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ABSTRACT
Background. Reduced tactile acuity has been observed in several chronic pain
conditions and has been proposed as a clinical indicator of somatosensory impairments
related to the condition. As some interventions targeting these impairments have
resulted in pain reduction, assessing tactile acuitymay have significant clinical potential.
While two-point discrimination threshold (TPDT) is a popular method of assessing
tactile acuity, large measurement error has been observed (impeding responsiveness)
and its validity has been questioned. The recently developed semi-automated ‘imprint
Tactile Acuity Device’ (iTAD) may improve tactile acuity assessment, but clinimetric
properties of its scores (accuracy score, response time and rate correct score) need
further examination.
Aims. Experiment 1: To determine inter-rater reliability and measurement error of
TPDT and iTAD assessments. Experiment 2: To determine internal consistencies
and floor or ceiling effects of iTAD scores, and investigate effects of age, sex, and
anthropometry on performance.
Methods. Experiment 1: To assess inter-rater reliability (ICC(2,1)) and measurement
error (coefficient of variation (CoV)), three assessors each performed TPDT and iTAD
assessments at the neck in forty healthy participants. Experiment 2: To assess internal
consistency (ICC(2,k)) and floor or ceiling effects (skewness z-scores), one hundred
healthy participants performed the iTAD’s localisation and orientation tests. Balanced
for sex, participants were equally divided over five age brackets (18–30, 31–40, 41–50,
51–60 and 61–70). Age, sex, bodymass index (BMI) and neck surface area were assessed
to examine their direct (using multiple linear regression analysis) and indirect (using
sequential mediation analysis) relationship with iTAD scores.
Results. Mean ICC(2,1) was moderate for TPDT (0.70) and moderate-to-good for the
various iTAD scores (0.65–0.86). The CoV was 25.3% for TPDT and ranged from 6.1%
to 16.5% for iTAD scores. Internal consistency was high for both iTAD accuracy scores
(ICC(2,6) = 0.84; ICC(2,4) = 0.86). No overt floor or ceiling effects were detected (all
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skewness z-scores < 3.29). Accuracy scores were only directly related to age (decreasing
with increasing age) and sex (higher for men).
Discussion. Although reliability was similar, iTAD scores demonstrated less measure-
ment error than TPDT indicating a potential for better responsiveness to treatment
effects. Further, unlike previously reported for TPDT, iTAD scores appeared inde-
pendent of anthropometry, which simplifies interpretation. Additionally, the iTAD
assessesmultiple aspects of tactile processing whichmay provide amore comprehensive
evaluation of tactile acuity. Taken together, the iTAD shows promise in measuring
tactile acuity, but patient studies are needed to verify clinical relevance.

Subjects Anesthesiology and Pain Management, Drugs and Devices, Neurology
Keywords Neurologic examination, Touch perception, Tactile acuity, Locognosia, Reliability,
Neck, Chronic pain

BACKGROUND
Measures of tactile acuity have been utilised to identify somatosensory impairments in a
variety of painful conditions, such as musculoskeletal disorders (Debenham et al., 2016;
Fujimoto & Kon, 2016; Mena-Del Horno et al., 2020), chronic pain (Catley et al., 2014;
Harvie, Edmond-Hank & Smith, 2018), amputation (Vega-Bermudez & Johnson, 2002;
Guemann et al., 2019), neuropathy (Fonseca et al., 2018), stroke (Rinderknecht et al., 2019),
arthritis (Stanton et al., 2013), complex regional pain syndrome (Lewis & Schweinhardt,
2012) and spinal cord injury (Zeilig et al., 2012). Patients with persistent pain typically
demonstrate poorer tactile acuity than healthy controls (Catley et al., 2014), which is
thought to reflect changes in somatosensory processing related to the condition. Since
some interventions targeting these impairments have shown promise (Pleger et al., 2005;
Moseley, Zalucki & Wiech, 2008; Schmid et al., 2017; Wakolbinger et al., 2018; Wand et al.,
2013), assessing tactile acuity may have significant clinical potential.

Tactile acuity refers to the accuracy and clearness of touch perception (Walter, 2008).
Several dimensions of tactile acuity have been identified, such as two-point (or gap)
discrimination, point (mis)localisation, length discrimination, orientation discrimination
and shape/texture recognition (Marsh, 1990; Bell-Krotoski, Weinstein & Weinstein, 1993;
Stevens & Patterson, 1995). As cutaneous mechanoreceptors respond to a variety of tactile
stimuli (Abraira & Ginty, 2013), tactile acuity measures apply either dynamic deformation
(movement), indentation (pressure) or vibration to the skin (Demain et al., 2013).

