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Abstract

The mental contents of perception and imagery are thought to be encoded in hierarchical

representations in the brain, but previous attempts to visualize perceptual contents have

failed to capitalize on multiple levels of the hierarchy, leaving it challenging to reconstruct

internal imagery. Recent work showed that visual cortical activity measured by functional

magnetic resonance imaging (fMRI) can be decoded (translated) into the hierarchical fea-

tures of a pre-trained deep neural network (DNN) for the same input image, providing a way

to make use of the information from hierarchical visual features. Here, we present a novel

image reconstruction method, in which the pixel values of an image are optimized to make

its DNN features similar to those decoded from human brain activity at multiple layers. We

found that our method was able to reliably produce reconstructions that resembled the

viewed natural images. A natural image prior introduced by a deep generator neural network

effectively rendered semantically meaningful details to the reconstructions. Human judg-

ment of the reconstructions supported the effectiveness of combining multiple DNN layers

to enhance the visual quality of generated images. While our model was solely trained with

natural images, it successfully generalized to artificial shapes, indicating that our model was

not simply matching to exemplars. The same analysis applied to mental imagery demon-

strated rudimentary reconstructions of the subjective content. Our results suggest that our

method can effectively combine hierarchical neural representations to reconstruct percep-

tual and subjective images, providing a new window into the internal contents of the brain.

Author summary

Machine learning-based analysis of human functional magnetic resonance imaging

(fMRI) patterns has enabled the visualization of perceptual content. However, prior work

visualizing perceptual contents from brain activity has failed to combine visual informa-

tion of multiple hierarchical levels. Here, we present a method for visual image recon-

struction from the brain that can reveal both seen and imagined contents by capitalizing

on multiple levels of visual cortical representations. We decoded brain activity into hierar-

chical visual features of a deep neural network (DNN), and optimized an image to make
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its DNN features similar to the decoded features. Our method successfully produced per-

ceptually similar images to viewed natural images and artificial images (colored shapes

and letters), whereas the decoder was trained only on an independent set of natural

images. It also generalized to the reconstruction of mental imagery of remembered

images. Our approach allows for studying subjective contents represented in hierarchical

neural representations by objectifying them into images.

Introduction

While the externalization of states of the mind is a long-standing theme in science fiction, it is

only recently that the advent of machine learning-based analysis of functional magnetic reso-

nance imaging (fMRI) data has expanded its potential in the real world. Although sophisti-

cated decoding and encoding models have been developed to render human brain activity into

images or movies, the methods are essentially limited to image reconstructions with low-level

image bases [1, 2], or to matching to exemplar images or movies [3, 4], failing to combine the

visual features of multiple hierarchical levels. While several recent approaches have introduced

deep neural networks (DNNs) for the image reconstruction task, they have failed to fully utilize

hierarchical information to reconstruct visual images [5, 6]. Furthermore, whereas categorical

decoding of imagery contents has been demonstrated [7, 8], the reconstruction of internally

generated images has been challenging.

The recent success of DNNs provides technical innovations to study the hierarchical visual

processing in computational neuroscience [9]. Our recent study used DNN visual features as a

proxy for the hierarchical neural representations of the human visual system and found that a

brain activity pattern measured by fMRI could be decoded (translated) into the response pat-

terns of DNN units in multiple layers representing the hierarchical visual features given the

same input [10]. This finding revealed a homology between the hierarchical representations of

the brain and the DNN, providing a new opportunity to utilize the information from hierar-

chical visual features.

Here, we present a novel approach, named deep image reconstruction, to visualize percep-

tual content from human brain activity. This technique combines the DNN feature decoding

from fMRI signals with recently developed methods for image generation from the machine

learning field (Fig 1) [11]. The reconstruction algorithm starts with a given initial image and

iteratively optimizes the pixel values so that the DNN features of the current image become

similar to those decoded from brain activity across multiple DNN layers. The resulting opti-

mized image is considered as a reconstruction from the brain activity. We optionally intro-

duced a deep generator network (DGN) [12] to constrain the reconstructed images to look

similar to natural images by performing optimization in the input space of the DGN.

Results

We trained the decoders that predicted the DNN features of viewed images from fMRI activity

patterns following the procedures of Horikawa & Kamitani (2017) [10]. In the present study,

we used the VGG19 DNN model [13], which consisted of sixteen convolutional layers and

three fully connected layers and was pre-trained with images in ImageNet [14] to classify

images into 1,000 object categories (see Materials and Methods: “Deep neural network fea-

tures” for details). We constructed one decoder for a single DNN unit to predict outputs of the

unit. We trained decoders corresponding to all the units in all the layers (see Materials and

Methods: “DNN feature decoding analysis” for details).

Deep image reconstruction from human brain activity
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The feature decoding analysis was performed with fMRI activity patterns in visual cortex

(VC) measured while subjects viewed or imagined visual images. Our experiments consisted

of the training sessions in which only natural images were presented and the test sessions in

which independent sets of natural images, artificial shapes, and alphabetical letters were pre-

sented. In another test session, a mental imagery task was performed. The decoders were

trained using the fMRI data from the training sessions, and the trained decoders were then

used to predict DNN feature values from the fMRI data of the test sessions (the accuracies are

shown in S1 Fig).

