. Made a punnet square crossing AaFf with aaff 4. 
Determined that 1/4 or 25% of the offspring are Aaff and that phenotype would only produce 
aldose, not fructose.” —Incorrect student answer: Ivan
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Checking.  Experts were much more likely than students to 
describe their use of checking work, as also shown in previous 
work (Smith and Good, 1984; Smith, 1988; McDonnell and 
Mullally, 2016). McDonnell and Mullally (2016) found greater 
levels of unprompted checking after students experienced mod-
eling of explicitly checking prompts and were given points for 
demonstrating checking. These researchers also noted that 
when students reviewed their work, they usually only checked 
some problem components, not all. Incomplete checking was 
associated with incorrect answers, while complete checking 
was associated with correct answers. In the current study, we 
did not assess the completeness of checking, and therefore may 
have missed an opportunity to correlate checking with correct-
ness. However, if most students were generally checking their 
answers in a superficial way (i.e., only checking one step in the 
problem-solving process versus checking all steps), this could 
explain why there were no differences in the presence of check-
ing between incorrect and correct student answers. In contrast 
to our study, Prevost and Lemons (2016) found checking was 
the most common domain-specific procedure used by students 
when answering both lower- and higher-order multiple-choice 
biology questions. The multiple-choice format may prompt 
checking, as the answers have already been provided in the sce-
nario. In addition, while that study assessed answers to graded 
exam questions, we examined answers to extra-credit assign-
ments. Thus, a lack of motivation may have influenced whether 
the students in the current study reported checking their 
answers.

Identifying the Concept of a Problem.  Although this strategy 
was relatively uncommon even among experts, they were more 
likely than students to describe identifying the concept of a 

problem in their solutions. This is consistent with previous 
research showing that nonexperts use superficial features to 
solve problems (Chi et al., 1981; Smith and Good, 1984; Smith 
et al., 2013), a tactic also associated with incorrect solutions 
(Smith and Good, 1984). The process of identifying relevant 
core concepts in a problem allows experts to identify the appro-
priate strategies and knowledge needed for any given problem 
(Chi et al., 1981). Thus, we suggest that providing students 
with opportunities to recognize the core concepts of different 
problems, and thus the similarity of their solutions, could be 
beneficial for learning successful problem solving.

Engaging in Explanations: Using Reasoning Is Consistently 
Associated with Correct Answers
Our findings suggest that, although reasoning is frequently used 
by both correct and incorrect students, it is strongly associated 
with correct student answers across all content areas. Correct 
answers were more likely than incorrect answers to use reason-
ing; furthermore, reasoning was associated with a correct 
answer for each of the four content areas we explored. This 
supports previous work showing that reasoning ability in gen-
eral is associated with overall biology performance (Cavallo, 
1996; Johnson and Lawson, 1998). Students who use reason-
ing may be demonstrating their ability to think logically and 
sequentially connect ideas, essentially building an argument for 
why their answers make sense. In fact, teaching the skill of 
argumentation helps students learn to use evidence to provide 
a reason for a claim, as well as to rebut others’ claims (Toulmin, 
1958; Osborne, 2010), and can improve their performance on 
genetics concepts (Zohar and Nemet, 2002). Thus, the genetics 
students in the current study who were able to explain the ratio-
nale behind each of their problem-solving steps are likely to 
have built a conceptual understanding of the topic that allowed 
them to construct logical rationales for their answers.

In the future, think-aloud interviews should be used to more 
closely examine the types of reasoning students use. Students 
may be more motivated and better able to explain their ratio-
nales verbally, or with a combination of drawn and verbal 
descriptions, than they are inclined to do when typing their 
answers in a writing-only situation. Interviewers can also ask 
follow-up questions, confirming student explanations and 
ideas, something that cannot be obtained from written explana-
tions. In addition, the problems used in this study were 
near-transfer problems, similar to those that students previously 
solved during class. Such problems can often be solved using an 
algorithmic approach, as also recently described by Frey et al. 
(2020) in chemistry. Future studies could identify whether and 
when students use more complex approaches such as causal 
reasoning (providing connections between ideas) or mechanis-
tic reasoning (explaining the biological mechanism as part of 
making causal connections (Russ et al., 2008; Southard et al., 
2016) in addition to or instead of algorithmic reasoning.