The two-point discrimination threshold (TPDT), i.e., the minimum distance between
two tactile stimuli that can be perceived as spatially distinct, is the most frequently used
and studied measure of tactile acuity (Catley et al., 2014; Fonseca et al., 2018; Ehrenbrusthoff
et al., 2018). Despite its popularity, its validity has been questioned due to involvement of
non-spatial cues (Boldt et al., 2014; Craig & Johnson, 2000; Lundborg & Rosen, 2004; Tong,
Mao & Goldreich, 2013), and observations of abnormal scores (Craig & Johnson, 2000;
Lundborg & Rosen, 2004), hindering its interpretation. Moreover, TPDT scores appear
affected by age (Marsh, 1990; Stevens & Patterson, 1995; Kalisch et al., 2009; Kalisch et al.,
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2012), sex (Kalisch et al., 2012; Falling & Mani, 2016b), and anthropometry (e.g., bodymass
index (BMI), waist-hip ratio, surface area of the tested body part) (Falling & Mani, 2016b;
Peters, Hackeman & Goldreich, 2009), which further complicates interpretation of results.
Although moderate to good intra-rater and inter-rater reliability has been reported, large
measurement error has been observed (Catley et al., 2013), making it difficult to detect
treatment effects. Correspondingly, TPDT was the least responsive sensibility test following
median nerve injury and repair (Fonseca et al., 2018; Jerosch-Herold, 2003), as well as the
least responsive to improvements in hand function after surgery (Fujimoto & Kon, 2016).

A variety of tests have recently been developed to improve tactile acuity assessment,
such as the two-point orientation test (Tong, Mao & Goldreich, 2013), point-to-point
test (Adamczyk et al., 2016), tactile acuity charts (Bruns et al., 2014), grating orientation
task (Van Boven et al., 2000), and two-point estimation task (Adamczyk et al., 2019b;
Zimney et al., 2020). Additionally, technological developments instigated semi-automated
testswhichmaybe less affected by inter-rater variability (Guemann et al., 2019;Rinderknecht
et al., 2019; Hoffmann et al., 2018). An added benefit of these semi-automated tools is the
potential for independent sensory training. This may be of clinical relevance, given that
treatment success in manual sensory discrimination interventions could be limited by
the need for caregiver involvement during at home training (Ryan et al., 2014). However,
despite neck pain being ranked among the top five leading causes of years lived with
disability globally (Global Burden of Disease Study 2013 Collaborators, 2015), only a limited
number of these novel procedures have been applied to the neck (Zimney et al., 2020;
Harvie et al., 2017; Morrow & Ziat, 2018; Adamczyk et al., 2019a). As such, the body of
knowledge about tactile acuity in neck pain appears limited compared to other painful
conditions (Luedtke & Adamczyk, 2017). The development of improved tactile acuity
assessment at the neck therefore has the potential to elucidate mechanisms of neck pain,
inform development of new treatment strategies, and guide clinical decision making.

One recently developed tool designed to assess tactile acuity at the neck is the ‘Imprint
Tactile Acuity Device’ (iTAD) (Olthof et al., 2021). The iTAD is a semi-automated device
that uses single and successive vibrotactile stimuli to quantify absolute and relative tactile
localisation performance (for details see elsewhere (Olthof et al., 2021)). As stimulus
administration is automated and does not require synchronicity between locations, the
iTAD may overcome some complications associated with TPDT. Despite some initial
design issues, the iTAD prototype has shown comparable intra-rater reliability to existing
tests (Olthof et al., 2021), suggesting prospective utility. In this manuscript, we report two
experiments that investigate the clinimetric properties of an updated version of the iTAD.
Experiment 1 aimed to determine inter-rater reliability and measurement error of both the
iTAD and TPDT assessments, which is currently the most reliable tactile acuity assessment
at the neck (Harvie et al., 2017). Experiment 2 aimed to quantify internal consistency and
identify floor or ceiling effects of the iTAD scores, and determine their relationship with
age, sex, BMI and neck surface area.
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METHODS
Both experiments were approved by Griffith University Human Research Ethics committee
(#2016/168), and all participants gave written informed consent prior to participating.