Decoded features were then forwarded to the reconstruction algorithm to generate an

image using variants of gradient descent optimization (see Material and Methods: “Recon-

struction from a single DNN layer” and “Reconstruction from multiple DNN layers” for

details). The optimization was performed to minimize the error between multi-layer DNN

features decoded from brain activity patterns and those calculated from the input image by

iteratively modifying the input image. For natural image reconstructions, to improve the “nat-

uralness” of reconstructed images, we further introduced the constraint using a deep generator

network (DGN) derived from the generative adversarial network algorithm (GAN) [15],

which is known to capture a latent space explaining natural images [16] (see Material and

Methods: “Natural image prior” for details).

Examples of reconstructions for natural images are shown in Fig 2 (see S2 Fig for more

examples, and see S1 Movie for reconstructions through the optimization processes). The

reconstructions obtained with the DGN capture the dominant structures of the objects within

the images. Furthermore, fine structures reflecting semantic aspects like faces, eyes, and texture

Fig 1. Deep image reconstruction. An overview of a deep image reconstruction is shown. The pixel values of the input

image are optimized so that the DNN features of the image are similar to those decoded from fMRI activity. A deep

generator network (DGN) is optionally combined with the DNN to produce natural-looking images, in which

optimization is performed at the input space of the DGN.

https://doi.org/10.1371/journal.pcbi.1006633.g001
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Fig 2. Seen natural image reconstructions. The black and gray surrounding frames indicate presented and reconstructed images respectively

(reconstructed from VC activity using DNN1–8). Reconstructed images obtained through the optimization processes are shown for seen natural

images. Reconstructions were constrained by the DGN.

https://doi.org/10.1371/journal.pcbi.1006633.g002

Fig 3. Effect of the deep generator network (DGN). (A) Reconstructions with and without the DGN. The first, second, and

third rows show presented images, and reconstructions with and without the DGN respectively (reconstructed from VC

activity, DNN1–8). (B) Reconstruction quality of seen natural images (three subjects pooled, N = 150; chance level, 50%).

https://doi.org/10.1371/journal.pcbi.1006633.g003
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patterns were also generated in several images. Our extensive analysis on each of the individual

subjects demonstrated replicable results across the subjects. Moreover, the same analysis on a

previously published dataset [10] also replicated qualitatively similar reconstructions to those

in the present study (S3 Fig).

To investigate the effect of the DGN, we evaluated the quality of reconstructions generated

both with and without using it (Fig 3A and 3B; see S4 Fig for individual subjects; see Material

and Methods: “Evaluation of reconstruction quality”). While the reconstructions obtained

without the DGN also successfully reproduced rough silhouettes of dominant objects, they did

not show semantically meaningful appearances (see S5 Fig for more examples; also see S6 Fig

for reconstructions from different initial states for both with and without the DGN). Evalua-

tions using pixel-wise spatial correlation and human judgment both showed almost compara-

ble accuracy for reconstructions with and without the DGN (accuracy of pixel-wise spatial

correlation, with and without the DGN, 76.1% and 79.7%; accuracy of human judgment, with

and without the DGN, 97.0% and 96.0%). However, reconstruction accuracy evaluated using

pixel-wise spatial correlation showed slightly higher accuracy with reconstructions performed

without the DGN than with the DGN (two-sided signed-rank test, P< 0.01), whereas the

opposite was observed for evaluations by human judgment (two-sided signed-rank test,

P< 0.01). These results suggest the utility of the DGN that enhances the perceptual similarity

of reconstructed images to target images by rendering semantically meaningful details in the

reconstructions.

To characterize the ‘deep’ nature of our method, the effectiveness of combining multiple

DNN layers was tested using both objective and subjective assessments [5, 17, 18]. For each of

the 50 test natural images, reconstructed images were generated with a variable number of

multiple layers (Fig 4A; DNN1 only, DNN1–2, DNN1–3, . . ., DNN1–8; see S7 Fig for more

examples). In the objective assessment, the pixel-wise spatial correlations to the original image

were compared between two combinations of DNN layers. In the subjective assessment, an

independent rater was presented with an original image and a pair of reconstructed images,

both from the same original image but generated with different combinations of multiple lay-

ers, and was required to indicate which of the reconstructed images looked more similar to the

original image. While the objective assessment showed higher winning percentages for the ear-

liest layer (DNN1) alone, the subjective assessment showed increasing winning percentages

for a larger number of DNN layers (Fig 4B). Our additional analysis showed poor reconstruc-

tion quality from individual layers especially from higher layers (see S8 Fig for reconstructions

from individual layers). These results suggest that combining multiple levels of visual features

enhanced the perceptual reconstruction quality even though the pixel-wise accuracy is lost.

Given the true DNN features, instead of decoded features, as the input, the reconstruction

algorithm produces almost complete reconstructions of original images (S8 Fig), indicating

that the DNN feature decoding accuracy would determine the quality of reconstructed images.

To further confirm this, we calculated the correlation between the feature decoding accuracy

and the reconstruction quality for individual images (S9 Fig). The analyses showed positive

correlations for both the objective and subjective assessments, suggesting that improving fea-

ture decoding accuracy could improve reconstruction quality.

We found that the luminance contrast of a reconstruction was often reversed (e.g., the

stained-glass images in Fig 2), presumably because of the lack of (absolute) luminance infor-

mation in the fMRI signals, even in the early visual areas [19]. Additional analyses revealed

that the feature values of filters with high luminance contrast in the earliest DNN layers

(conv1_1 in VGG19) were better decoded when they were converted to absolute values (Fig

5A and 5B), demonstrating a clear discrepancy between the fMRI and raw DNN signals. The

large improvement levels demonstrate the insensitivity of fMRI signals to pixel luminance,

Deep image reconstruction from human brain activity
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suggesting the linear-nonlinear discrepancy of DNN and fMRI responses to pixel luminance.