Students Use Different Processes to Answer Questions in 
Different Content Areas
Overall, students answered 60% of the questions correctly. Some 
content areas were more challenging than others: Recombina-
tion was the most difficult, followed by Probability, then Gel/
Pedigree and Nondisjunction (see also Avena and Knight, 2019). 
While our results do not indicate that a certain combination of 

FIGURE 2.  Drawing is commonly inaccurate or inappropriate in 
incorrect student answers for Probability and Recombination. 
Drawing categorization from student answers that used Draw and 
answered incorrectly for content areas of (A) Probability (n = 55) 
and (B) Recombination (n = 71). Each category is mutually exclu-
sive, so those that have both Inaccurate drawing/Inappropriate 
drawing are not in the individual use categories. “No drawing error” 
indicates neither inaccurate nor inappropriate drawings were 
described. “Cannot determine” indicates not enough information 
was provided in the students’ written answer to assign a drawing 
use category.
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processes are both necessary and sufficient to solve a problem 
correctly, they can be useful to instructors wishing to guide stu-
dents in their strategy use when considering their solutions to 
certain types of problems. In the following section, we discuss 
the processes that were specifically associated with correctness 
in student answers for each content area.

Probability.  Solving a Probability question requires calcula-
tion, while many other types of problems do not. To solve the 
questions in this study, students needed to consider multiple 
generations from two families to calculate the likelihood of 
independent events occurring by using the product rule. Smith 
(1988) found that both successful and unsuccessful students 
often find this challenging. Our previous work also found that 
failing to use the product rule, or using it incorrectly, was the 
second most common error in incorrect student answers (Avena 
and Knight, 2019). Correctly solving probability problems likely 
also requires a conceptual understanding of the reasoning 
behind each calculation (e.g., Deane et al., 2016). This type of 
reasoning, specific to the mathematical components of a prob-
lem, is referred to as statistical reasoning, a suggested compe-
tency for biology students (American Association for the 
Advancement of Science, 2011). The code of Reason includes 
reasoning about other aspects of the problem (e.g., determining 
genotypes; see Table 3) in addition to reasoning related to cal-
culations. While reasoning was prevalent in both incorrect and 
correct answers to Probability problems, using reasoning still 
provided an additional 9% likelihood of answering correctly for 
students who had also used calculating and applying informa-
tion in their answers.

Generally, calculation alone was not sufficient to answer a 
Probability question correctly. When students applied informa-
tion to solving the specific problem (captured with the Use 
Information code), such as determining genotypes within the 
pedigree or assigning a probability, their likelihood of generat-
ing a correct answer was 40%. This only increased to 59% if 
they also used Calculate (see Table 7). We previously found that 
the most common content error in these types of probability 
problems was mis-assigning a genotype or probability due to 
incorrectly using information in the pedigree; this error was 
commonly seen in combination with a product rule error (Avena 
and Knight, 2019). This correlates with our current findings on 
the importance of applying procedural knowledge: both Use 
Information and Calculate, under the AtL element of generating 
knowledge, contribute to correct problem-solving.

Recombination.  Both the Probability and Recombination 
questions are fundamentally about calculating probabilities; 
thus, not surprisingly, Calculate is also associated with correct 
answers to Recombination questions. Determining map units 
and determining the frequency of one possible genotype among 
possible gametes both require calculation. Use of Recall in addi-
tion to Calculate increases the likelihood of answering correctly 
from 18 to 39%. This may be due to the complexity of some of 
the terms in these problems. As shown previously, incorrect 
answers to Recombination questions often fail to use map units 
in their solution (Avena and Knight, 2019). Appropriately using 
map units thus likely requires remembering that the map unit 
designation is representative of the probability of recombina-
tion and then applying this definition to the problem. When 

students Used Information, along with Calculate and Recall, 
their likelihood of answering correctly increased to 63%.

Reasoning and planning also contribute to correct answers 
in this content area. In their solutions, students needed to con-
sider the genotypes of the offspring and both parents to solve 
the problem. The multistep nature of the problem may give stu-
dents the opportunity to plan their possible approaches, either 
at the very beginning of the problem and/or as they walk 
through these steps. This was seen in Preston’s solution (Table 
3), in which the student sequentially made a short-term plan 
and then immediately used information in the problem to carry 
out that plan.