Experiment 1: Inter-rater reliability and measurement error
Design and procedure
A test-retest study investigated the inter-rater reliability and measurement error of the
iTAD and TPDT. Three assessors each performed both assessments in a private, quiet,
room. The order of assessments was randomised between participants, but consistent
between assessors for each participant. The order of assessors was randomised between
participants. Participants received a 10-minute break between assessors and were blinded
to their scores. Assessors were blinded to all iTAD scores and TPDT scores of the other
assessors. The anatomical location of both assessments was standardised but independently
determined by each assessor.

Participants
Using a convenience sample, individuals without current pain and neurological symptoms
as well as without a history of persistent (i.e., >3 months) pain and neurological symptoms
in the past five years were recruited from the general public.

Assessors
Three final year physiotherapy Masters students each performed iTAD and TPDT
assessments after receiving approximately one hour of training for each procedure. Test
instructions and performance were standardised using a testing protocol. Training included
approximately 20–30 min of instructions on the testing protocol and about 30–40 min of
practicing the protocol. Each assessor practised each protocol five times and underwent
each assessment at least once.

TPDT assessment
A digital caliper (Renegade industrial, carbon fibre, RCFVC150) was used to establish
TPDT, utilizing the two arms and pressure of its own weight as tactile stimuli. Contact area
of the tip of each arm was approximately 0.25 mm × 0.5 mm and stimulus duration <1 s.
During TPDT assessment, participants were seated with their forehead resting on a table
in front of them. On the dominant side, TPDT was measured in a cranio-caudal direction
with the caudal arm of the caliper stationary at 15 mm lateral to the spinous process of C7.

Similar to a previously published procedure (Luedtke et al., 2018), a two-alternative
forced-choice (one or two points) staircase method was used, alternating two ascending
and two descending runs (see Fig. 1). The caliper distance started at 15 mm, increasing
with five mm steps. Steps were reduced to two mm for the subsequent runs. To avoid
guessing, three consecutive reports of either one or two points indicated a reversal. A 10
mm step was added in the direction of the completed run, before running the reversed
direction. The TPDT was calculated by averaging the scores of the four reversals, expressed
in millimetres, with larger distances indicating poorer tactile acuity.
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Figure 1 TPDT assessment procedure. Example of the assessment of a hypothetical two-point discrimi-
nation threshold (TPDT). Assessment is based on a forced-choice response (one or two points), alternat-
ing four runs with either increasing or decreasing caliper distances. Steps taken are either in five mm. (first
run) or two mm. (other runs). Three consecutive reports of either one or two points indicates a reversal.
Mean of the four reversals is calculated for the TPDT score.

Full-size DOI: 10.7717/peerj.12192/fig-1

iTAD assessment
iTAD prototype. The iTAD consists of a wearable neoprene collar containing twelve
vibrotactile stimulators (∼200 Hz with 0.75 g vibration amplitude), arranged in three rows
of four (see Fig. 2). A wirelessly connected tablet operates the stimulators and records user’s
responses. After fitting and familiarisation, two tactile acuity tests were performed: the
localisation test, which measures the ability to localise the vibrations (one second stimulus
duration), and the orientation test, which measures the ability to determine the orientation
of two successive adjacent vibrations relative to each other (0.7 s stimulus duration each).
Accuracy scores (i.e., percentage correct) for each test, and the overall score (i.e., mean
of both test), were calculated with higher scores indicating better tactile acuity. For a full
description of the iTAD prototype and its assessment procedures, see elsewhere (Olthof et
al., 2021).

Changes to the prototype. After development of the prototype, the internode distance was
reduced to 32.5 mm (centre-to-centre) between all rows and columns. Additionally, a
layer of foam was placed in the collar to aid fitting consistency. For the localisation test,
the number of trials was increased from 48 to 72, delivered in six series of twelve. For the
orientation test, the number of trials was increased from 48 to 64, delivered in four series of
sixteen. Furthermore, trials were block randomised within each series, alternating between
sides of the neck.

Olthof et al. (2021), PeerJ, DOI 10.7717/peerj.12192 5/23

https://peerj.com
https://doi.org/10.7717/peerj.12192/fig-1
http://dx.doi.org/10.7717/peerj.12192


Figure 2 The imprint Tactile Acuity Device (iTAD), containing twelve build-in vibrotactile stimula-
tors (top), and wirelessly connected tablet. The iTAD performs two tactile acuity tests: (1) the localisa-
tion test (bottom left) where the perceived location of the tactile stimulus is selected and (2) the orienta-
tion test (bottom right) where the perceived location of a second tactile stimulus, relative to a first, is se-
lected. For both tests, as well as the overall score (mean of both tests), the accuracy score (i.e., percentage
correct), the average response time and the rate correct score (number of correct responses per minute of
response activity) is calculated.