This discrepancy may explain the reversal of luminance observed in several reconstructed

images. While this may limit the potential for reconstructions from fMRI signals, the ambigu-

ity might be resolved by modelling DNNs to fill the gaps between signals of DNNs and fMRI.

Alternatively, further emphasis of the high-level visual information in hierarchical visual fea-

tures may help to resolve the ambiguity of luminance by incorporating information on seman-

tic context.

To confirm that our method was not restricted to the specific image domain used for the

model training, we tested whether it was possible to generalize the reconstruction to artificial

images. This was challenging, because both the DNN and our decoding models were solely

trained on natural images. The reconstructions of artificial shapes and alphabetical letters are

shown in Fig 6A and 6B (also see S10 Fig and S2 Movie for more examples of artificial shapes,

and see S11 Fig for more examples of alphabetical letters). The results show that artificial

shapes were successfully reconstructed with moderate accuracy (Fig 6C left; 70.5% by pixel-

wise spatial correlation, 91.0% by human judgment; see S12 Fig for individual subjects) and

alphabetical letters were also reconstructed with high accuracy (Fig 6C right; 95.6% by pixel-

wise spatial correlation, 99.6% by human judgment; see S13 Fig for individual subjects). These

results indicate that our model did indeed ‘reconstruct’ or ‘generate’ images from brain activ-

ity, and that it was not simply making matches to exemplars. Furthermore, the successful

reconstructions of alphabetical letters demonstrate that our method can expand the possible

states of visualizations, with advance in resolution over reconstructions performed in previous

studies [1, 20].

To assess how the shapes and colors of the stimulus images were reconstructed, we sepa-

rately evaluated the reconstruction quality of each of shape and color by comparing recon-

structed images of the same colors and shapes. Analyses with different visual areas showed

different trends in reconstruction quality for shapes and colors (Fig 7A and see S14 Fig for

more examples). Human judgment evaluations suggested that shapes were reconstructed bet-

ter from early visual areas, whereas colors were reconstructed better from the mid-level visual

area V4 (Fig 7B and see S15 Fig for individual subjects; ANOVA, interaction between task type

Fig 4. Effect of multi-level visual features. (A) Reconstructions using different combinations of DNN layers (without the DGN). The black and gray

surrounding frames indicate presented and reconstructed images respectively (reconstructed from VC activity). (B) Objective and subjective assessments of

reconstructions from different combinations of DNN layers (error bars, 95% confidence interval [C.I.] across samples, N = 50; see Material and Methods:

“Evaluation of reconstruction quality” for the procedure to calculate winning percentage).

https://doi.org/10.1371/journal.pcbi.1006633.g004
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[shape vs. color] and brain areas [V1 vs. V4], P< 0.01), although the interaction effect was

marginal when considering evaluations by pixel-wise spatial correlation (P = 0.06). These con-

trasting patterns further support the success of shape and color reconstructions and indicate

that our method can be a useful tool to characterize the information content encoded in the

activity patterns of individual brain areas by visualization.

Finally, to explore the possibility of visually reconstructing subjective content, we per-

formed an experiment in which participants were asked to produce mental imagery of natural

and artificial images shown prior to the task session. The reconstructions generated from

brain activity due to mental imagery are shown in Fig 8 (see S16 Fig and S3 Movie for more

examples). While the reconstruction quality varied across subjects and images, rudimentary

reconstructions were obtained for some of the artificial shapes (Fig 8A and 8B for high and

low accuracy images, respectively). In contrast, imagined natural images were not well recon-

structed, possibly because of the difficulty of imagining complex natural images (Fig 8C; see

S17 Fig for vividness scores of imagery). While the pixel-wise spatial correlation evaluations of

reconstructed artificial images did not show high accuracy (Fig 8D; 51.9%; see S18 Fig for indi-

vidual subjects), this may have been due to the possible disagreements in positions, colors and

luminance between target and reconstructed images. Meanwhile, the human judgment evalua-

tions showed accuracy higher than the chance level, suggesting that imagined artificial images

were recognizable from the reconstructed images (Fig 8D; 83.2%; one-sided signed-rank test,

P< 0.01; see S18 Fig for individual subjects). Furthermore, separate evaluations of color and

shape reconstructions of artificial images suggested that shape rather than color had a major

contribution to the high proportion of correct answers by human raters (Fig 8E; color, 64.8%;

Fig 5. DNN feature decoding accuracy of raw and absolute features. The analysis was performed with features from the conv1_1 layer of the

VGG19 model using the test natural image dataset (error bar, 95% C.I. across subjects). (A) Mean feature decoding accuracy of all units. (B)

Mean feature decoding accuracy for individual filters. The feature decoding accuracies of units within the same filters were individually

averaged. The filters were sorted according to the ascending order of the raw feature decoding accuracy averaged for individual filters.

https://doi.org/10.1371/journal.pcbi.1006633.g005
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shape, 87.0%; two-sided signed-rank test, P< 0.01; see S19 Fig for individual subjects). Addi-

tionally, poor but sufficiently recognizable reconstructions were obtained even from brain activ-

ity patterns in the primary visual area (V1; 63.8%; three subjects pooled; one-sided signed-rank

test, P< 0.01; see S20 Fig for reconstructed images and S21 Fig and S22 Fig for quantitative

evaluations), possibly supporting the notion that low-level visual features are encoded in early

visual cortical activity during mental imagery [21]. Taken together, these results provide evi-

dence for the feasibility of visualizing imagined content from brain activity patterns.