Drawing: A Potentially Misused Strategy in Probability and 
Recombination Solutions.  Only one process, Drawing, was 
negatively associated with correct answers in solutions to both 
Probability and Recombination questions. Drawing is generally 
considered beneficial in problem solving across disciplines, as it 
allows students to generate a representation of the problem 
space and/or of their thinking (e.g., Mason and Singh, 2010; 
Quillin and Thomas, 2015; Heideman et al., 2017). However, 
when students generate inaccurate drawings or use a drawing 
methodology inappropriately, they are unlikely to reach a cor-
rect answer. In a study examining complex meiosis questions, 
Kindfield (1993) found that students with more incorrect 
responses provided drawings with features not necessary to 
solving the problem. In our current study, we found that the 
helpfulness of a drawing depends on its quality and the appro-
priateness or context of its use.

When answering Recombination problems, many students 
described drawing a Punnett square and then calculating the 
inheritance as if the linked genes were actually genes on sepa-
rate chromosomes. In doing so, students revealed a misunder-
standing of when and why to appropriately use a Punnett 
square as well as their lack of understanding that the frequency 
of recombination is connected to the frequency of gametes. 
Because we have also shown that planning is beneficial in solv-
ing Recombination problems, we suggest that instructors 
emphasize that students first plan to look for certain character-
istics in a problem, such as linked versus unlinked genes, to 
identify how to proceed. For example, noting that genes are 
linked would suggest not using a Punnett square when solving 
the problem. Similarly, in Probability questions, students must 
realize that uncertainty in genotypes over multiple generations 
of a family can be resolved by multiplying probabilities together 
rather than by making multiple possible Punnett squares for the 
outcome of a single individual. These findings connect to the 
AtL elements of generative thinking and taking a deep approach: 
drawing can be a generative behavior, but students must also be 
thinking about the underlying context of the problem rather 
than a memorized fact.

Nondisjunction.  In Nondisjunction problems, students were 
asked to predict the cause of an error in chromosome number. 
Our model for processes associated with correctness in nondis-
junction problems (Table 7) suggested that the likelihood of 
answering correctly in the absence of several processes was 
70%. This may explain the higher percent of correct answers in 
this content area (75%) compared with other content areas. 
Nonetheless, three processes were shown to help students 
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answer correctly. The process Eliminate, even though used rela-
tively infrequently (10%), provides a benefit. Using elimination 
when there are a finite number of obvious solutions is a reason-
able strategy, and one previously shown to be successful (Smith 
and Good, 1984). Ideally, this strategy would be coupled with 
drawing the steps of meiosis and then reasoning about which 
separation errors could not explain the answer. Drawing was 
associated with correct answers in this content area, though it 
was neither required nor sufficient. Instead of drawing, some 
students may have used a memorized series of steps in their 
solutions. This is referred to as an “algorithmic” explanation, in 
which a memorized pattern is used to solve the problem. For 
example, such a line of explanation may go as follows: “begin-
ning from a diploid cell heterozygous for a certain gene, two of 
the same alleles being present in one gamete indicates a nondis-
junction in meiosis II.” Such algorithms can be applied without 
a conceptual understanding (Jonsson et al., 2014; Nyachwaya 
et al., 2014), and thus students may inaccurately apply them 
without fully understanding or being able to visualize what is 
occurring during a nondisjunction event (Smith and Good, 
1984; Nyachwaya et al., 2014). Using a drawing may help pro-
vide a basis for analytic reasoning, providing logical links 
between ideas and claims that are thoughtful and deliberate 
(Alter et al., 2007). Indeed, in Kindfield’s study (1993), in 
which participants (experts and students) were asked to com-
plete complex meiosis questions, they found that those with 
more accurate models of meiosis used their drawings to assist in 
their reasoning process. Kindfield (1993) suggested that these 
drawings allowed for additional working memory space, thus 
supporting an accurate problem-solving process.