Full-size DOI: 10.7717/peerj.12192/fig-2

Additional scores. In order to better quantify tactile acuity, two new scores were added. For
each test, and the overall score, (average) response time was recorded in milliseconds with
lower scores indicating faster responses. Additionally, a rate correct score was calculated
(=

∑
(correct responses)/

∑
(response times in minutes)), quantifying the number of

correct responses per minute of response activity (Vandierendonck, 2017) with higher
scores indicating better tactile acuity. As the rate correct score integrates response time
and accuracy, it accounts for individual speed-accuracy trade-off strategies and has been
suggested to provide a better estimate of perceptual performance (Vandierendonck, 2017).

Statistical analyses
Inter-rater reliability was assessed by calculating the intraclass correlation coefficient,
model 2,1 (ICC(2,1)) (i.e., two-way random, absolute agreement, single measures). Values
were interpreted as poor (<0.5), moderate (0.5–0.74), good (0.75–0.89) or excellent
(≥0.9) (Portney & Watkins, 2009).

The standard error of measurement (SEM) was calculated using variance components
from the ANOVA table (√(σ 2

observer+σ
2
residual)) to assess measurement error (De Vet

et al., 2006). As TPDT and iTAD use different metric units, the SEM was additionally
converted to the coefficient of variation (CoV) (i.e., SEM as a percentage of mean score)
allowing direct comparison of measurement error (Hopkins, 2000). Since both <10% and
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<20% have been suggested as a good CoV (Atkinson & Nevill, 1998; Quan & Shih, 1996),
results were categorised into: <10%, 10–20% and >20%.

To assist clinical interpretation of the SEM, the smallest detectable change with a
95% confidence interval (SDC_95) was calculated (1.96*

√
2*SEM) (De Vet et al., 2006).

Additionally, SDCvalueswith smaller confidence intervals (SDC_80, SDC_85 and SDC_90)
were computed (replacing 1.96 with respective z-values).

Sample size calculation
To detect a hypothesized ICC(2,1) of 0.7 with three repeated measurements (recommended
to optimise sample size (Walter, Eliasziw & Donner, 1998)), while α= 0.05, β = 0.2 and
ICC(2,1)= 0.5 for the null hypothesis, a minimum of 40 participants is required (Walter,
Eliasziw & Donner, 1998). Therefore, we aimed to recruit 40 participants.

Experiment 2: Internal consistency, floor and ceiling effects, and
relationship with age, sex and anthropometry
Design and procedure
Using a cross-sectional design, the internal consistencies of the localisation and orientation
accuracy score were investigated. Additionally, floor and ceiling effects of all iTAD scores
were assessed, as well as their relationship with age, sex, BMI and neck surface area. In
one session, participants performed both iTAD tests after age, sex, and anthropometric
measures (see ‘Anthropometric measurements’) were recorded. Measures were taken by a
single assessor in a private, quiet room. The assessor had several hours of prior experience
performing iTAD assessments.

Participants
Recruitment and selection criteria were identical to experiment one. However, participants
represent a different cohort without overlap.

iTAD tests
For procedure of the iTAD tests, see ‘iTAD assessment’.

Anthropometric measurements
Afterweight (kg) and height (m)were recorded, BMIwas calculated (weight/height2). Using
a tapemeasure, the distance from the caudal aspect of the external occipital protuberance to
the spinous process of C7 was measured to quantify neck length (cm). Neck circumference
(cm) was measured at half-way of the neck length measurement placing the tape measure
horizontally around the neck. Using these measurements, the posterior neck surface area
was estimated (neck length*(neck circumference/2)).

Statistical analysis
Internal consistency was assessed by calculating the inter-relatedness of accuracy scores
between series within each test, using ICC model 2,k (i.e., two-way random, absolute
agreement, average measures). The ICC(2,k) was chosen over the Cronbach’s alpha, the
equivalent of the ICC(3,k) (i.e., two-way random, consistency, average measures), to
include absolute differences between series. Although various cut-offs are proposed, most
recommend 0.7−0.9 for high internal consistency (Taber, 2018).
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For the accuracy scores, floor and ceiling effects were considered present if >15% of
the participant scored within either the highest or lowest 20% of the scale (Terwee et al.,
2007). However, such assessment would not be adequate for response times or rate correct
scores, as their scales have no limit on one end and scores are (near) impossible at the
other. Therefore, floor and ceiling effects for all iTAD scores were assessed by calculating
z-scores for the skewness of their distribution (i.e., the skew value divided by its standard
error) (Kim, 2013; Ho & Yu, 2015). Floor and ceiling effects may be present with a z-score
>±1.96 in small (n<50) or >±3.29 in medium (50<n<300) sized samples (Kim, 2013; Ho
& Yu, 2015).