Discussion

We have presented a novel approach to reconstruct perceptual and mental content from

human brain activity combining visual features from the multiple layers of a DNN. We suc-

cessfully reconstructed viewed natural images, especially when combined with a DGN. The

results from the extensive analysis on each subject were replicated across different subjects.

Reconstruction of artificial shapes was also successful, even though the reconstruction models

used were trained only on natural images. The same method was also applied to mental imag-

ery, and revealed rudimentary reconstructions of mental content.

Our method is capable of reconstructing various types of images, including natural images,

colored artificial shapes, and alphabetical letters, even though each component of our recon-

struction model, the DNN models and the DNN feature decoders, was solely trained with nat-

ural images. The results strongly demonstrated that our method was certainly able to

‘reconstruct’ or ‘generate’ images from brain activity, differentiating our method from the pre-

vious attempts to visualize perceptual contents using the exemplar matching approach, which

suffers from restrictions derived from pre-selected image/movie sets [3, 4].

Fig 6. Seen artificial image reconstructions. The black and gray surrounding frames indicate presented and reconstructed images

respectively (VC activity, DNN 1–8, without the DGN). (A) Reconstructions for seen artificial shapes. (B) Reconstructions for seen

alphabetical letters. The reconstructed letters were arranged in the word: “NEURON”. (C) Reconstruction quality of artificial shapes and

alphabetical letters (three subjects pooled, N = 120 and 30 for artificial shapes and alphabetical letters, respectively; chance level, 50%).

https://doi.org/10.1371/journal.pcbi.1006633.g006
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We introduced the GAN-based constraint using the DGN for natural image reconstruc-

tions to enhance the naturalness of reconstructed images, rendering semantically meaningful

details to the reconstructions. A variant of the GAN-based approach has demonstrated the

utility in a previous face image reconstruction study, too [22]. GAN-derived feature space

appears to provide efficient constraints on resultant images to enhance the perceptual resem-

blance to the image set on which a GAN is trained.

While one of the strengths of the present method is its generalizability across image types,

there remains room for substantial improvements in reconstruction performance. Because we

used the models (DNNs and decoders) trained with natural ‘object’ images from the ImageNet

database [14], whose images contain objects around the center, it would not be optimal for the

reconstruction of other types of images. Furthermore, because we used the DNN model

trained to classify images into 1,000 object categories, the representations acquired in the

DNN would be specifically suited to the particular objects. One could train the models with

diverse types of images, such as scenes, textures, and artificial shapes, as well as object images,

to improve general reconstruction performance. If the target image type is known in prior,

one can use a specific set of images and a DNN model training task that are matched to it.

Other DNN models with different architectures could also be used to improve general

reconstruction performance. As the reconstruction quality is positively correlated with the fea-

ture decoding accuracy (S9 Fig), DNNs with highly decodable units are likely to improve

reconstructions. Recent studies evaluated different types of DNNs in term of the prediction

accuracy of brain activity given their feature values (or the encoding accuracy) [23–25].

Although it remains to be seen how closely the encoding and decoding accuracies are linked, it

is expected that more ‘brain-like’ DNN models would yield high-quality reconstructions.

Fig 7. Reconstructions of shape and color from multiple visual areas. (A) Reconstructions of artificial shapes from

multiple visual areas (DNN 1–8, without the DGN). The black and gray surrounding frames indicate presented and

reconstructed images respectively. (B) Reconstruction quality of shape and color for different visual areas (three

subjects pooled, N = 120; chance level, 50%).

https://doi.org/10.1371/journal.pcbi.1006633.g007
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Our approach provides a unique window into our internal world by translating brain

activity into images via hierarchical visual features. Our method can also be extended to

decode mental contents other than visual perception and imagery. By choosing an appro-

priate DNN architecture with substantial homology with neural representations, brain-

decoded DNN features could be rendered into movies, sounds, text, or other forms of sen-

sory/mental representations. The externalization of mental contents by this approach

might prove useful in communicating our internal world via brain–machine/computer

interfaces.

Materials and methods

Ethics statement

All subjects provided written informed consent for participation in our experiments, in accor-

dance with the Declaration of Helsinki, and the study protocol was approved by the Ethics

Committee of ATR.

Subjects

Three healthy subjects with normal or corrected-to-normal vision participated in our experi-

ments: Subject 1 (male, age 33), Subject 2 (male, age 23) and Subject 3 (female, age 23). This

sample size was chosen on the basis of previous fMRI studies with similar experimental designs

[1, 10].

Fig 8. Imagery reconstructions. The black and gray surrounding frames indicate presented and reconstructed images respectively (VC activity,

DNN 1–8, without the DGN). (A) Reconstructions for imagined artificial shapes through optimization processes. Reconstructed images obtained

through the optimization processes are shown for images with high human judgment accuracy. (B) Reconstructions of imagined artificial shapes

with low human judgment accuracy. (C) Reconstructions for imagined natural images. (D) Reconstruction quality of imagined artificial shapes

(three subjects pooled, N = 45; chance level, 50%). (E) Reconstruction quality of imagined artificial shapes separately evaluated for color and shape

by human judgment (three subjects pooled, N = 45; chance level, 50%).

https://doi.org/10.1371/journal.pcbi.1006633.g008
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Visual stimuli

Visual stimuli consisted of natural images, artificial shapes, and alphabetical letters. The natu-

ral images were identical to those used in Horikawa & Kamitani (2017) [10], which were origi-

nally collected from the online image database ImageNet (2011, fall release) [14]. The images

were cropped to the center and resized to 500 × 500 pixels. The artificial shapes consisted of a

total of 40 combinations of 5 shapes and 8 colors (red, green, blue, cyan, magenta, yellow,

white, and black), in which the shapes were identical to those used in Miyawaki et al. (2008)

[1] and the luminance was matched across colors except for white and black. The alphabetical

letter images consisted of the 10 black letters, A, C, E, I, N, O, R, S, T, and U.

