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We report the draft genome sequence of Mycobacterium arupense strain GUC1 from a sputum sample of a patient with bronchi-
ectasis. This is the first draft genome sequence of Mycobacterium arupense, a rapidly growing nonchromogenic mycobacteria.
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Mycobacterium arupense is a rapidly growing nonchromogenic
mycobacteria that is closely related to the Mycobacterium

terrae complex and has been isolated from clinical samples, most
commonly sputum samples, as well as environmental water
sources (1–3). Multiple reports of tenosynovitis and osteoarticu-
lar infections with M. arupense have also been presented, includ-
ing infections caused by the type strain AR30097 (4–8). Although
the unique identification of M. arupense has generally been related
to sequence analysis, the phenotypic properties of M. arupense
that resulted in it being classified as a species include its inabil-
ity to grow at 42°C, rapid growth at 30°C, variable pyrazinami-
dase activity, and mycolic acid patterns that distinguish it from
M. terrae (1).

Rapidly growing mycobacteria constitute a commonly isolated
population of acid-fast bacillus in the clinical microbiology lab of
varying clinical importance (9, 10). We sequenced the first draft
genome of M. arupense from a sputum sample of a patient diag-
nosed with bronchiectasis. The isolate was originally typed as M.
terrae complex by high-performance liquid chromatography;
however, genome sequencing and analysis of the 16S and rpoB
sequences revealed its identity as M. arupense.

DNA from M. arupense strain GUC1 was extracted using the
Qiagen EZ1 kit, and paired-end libraries were prepared using the
Nextera XT DNA library kit followed by sequencing on the Illu-
mina MiSeq. Sequences were adapter and quality (Q20) trimmed
using cutadapt, de novo assembled using SPAdes v3.5, metag-
enomically screened for contaminating sequence with SURPI, and
annotated via prokka v1.1 (11–14). A total of 6,386,174 paired-
end reads of average length 117 nucleotides were recovered after
trimming. De novo assembly yielded 173 contigs for a total assem-
bly size of 4,441,412 bp with an N50 of 56,189 bp, an average
coverage of 115�, and a total of 4,182 coding sequences. Con-
tiguity was most likely disrupted by the high G�C content
(67%) along with several high-copy-number integrases, trans-
posases, and recombinases that were longer than sequence read
length. Other high-copy number contigs included those contain-
ing genes to ESX/type VII secretion system, a distantly related
3-methyladenine glycosylase, and a copper-transporting ATPase.
The assembly also includes 44 kb across two contigs that aligns
with 99 to 100% nucleotide identity to the pMK12478 plasmid
from Mycobacterium kansasii strain ATCC 12478 (15). Otherwise,

the closest aligning sequenced genomes were Mycobacterium sp.
JDM601 or Mycobacterium avium strains E1/E93 at approximately
80% nucleotide identity. By Comprehensive Antibiotic Resistance
Database analysis, the GUC1 strain includes an ampC beta-
lactamase and two metallo-beta-lactamases which demonstrate
80%, 90%, and 77% amino acid identity to that of M. avium strain
Env 77, respectively (16, 17).

Nucleotide sequence accession numbers. This whole-genome
shotgun project has been deposited at DDBJ/ENA/GenBank un-
der the accession no. LASW00000000. The assembly described in
this paper is the second version, LASW02000000.
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