In order to study the direct multivariate relationships of age, sex, BMI and neck surface
area with the localisation and orientation accuracy score, multiple linear regressions (enter
models) were performed. Furthermore, to estimate the potential indirect effects of age and
sex through BMI and/or neck surface area, sequential mediation analyses were performed
using the SPSS extension PROCESS (model 6; 5000 bootstrapped samples) as a secondary
analysis. Mediation analyses for all other iTAD scores were performed as exploratory
analyses. Regression models are expressed in (adjusted) explained variance (R2

adjusted).
For all relationships, both the mean unstandardized regression coefficient (b) and the
semi-partial correlation (sr) are provided. Indirect effects are expressed in percentage
mediation (Pm).

Sample size
To examine internal consistency, a minimum of 100 participants is recommended (Terwee
et al., 2007). To explore potential floor and ceiling effects, a minimum of 50 participants
is recommended (Terwee et al., 2007). For the multiple linear regressions, 100 participants
were needed to find a medium sized (f 2= 0.15) prediction model using four predictors
with a Bonferroni corrected p-value of 0.025 and 80% power. Taken together, the sample
size was set for 100 participants, with 10 participants of both sexes in each of five age
brackets (18–30, 31–40, 41–50, 51–60 and 61–70).

RESULTS
Experiment 1: Inter-rater reliability and measurement error
Forty individuals (25 male) participated, with a mean (SD) age of 24.1 (4.5) years. One
participant was left hand dominant and the others right hand dominant. Mean scores,
inter-rater reliabilities and measurement errors are displayed in Table 1. Inter-rater
reliability was good for iTAD orientation accuracy score, overall accuracy score, and all
response times. All other scores displayed moderate inter-rater reliability. The CoV was
<10% for all iTAD response times and >20% for TPDT. All other scores had a CoV of
10–20%.

For all scores, the SDC is presented with varying confidence intervals (80% to 95%)
in Table 2. Each can be used to assess the chance that an observed change in score, when
larger in either direction, could reflect measurement error: (100%–confidence interval)/2
(i.e., <10%, <7.5%, <5% and <2.5% respectively). For example, a change of +16.2% in
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Table 1 Mean, inter-rater reliability andmeasurement error for the iTAD and two-point discrimination threshold scores.

Score Score Inter-rater reliability Measurement error

Metric Mean (SD) ICC(2.1)(95% CI) SEM CoV

AS 61.0% (12.7) 0.65 (0.49–0.78) 8.7% 14.3%
RT 1238.5 ms (241.9) 0.82 (0.71–0.90) 109.7 ms 8.9%

iTAD
Localisation
test RCS 30.5 c/min (7.5) 0.65 (0.49–0.78) 5.0 c/min 16.5%

AS 46.2% (10.9) 0.76 (0.63–0.85) 5.9% 12.7%
RT 1995.4 ms (281.7) 0.80 (0.69–0.88) 134.0 ms 6.7%

iTAD
Orientation
test RCS 14.0 c/min (3.3) 0.74 (0.61–0.84) 1.9 c/min 13.2%

AS 53.6% (10.4) 0.75 (0.61–0.85) 5.8% 10.8%
RT 1617.0 ms (246.4) 0.86 (0.76–0.92) 97.8 ms 6.1%

iTAD
Overall
score RCS 20.2 c/min (4.0) 0.72 (0.58–0.83) 2.3 c/min 11.6%
TPDT Distance 47.7 mm (19.5) 0.70 (0.55–0.81) 12.1 mm 25.3%

Notes.
iTAD, imprint Tactile Acuity Device; TPDT, two-point discrimination threshold; AS, accuracy score; RT, average response time; RCS, rate correct score; ms, milliseconds;
c/min, correct responses per minute; ICC, intraclass correlation coefficient; SEM, standard error of measurement; CoV, coefficient of variation.

Table 2 Smallest detectable changes with 80%, 85%, 90% and 95% confidence intervals for the iTAD and two-point discrimination threshold
scores.