Experimental design

We conducted two types of experiments: image presentation experiments and a mental imag-

ery experiment. The image presentation experiments consisted of four distinct session types,

in which different variants of visual images were presented (training natural images, test natu-

ral images, artificial shapes, and alphabetical letters). All visual stimuli were rear-projected

onto a screen in the fMRI scanner bore using a luminance-calibrated liquid crystal display pro-

jector. To minimize head movements during fMRI scanning, subjects were required to fix

their heads using a custom-molded bite-bar individually made for each subject. Data from

each subject were collected over multiple scanning sessions spanning approximately 10

months. On each experimental day, one consecutive session was conducted for a maximum of

2 hours. Subjects were given adequate time for rest between runs (every 5–8 min) and were

allowed to take a break or stop the experiment at any time.

Image presentation experiment

The image presentation experiments consisted of four distinct types of sessions: training natu-

ral-image sessions, test natural-image sessions, artificial-shape sessions, and alphabetical-letter

sessions. Each session consisted of 24, 24, 20, and 12 separate runs, respectively. For these four

sessions, each run comprised 55, 55, 44, and 11 stimulus blocks, respectively, with these con-

sisting of 50, 50, 40, and 10 blocks with different images, and 5, 5, 4, and 1 randomly inter-

spersed repetition blocks where the same image as in the previous block was presented (7 min

58 s for the training and test natural-image sessions, 6 min 30 s for the artificial-shape sessions,

and 5 min 2 s for the alphabetical-letter sessions, for each run). Each stimulus block was 8 s

(training natural-images, test natural-images, and artificial-shapes) or 12 s (alphabetical-let-

ters) long, and was followed by a 12-s rest period for the alphabetical-letters, while no rest

period was used for the training natural-images, test natural-images, and artificial-shapes.

Images were presented at the center of the display with a central fixation spot and were flashed

at 2 Hz (12 × 12 and 0.3 × 0.3 degrees of visual angle for the visual images and fixation spot

respectively). The color of the fixation spot changed from white to red for 0.5 s before each

stimulus block began, to indicate the onset of the block. Additional 32- and 6-s rest periods

were added to the beginning and end of each run respectively. Subjects were requested to

maintain steady fixation throughout each run and performed a one-back repetition detection

task on the images, responding with a button press for each repeated image, to ensure they

maintained their attention on the presented images (mean task performance across three sub-

jects: sensitivity 0.9820; specificity 0.9995; pooled across sessions). In one set of training natu-

ral-image session, a total of 1,200 images were presented only once. This set of training

natural-image session was repeated five times (1,200 × 5 = 6,000 samples for training). In the

test natural-image, artificial-shape, and alphabetical-letter sessions, 50, 40, and 10 images were
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presented 24, 20, and 12 times each respectively. The presentation order of the images was ran-

domized across runs.

Mental imagery experiment

In the mental imagery experiment, subjects were required to visually imagine (recall) one of 25

images selected from those presented in the test natural image and artificial shape sessions of

the image presentation experiment (10 natural images and 15 artificial images). Prior to the

experiment, subjects were asked to relate words to visual images, so that they could recall the

visual images from word cues. The imagery experiment consisted of 20 separate runs, with

each run containing 26 blocks (7 min 34 s for each run). The 26 blocks consisted of 25 imagery

trials and a fixation trial, in which subjects were required to maintained a steady fixation with-

out any imagery. Each imagery block consisted of a 4-s cue period, an 8-s mental imagery

period, a 3-s evaluation period, and a 1-s rest period. Additional 32- and 6-s rest periods were

added to the beginning and end of each run respectively. During the rest periods, a white fixa-

tion spot was presented at the center of the display. At 0.8 s before each cue period, the color of

the fixation spot changed from white to red for 0.5 s, to indicate the onset of the blocks. During

the cue period, words specifying the visual images to be imagined were visually presented

around the center of the display (1 target and 25 distractors). The position of each word was

randomly changed across blocks to avoid cue-specific effects contaminating the fMRI response

during mental imagery periods. The word corresponding to the image to be imagined was pre-

sented in red (target) and the other words were presented in black (distractors). Subjects were

required to start imagining a target image immediately after the cue words disappeared. The

imagery period was followed by a 3-s evaluation period, in which the word corresponding to

the target image and a scale bar was presented, to allow the subjects to evaluate the correctness

and vividness of their mental imagery on a five-point scale (very vivid, fairly vivid, rather vivid,

not vivid, cannot correctly recognize the target). This was performed by pressing the left and

right buttons of a button box placed in their right hand, to change the score from its random

initial setting. As an aid for remembering the associations between words and images, the sub-

jects were able to use control buttons to view the word and visual image pairs during every

inter-run-rest period.