Gel/Pedigree.  Unlike other content areas, the only process 
associated with correctness in the Gel/Pedigree model was Rea-
soning, which provided a greater contribution to correct solu-
tions than in any other content area. In these problems, students 
are asked to find the most likely mode of inheritance given both 
a pedigree of a family and a DNA gel that shows representations 
of alleles for each family member. The two visuals, along with 
the text of the problem, provide students an opportunity to pro-
vide logical explanations at many points in the problem. Stu-
dents use reasoning to support intermediate claims as they think 
through possible solutions, and again for their final claims, or 
for why they eliminate an option. Almost half of both correct 
and incorrect student answers to these questions integrated fea-
tures from both the gel and pedigree to answer the problem. 
Even though many correct and incorrect answers integrate, cor-
rect answers also reason. We suggest that the presence of two 
visual aids prompts students to integrate information from both, 
thus potentially increasing the likelihood of using reasoning.

Limitations
In this study, we captured the problem-solving processes of a 
large sample of students by asking them to write their step-by-
step processes as part of an online assignment. In so doing, we 
may not have captured the entirety of a student’s thought pro-
cess. For example, students may have felt time pressure to com-
plete an assignment, may have experienced fatigue after 
answering multiple questions on the same topic, or simply may 
not have documented everything they were thinking. Students 
may also have been less likely to indicate they were engaging in 

drawing, as they were answering questions using an online text 
platform; exploring drawing in more detail in the future would 
require interviews or the collection of drawings as a component 
of the problem-solving assignment. Additionally, students may 
not have felt that all the steps they engaged in were worth 
explaining in words; this may be particularly true for metacog-
nitive processes. Students are not likely accustomed to express-
ing their metacognitive processes or admitting uncertainty or 
confusion during assessment situations. However, even given 
these limitations, we have captured some of the primary com-
ponents of student thinking during problem solving.

In addition, our expert–student comparison may be biased, 
as experts had different reasons than students for participating 
in the study. The experts likely did so because they wanted to be 
helpful and found it interesting. Students, on the other hand, 
had very different motivations, such as using the problems for 
practice in order to perform well on the next exam and/or to 
get extra credit. Although it is likely not possible to put experts 
and students in the same affective state while they are solving 
problems, it is worth realizing that the frequencies of processes 
they use could reflect their different states while answering the 
questions.

Finally, the questions in the assignments provided to stu-
dents were similar to those seen previously during in-class 
work. The low prevalence of metacognitive processes in their 
solutions could be due to students’ perception that they have 
already solved similar questions. This may prevent them from 
articulating their plans or from checking their work. More com-
plex, far-transfer problems would likely elicit different patterns 
of processes for successful problem solving.

SUGGESTIONS FOR INSTRUCTION
We have shown that successful problem solving in genetics var-
ies depending upon the concepts presented in the problem. 
However, for all content areas, the general skill of explaining 
one’s answer (Reasoning) supports students’ use of declarative 
knowledge, increasing their likelihood of constructing correct 
solutions. Instructors could make a practice of suggesting cer-
tain processes to students to highlight strategies correlated with 
successful problem solving, along with pointing out the pro-
cesses that may be detrimental. Here we provide a generalized 
summary of recommendations.

•	 Calculating: In questions regarding probability, students will 
need to be familiar with mathematical representations and 
calculations. Practicing probabilistic thinking is critical.

•	 Drawing: Capturing thought processes with a drawing can 
help visualize the problem space and can be used to gener-
ate supportive reasoning for one’s thinking (e.g., a drawing 
of the stages of meiosis). However, a cautionary note: draw-
ing can lead to unsuccessful problem solving when used in 
an inappropriate context, such as a Punnett square when 
considering linked genes or using multiple Punnett squares 
when other rules should be used, such as multiplication of 
probabilities from multiple generations.

•	 Eliminating: In questions with clear alternate final answers, 
eliminating answers, preferably while explaining one’s rea-
sons, is particularly useful.

•	 Practicing metacognition: Although there were few signifi-
cant differences in metacognitive processes between correct 
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and incorrect student answers, we still suggest that planning 
and checking are valuable across content areas, as demon-
strated by the more frequent use of these processes by 
experts.

In summary, we suggest that instructors not only emphasize 
key pieces of challenging content for each given topic, but also 
consistently demonstrate possible problem-solving strategies, 
provide many opportunities for students to practice thinking 
about how to solve problems, and encourage students to explain 
to themselves and others why each of their steps makes sense.
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