Score SDC_80 SDC_85 SDC_90 SDC_95

AS (%) 15.7 17.7 20.2 24.1
RT (ms) 198.5 223.2 255.2 304.0

iTAD
Localisation
test RCS (c/min) 9.1 10.2 11.7 13.9

AS (%) 10.7 12.0 13.7 16.3
RT (ms) 242.5 272.7 311.7 371.4

iTAD
Orientation
test RCS (c/min) 3.4 3.8 4.3 5.1

AS (%) 10.5 11.8 13.5 16.0
RT (ms) 177.1 199.1 227.6 271.2

iTAD
Overall
score RCS (c/min) 4.2 4.8 5.4 6.5
TPDT Distance (mm) 21.9 24.6 28.1 33.5

Notes.
iTAD, imprint Tactile Acuity Device; TPDT, two-point discrimination threshold; AS, accuracy score; RT, average response time; RCS, rate correct score; ms, milliseconds;
c/min, correct responses per minute; SDC, smallest detectable change.

localisation accuracy score would have a 7.5–10% chance to be a result of measurement
error, whereas a change of +21.3% a 2.5–5% chance.

Experiment 2: Internal consistency, floor and ceiling effects, and
relationship with age, sex and anthropometry
One hundred individuals participated, with ten of both sexes per predetermined age
bracket. Ten participants were left hand dominant, 88 right hand dominant and two were
ambidextrous. Mean (SD) BMI was 26.4 (4.6) and mean (SD) neck surface area was 261.0
cm2 (48.1). Mean (SD) duration was 03:06 (00:25) minutes for the localisation test and
03:38 (00:28) for the orientation test.
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Internal consistency
The ICC(2,6)(95% CI) for the localisation accuracy score was 0.84 (0.79−0.89) and the
ICC(2,4) (95% CI) for the orientation accuracy score was 0.86 (0.81−0.90).

Floor and ceiling effects
None of the accuracy scores had >5% of participants scoring in either the highest or lowest
20%. Only localisation response time had a skewness z-score >±1.96 (z =+2.73), which
was still <±3.29.

Relationship with age, sex and anthropometry
Multiple linear regression analyses showed significant prediction models for both the
localisation accuracy score (F(4,95) =4.92, p< 0.01, R2

adjusted = 0.14) and orientation
accuracy score (F(4,95) =5.82, p< 0.01, R2

adjusted= 0.16).
For the localisation accuracy score, both age (b =−0.20, sr =−0.20, p= 0.03) and sex

(b= 8.04, sr =0.25, p= 0.01) had a significant contribution to the model, whereas BMI
(p= 0.11) and neck surface area (p= 0.89) did not. This indicates that, on average, men
scored 8.04% higher than women, and that scores decreased by 0.20% for each year of age.

For the orientation accuracy score, both age (b =−0.39, sr =−0.36, p= 0.00) and
sex (b= 6.69, sr =0.19, p= 0.04) contributed significantly to the model, whereas BMI
(p= 0.71) and neck surface area (p= 0.94) did not. This indicates that, on average, men
scored 6.69% higher than women, and that scores decreased by 0.39% for each year of age.

The mediation analyses indicated several significant relationships between demographic
and anthropometric variables (see Fig. 3). However, for the localisation accuracy score, the
total indirect effects of age (Pm= 0.16, p> 0.05), and sex (Pm= 0.06, p> 0.05), through
BMI and neck surface area were non-significant. Similarly, the total indirect effects of
age (Pm= 0.02, p> 0.05), and sex (Pm= 0.04, p> 0.05) were also non-significant for the
orientation accuracy score. Additionally, all individual indirect effects were non-significant
for both tests. This indicates that BMI and/or neck surface area did not significantlymediate
the effects of age or sex for either accuracy score. Scatterplots of localisation and orientation
accuracy scores as a function of age and sex are displayed in Fig. 4.

Exploratory mediation analysis of the other iTAD scores showed similar patterns, other
than sex not significantly predicting the localisation or orientation response time and rate
correct score. Additionally, rate correct scores were more strongly predicted by age. Figures
of all mediation analyses can be found in Supplemental files (Figs. S1–S3). Scatterplots
of all iTAD scores as a function of age and sex can be also be found in Supplement files
(Figs. S4, S5).