MRI acquisition

fMRI data were collected using a 3.0-Tesla Siemens MAGNETOM Verio scanner located at

the Kokoro Research Center, Kyoto University. An interleaved T2�-weighted gradient-echo

echo planar imaging (EPI) scan was performed to acquire functional images covering the

entire brain (TR, 2000 ms; TE, 43 ms; flip angle, 80 deg; FOV, 192 × 192 mm; voxel size, 2 × 2

× 2 mm; slice gap, 0 mm; number of slices, 76; multiband factor, 4). High-resolution anatomi-

cal images of the same slices obtained for the EPI were acquired using a T2-weighted turbo

spin echo sequence (TR, 11000 ms; TE, 59 ms; flip angle, 160 deg; FOV, 192 × 192 mm; voxel

size, 0.75 × 0.75 × 2.0 mm). T1-weighted magnetization-prepared rapid acquisition gradient-

echo (MP-RAGE) fine-structural images of the entire head were also acquired (TR, 2250 ms;

TE, 3.06 ms; TI, 900 ms; flip angle, 9 deg, FOV, 256 × 256 mm; voxel size, 1.0 × 1.0 × 1.0 mm).

MRI data preprocessing

The first 8 s of scans from each run were discarded to avoid MRI scanner instability effects.

We then used SPM (http://www.fil.ion.ucl.ac.uk/spm) to perform three-dimensional motion

correction on the fMRI data. The motion-corrected data were then coregistered to the within-

session high-resolution anatomical images with the same slices as the EPI, and then
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subsequently to the whole-head high-resolution anatomical images. The coregistered data

were then re-interpolated to 2 × 2 × 2 mm voxels.

Data samples were created by first regressing out nuisance parameters from each voxel

amplitude for each run, including any linear trend and the temporal components proportional

to the six motion parameters calculated during the motion correction procedure. After that,

voxel amplitudes were normalized relative to the mean amplitude of the initial 24-s rest period

of each run and were despiked to reduce extreme values (beyond ± 3 SD for each run). The

voxel amplitudes were then averaged within each 8-s (training natural image-sessions) or 12-s

(test natural-image, artificial-shape, and alphabetical-letter sessions) stimulus block (four or

six volumes), and within the 16-s mental imagery block (eight volumes, mental imagery exper-

iment), after shifting the data by 4 s (two volumes) to compensate for hemodynamic delays.

Regions of interest (ROI)

V1, V2, V3, and V4 were delineated following the standard retinotopy experiment [26, 27].

The lateral occipital complex (LOC), fusiform face area (FFA), and parahippocampal place

area (PPA) were identified using conventional functional localizers [28–30] (See S1 Supporting

Information for details). A contiguous region covering the LOC, FFA, and PPA was manually

delineated on the flattened cortical surfaces, and the region was defined as the higher visual

cortex (HVC). Voxels overlapping with V1–V3 were excluded from the HVC. Voxels from

V1–V4 and the HVC were combined to define the visual cortex (VC). In the regression analy-

sis, voxels showing the highest correlation coefficient with the target variable in the training

image session were selected to decode each feature (with a maximum of 500 voxels).

Deep neural network features

We used the Caffe implementation of the VGG19 deep neural network (DNN) model [13],

which was pre-trained with images in ImageNet [14] to classify 1,000 object categories (the pre-

trained model is available from https://github.com/BVLC/caffe/wiki/Model-Zoo). The VGG19

model consisted of a total of sixteen convolutional layers and three fully connected layers. To

compute outputs by the VGG19 model, all visual images were resized to 224 × 224 pixels and

provided to the model. The outputs from the units in each of the 19 layers (immediately after

convolutional or fully connected layers, before rectification) were treated as a vector in the fol-

lowing decoding and reconstruction analysis. The number of units in each of the19 layers is the

following: conv1_1 and conv1_2, 3211264; conv2_1 and conv2_2, 1605632; conv3_1, conv3_2,

conv3_3, and conv3_4, 802816; conv4_1, conv4_2, conv4_3, and conv4_4, 401408; conv5_1,

conv5_2, conv5_3, and conv5_4, 100352; fc6 and fc7, 4096; and fc8, 1000. In this study, we

named five groups of convolutional layers as DNN1–5 (DNN1: conv1_1, and conv1_2; DNN2:

conv2_1, and conv2_2; DNN3: conv3_1, conv3_2, conv3_3, and conv3_4; DNN4: conv4_1,

conv4_2, conv4_3, and conv4_4; and DNN5: conv5_1, conv5_2, conv5_3, and conv5_4), and

three fully-connected layers as DNN6–8 (DNN6: fc6; DNN7: fc7; and DNN8: fc8). We used the

original pre-trained VGG19 model to compute the feature unit activities, but for analyses with

fMRI data from the mental imagery experiment, we changed the DNN model so that the max

pooling layers were replaced by average pooling layers, and the ReLU activation function was

replaced by a leaky ReLU activation function with a negative slope of 0.2 (see Simonyan & Zis-

serman (2015) [13] for the details of the original DNN architecture).

DNN feature decoding analysis

We used a set of linear regression models to construct multivoxel decoders to decode the

DNN feature vector of a seen image from the fMRI activity patterns obtained in the training
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natural-image sessions (training dataset). In this study, we used the sparse linear regression

algorithm (SLR) [31], which can automatically select important voxels for decoding by intro-

ducing sparsity into a weight estimation through Bayesian estimation of parameters with the

automatic relevance determination (ARD) prior (see Horikawa & Kamitani (2017) [10] for a

detailed description). The training dataset was used to train the decoders to decode the values

of individual units in the feature vectors of all DNN layers (one decoder for one DNN feature

unit), and the trained decoders were then applied to the test datasets. For details of the general

procedure of feature decoding, see Horikawa & Kamitani (2017) [10].

For the test datasets, fMRI samples corresponding to the same stimulus or mental imagery

were averaged across trials to increase the signal-to-noise ratio of the fMRI signals. To com-

pensate for possible differences in the signal-to-noise ratio between training and test samples,

the decoded features of individual DNN layers were normalized by multiplying them by a sin-

gle scalar, so that the norm of the decoded vectors of individual DNN layers matched with the

mean norm of the true DNN feature vectors computed from independent 10,000 natural

images. This norm-corrected vector was then subsequently provided to the reconstruction

algorithm (See Supporting Information for details of the norm-correction procedure).

Reconstruction from a single DNN layer

Given a DNN feature vector decoded from brain activity, an image was generated by solving

the following optimization problem [11].

v� ¼ argmin
v

1

2

XIl

i¼1

ðϕðlÞi ðvÞ � y
ðlÞ
i Þ

2
ð1Þ

¼ argmin
v

1

2
‖ΦðlÞðvÞ � yðlÞ‖2

2
ð2Þ

where v 2 R224�224�3 is a vector whose elements are pixel values of an image (224 × 224 × 3 cor-

responds to height × width × RGB color channel), and v� is the reconstructed image. ϕðlÞi :

R224�224�3
! R is the feature extraction function of the i-th DNN feature in the l-th layer, with

ϕðlÞi ðvÞ being the output value from the i-th DNN unit in the l-th layer for the image v. Il is the

number of units in the l-th layer, and yðlÞi is the value decoded from brain activity for the i-th

feature in the l-th layer. For simplicity, the same cost function was rewritten with a vector

function in the second line. ΦðlÞ : R224�224�3
! RIl is the function whose i-th element is ϕðlÞi

and yðlÞ 2 RIl is the vector whose i-th element is yðlÞi .

The above cost function was minimized by either a limited-memory BFGS algorithm

(L-BFGS) [32–34] or by a gradient descent with momentum algorithm [35], with L-BFGS

being used unless otherwise stated. The obtained solution was taken to be the image recon-

structed from the brain activity (see Supporting Information for details of optimization

methods).

Reconstruction from multiple DNN layers

To combine the DNN features from multiple layers, we took a weighted sum of the cost func-

tions for individual DNN layers, given by

v� ¼ argmin
v

1

2

X

l2L

bl‖Φ
ðlÞðvÞ � yðlÞ‖2

2
ð3Þ
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where L is a set of DNN layers and βl is a parameter that determines the contribution of the l-
th layer. We set βl to 1=‖yðlÞ‖2

2
to balance the contributions of individual DNN layers. This cost

function was minimized by the L-BFGS algorithm. The DNN layers included in L were com-

bined. In the main analyses, we combined all convolutional (DNN1–5) and fully connected

layers (DNN6–8), unless otherwise stated.

Natural image prior

To improve the ‘naturalness’ of reconstructed images, we modified the reconstruction algo-

rithm by introducing a constraint. To constrain the resulting images from all possible pixel

contrast patterns, we reduced the degrees of freedom by introducing a generator network

derived using the generative adversarial network algorithm (GAN) [15], which has recently

been shown to have good performance in capturing a latent space explaining natural images

[16]. In the GAN framework, a set of two neural networks, which are called a generator and a

discriminator, are trained. The generator is a function to map from a latent space to the data

space (i.e. pixel space), and the discriminator is a classifier that predicts whether a given image

is a sample from real natural images or an output from the generator. The discriminator is

trained to increase its predictive power, while the generator is trained to decrease it. We con-

sidered constraining our reconstructed images to be in the subspace consisting of the images

that could be produced by a generator trained to produce natural images [12, 36]. This is

expressed by

z� ¼ argmin
z

1

2

X

l2L

bl‖Φ
ðlÞðGðzÞÞ � yðlÞ‖2

2
ð4Þ

and

v� ¼ Gðz�Þ: ð5Þ

G is the generator, as the mapping function from the latent space to the image space, which we

have called a deep generator network (DGN). In our reconstruction analysis, we used a pre-

trained DGN which was provided by Dosovitskiy & Brox (2016; available from https://github.

com/dosovits/caffe-fr-chairs; trained model for fc7) [36].

The above cost function for the reconstruction with respect to z was minimized by gradient

descent with momentum. We used the zero vector as the initial value. To keep z within a mod-

erate range, we restricted the range of each element of z following the method of a previous

study [36].

Evaluation of reconstruction quality

Reconstruction quality was evaluated by either objective or subjective assessment [5, 17, 18].

For the objective assessment, we performed a pairwise similarity comparison analysis, in

which a reconstructed image was compared with two candidate images (its original image and

a randomly selected image), to test whether its pixel-wise spatial correlation coefficient (Pear-

son correlation between vectorized pixel values) with the original image was higher than that

for a randomly selected image. For the subjective assessment, we conducted a behavioral

experiment with a group of 13 raters (5 females and 8 males, aged between 19 and 37 years).

On each trial of the experiment, the raters viewed a display presenting a reconstructed image

(at the bottom) and two candidate images (displayed at the top; the original image and a ran-

domly selected image), and were asked to select the candidate image most similar to the recon-

structed one presented at the bottom. Each trial continued until the raters made a response.
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For both types of assessments, the proportion of trials, in which the original image was selected

as more similar was calculated as a quality measure. In both objective and subjective assess-

ments, each reconstructed image was tested with all pairs of the images from the same types of

images (natural-images, artificial-shapes, and alphabetical-letters for images from the image

presentation sessions, and natural-images and artificial-shapes for images from the mental

imagery session; e.g., for the test natural-images, one of the 50 reconstructions was tested with

49 pairs, with each one consisting of one original image and another image from the rest of 49,

resulting in 50 × 49 = 2,450 comparisons). The quality of an individual reconstructed image

was evaluated by the percentage of correct answers that was calculated as the proportion of

correct trials among all trials where the reconstructed image was tested (i.e., a total of 49 trials

for each one of the test natural-images). The resultant percentages of correct answers were

then used for the following statistical tests.