DISCUSSION
Inter-rater reliability
Inter-rater reliability was moderate for TPDT and moderate to good for the iTAD scores.
When directly compared, ICC(2.1) values were somewhat higher for iTAD’s response times,
but similar between TPDT and other iTAD scores. The ICC(2.1) values for TPDT appear
comparable to previous research, although results vary (Catley et al., 2013; Harvie et al.,
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Figure 3 Results sequential mediation analyses. Relationships between demographics (sex and age), an-
thropometrics (body mass index (BMI) and neck surface area (NSA)) and iTAD accuracy scores for the
localisation test (A) and orientation test (B). Relationships are expressed in semi-partial correlations (sr)
and unstandardized regression coefficients (b), including their level of significance (p). Coding for sex: fe-
male=0 and male=1.

Full-size DOI: 10.7717/peerj.12192/fig-3

2017; Luedtke et al., 2018; Adamczyk, Luedtke & Szikszay, 2018; Cashin, 2017). Compared
to the prototype, reliability appears improved with the new generation iTAD despite
previous values representing intra-rater reliability (Olthof et al., 2021).
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Figure 4 Scatter plots of localisation and orientation accuracy scores. Scatter plots of iTAD accuracy
scores as a function of age and sex. Scores are displayed for the localisation (A) and orientation (B) test.
Lines represent the least squares regressions.

Full-size DOI: 10.7717/peerj.12192/fig-4

Measurement error
Results indicate a larger CoV for TPDT than all iTAD scores. For TPDT assessment,
differences in speed, timing and intensity of stimulus delivery affect results (Boldt et
al., 2014; Lundborg & Rosen, 2004; Yokota et al., 2020). Therefore, variability in these
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parameters between raters, trials, and both arms of the caliper, increases measurement
error. An inherent problem ofmanual TPDT assessment is the inability to control, or assess,
these variables in a clinical setting. The iTAD scores may be less prone to these sources of
error variance, as stimulus administration is automated and does not require synchronicity
between locations. Clinically, this implies less difficulty detecting change with iTAD
assessments, potentially resulting in better responsiveness to treatment effects (Terwee
et al., 2007). Notably, CoV for TPDT seems somewhat larger than previously reported
(17.4–20.6% (Luedtke et al., 2018); 19.1% (Catley et al., 2013)). This may be due to the
testing procedure (e.g., orientation of caliper, number of reversals), for which no standard
is available (Adamczyk, Luedtke & Szikszay, 2018; Cashin, 2017). Yet, mean (SD) TPDT
scores appeared similar to several other reports (mean (SD) range: 45.9 (18.4) to 62.6
(22.9)) (Catley et al., 2013; Zimney et al., 2020;Adamczyk et al., 2019a;Cheever et al., 2017),
although somewhat higher than others (mean (SD) range: 21.7 (6.2) to 35.2 (9.6)) (Harvie
et al., 2017; Luedtke et al., 2018; Elsig et al., 2014). Further, measurement error may depend
on various factors related to both participants and assessors included (Catley et al., 2013).
However, these were constant between the two assessments in this experiment, allowing
for a more direct comparison.

Several SDC values were also presented. Although conventional, the SDC_95 may
provide high specificity (few false positives) but low sensitivity (many false negatives) in
detecting change due to its large confidence interval (Portney & Watkins, 2009). As both
false conclusions can negatively impact clinical decision making, presenting a range of
SDC values may support more precise interpretation of observed changes in relation to
measurement error.

Internal consistency
Despite including absolute differences between series, internal consistency was high for
both the localisation and orientation accuracy scores and higher than for the iTAD
prototype (Olthof et al., 2021). Internal consistency is frequently applied to questionnaires
but underutilised in experimental tasks, mostly because scores cannot be split into multiple
representative parts (Green et al., 2016; Matheson, 2019). However, internal consistency
has previously been established in measures such as electrocardiography (Van Lien et
al., 2015), electroencephalography (Towers & Allen, 2009), joint position sense (Domingo
& Lam, 2014) and motion analysis (Platz et al., 1999). One benefit of reporting internal
consistency as a measure of reliability is its comparability between studies, even if only
single measurements are taken (Green et al., 2016).

Floor and ceiling effects
No floor or ceiling effects, which may limit responsiveness (Terwee et al., 2007), were
detected in iTAD scores; only a potential, yet debatable, floor effect for localisation
response time. This could indicate difficulty in detecting improvements in already fast
responders. However, this may not be clinically relevant, as slow responders are more likely
targets for treatment.
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Relationship with age, sex, BMI and neck surface area
Results indicated that localisation and orientation accuracy scores were only directly related
to age (decreasing with increasing age) and sex (lower for women). This implies that age
and sex, but not BMI or neck surface area, should be considered when interpreting scores.

Regarding the effect of age, similar sized negative correlations between age and tactile
acuity have previously been established using TPDT (Kalisch et al., 2012; Falling & Mani,
2016a). One frequently proposed mechanism is the decreased cortical inhibition in
response to tactile stimulation associated with older age (Kalisch et al., 2009; Lenz et al.,
2012; Brodoehl et al., 2013; Pleger et al., 2016). Interestingly, these age-related declines in
tactile acuity can potentially be reversed with sensory training (Pleger et al., 2016; Dinse et
al., 2006).

Concerning the effect of sex, previous reports seem inconsistent and vary between
body regions when measured with TPDT (Falling & Mani, 2017). For example, better
tactile acuity has been reported for women at the orofacial region (Won et al., 2017) and
knee (Falling & Mani, 2016b), for men at the knee (Stanton et al., 2013), and no differences
were found at the lower back (Stanton et al., 2013; Falling & Mani, 2016a). To the best
of our knowledge, this is the first study examining sex differences at the neck, making it
difficult to compare results. Additionally, sex differences could dependent on task type. In
a single experiment, women made more errors in a tactile object recognition task despite
demonstrating similar TPDT scores (Kalisch et al., 2012).

For TPDT assessment, scores seem affected by BMI (Falling & Mani, 2016b; Falling
& Mani, 2016a) and body fat ratios (Boles & Givens, 2011). One proposed mechanism is
the sensitivity of TPDT scores to skin deformation (Yokota et al., 2020; Boles & Givens,
2011), which is affected by BMI (Smalls, Randall Wickett & Visscher, 2006). The iTAD uses
vibrotactile stimuli rather than indentation, which may explain the contrasting results.

Results also contrast previous reports indicating that tactile acuity at the fingertips relates
to surface area, potentially due its relationship with mechanoreceptor density (Peters,
Hackeman & Goldreich, 2009). One explanation is that the utilized neck surface area
assessmentmay be a poor proxy for receptive field configuration. Different to the fingertips,
necks exhibit variation in hairy (vs. non-hairy) skin which typically does not contain
Pacinian mechanoreceptors, known to be activated by high frequency vibrations (Abraira
& Ginty, 2013). Proportion of hairy skin may therefore moderate the relationship between
neck surface area and iTAD scores, which was not investigated in this study. Alternatively,
lack of a significant relationship with surface area could also indicate that iTAD scores may
be less affected by peripheral receptive field configuration. Correspondingly, the ability
to accurately localise tactile stimuli may be more centrally organised (Braun et al., 2011),
and higher order cognitive functions (such as cortical body representations) seem to play a
more prominent role (Longo, Azanon & Haggard, 2010; Tame, Azanon & Longo, 2019). The
iTAD may therefore be especially suited for conditions with altered body representations,
such as musculoskeletal disorders (Viceconti et al., 2020) and persistent pain (Tsay et al.,
2015).
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Implications and future directions
Less measurement error for the iTAD could result in better responsiveness, although
this needs investigation in future trials studying treatment effects. Further, the multiple
measures of the iTAD may provide a more comprehensive evaluation of tactile acuity
function. However, validity of the iTAD assessments has not been thoroughly established,
precluding inferences about their clinical utility in addition to, or instead of, TPDT.
Moreover, their clinical relevance needs further examination in patient trials. Additionally,
future studies could explore to what extent iTAD scores reflect central somatosensory
processing using neuroimaging techniques. Future studies may also investigate the
clinimetric properties and clinical utility of other promising manual (Bruns et al.,
2014; Van Boven et al., 2000; Morrow & Ziat, 2018; Bleyenheuft & Thonnard, 2007) and
automated (Goldreich et al., 2009) procedures, including automated TPDT (Yokota et al.,
2020; Frahm & Gervasio, 2021), at the neck.

CONCLUSION
Findings suggest that the iTAD and TPDT have similar inter-rater reliability when
measuring tactile acuity at the neck in healthy individuals. However, the iTAD exhibits
several advantages such as ability to assess multiple aspects of tactile acuity, less
measurement error and a possibility for independent sensory training. Furthermore, no
evidence was found that scores were affected by anthropometry, simplifying interpretation.
Additionally, internal consistency of iTAD accuracy scores was high and no overt floor
or ceiling effects were detected. These results highlight the potential clinical utility of the
iTAD and support continued investigation.
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