To compare the reconstruction quality across different combinations of DNN layers, we

also used objective and subjective assessments. For the subjective assessment, we conducted

another behavioral experiment with another group of 7 raters (2 females and 5 males, aged

between 20 and 37 years). On each trial of the experiment, the raters viewed a display present-

ing one original image (at the top) and two reconstructed images of the same original image

(at the bottom) obtained from different combinations of the DNN layers, and were asked to

judge which of the two reconstructed images was better. This pairwise comparison was con-

ducted for all pairs of the combinations of DNN layers (28 pairs), and for all stimulus images

presented in the test natural-image session (50 samples). Each trial continued until the raters

made a response. We calculated the proportion of trials, in which the reconstructed image

obtained from a specific combination of DNN layers was judged as the better one, and then

this value was treated as the winning percentage of this combination of DNN layers. For the

objective assessment, the same pairwise comparison was conducted using pixel-wise spatial

correlations, in which pixel-wise spatial correlations to the original image were compared

between two combinations of DNN layers to judge the better combination of DNN layers. The

results obtained from all test samples (50 samples from the test natural-image dataset) were

used to calculate the winning percentage of each combination of DNN layers in the same man-

ner with the subjective assessment.

These assessments were performed individually for each set of reconstructions from the dif-

ferent subjects and datasets (e.g., test natural-images from Subject 1). For the subjective assess-

ments, one set of reconstructed images was tested with at least three raters. The evaluation

results from different raters were averaged within the same set of reconstructions and were

treated in the same manner as the evaluation results from the objective assessment.

Statistics

We used two-sided signed-rank tests to examine differences in assessed reconstruction quality

according to the different conditions (N = 150, 120, and 45 for the test-natural images, artificial

shapes, and imagery images, respectively) and used ANOVA to examine interaction effects

between task types and brain areas for artificial shapes (F (1,1) = 28.40 by human judgment; F
(1,1) = 3.53 by pixel-wise spatial correlation). We used one-sided signed-rank tests to examine

the significance of correct classification accuracy by the human judgment for evaluations of

the imagery image reconstructions (N = 45).

Supporting information

S1 Supporting Information. Supplementary materials and methods.

(PDF)
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S1 Fig. DNN feature decoding accuracy. DNN feature decoding accuracy obtained from VC

activity was evaluated by the correlation coefficient between the true and decoded feature val-

ues of each feature unit following the procedure in Horikawa & Kamitani (2017) [10]. The

evaluation was individually performed for each of the three types of seen images (natural

images, artificial shapes, and alphabetical letters) and each of the two types imagery images

(natural images and artificial shapes). Correlation coefficients were averaged across units in

each DNN layer. The mean correlation coefficients are shown for each types of layers (error

bars, 95% confidence interval [C.I.] across units; N of each layer equals to the number of units

in each layer; see Material and Methods: “Deep neural network features” for details).

(PDF)

S2 Fig. Examples of natural image reconstructions obtained with the DGN. The black and

gray surrounding frames indicate presented and reconstructed images respectively (VC activ-

ity, DNN 1–8, with the DGN). The three columns of reconstructed images correspond to

reconstructions from three subjects. For copyright reasons, we present only a subset of the 50

test natural images; those for which the copyright holders gave us permission to use.

(PDF)

S3 Fig. Reconstructions from the generic object decoding dataset. The same reconstruction

analysis was performed with a previously published dataset [10] (VC activity, DNN 1–8, with

the DGN). See Horikawa & Kamitani (2017) [10] for details of the data. The black and gray

surrounding frames indicate presented and reconstructed images respectively. The five col-

umns of reconstructed images correspond to reconstructions from five subjects.

(PDF)

S4 Fig. Reconstruction quality of seen natural images for individual subjects. Evaluations

on individual subjects’ results are separately shown (VC activity; DNN1–8; N = 50; chance

level, 50%; cf., Fig 3B), indicating that overall tendency was almost consistent across different

subjects, except that the human judgment accuracy of reconstructions from Subject 3 showed

slightly higher accuracy without the DGN than that with the DGN. Evaluations of reconstruc-

tions using pixel-wise spatial correlation for Subject 1–3 showed 78.4%, 74.2%, and 75.7% with

the DGN, and 80.4%, 77.2%, and 81.3% without the DGN, respectively. Evaluations of recon-

structions using human judgment for Subject 1–3 showed 98.5%, 97.3%, and 95.3% with the

DGN, and 96.6%, 94.7%, and 96.7% without the DGN, respectively.

(PDF)

S5 Fig. Other examples of natural image reconstructions obtained without the DGN. The

black and gray surrounding frames indicate presented and reconstructed images respectively

(VC activity, DNN 1–8, without the DGN). The three columns of reconstructed images corre-

spond to reconstructions from three subjects.

(PDF)

S6 Fig. Reconstructions from different initial states. The black and gray surrounding frames

indicate presented and reconstructed images respectively (VC activity, DNN 1–8). We used

different initial states for reconstructions with and without the DGN. For reconstructions with

the DGN, we additionally performed the reconstruction analysis using a Gaussian-random-

value vector (mean = 0, standard deviation = 1) as the initial state as well as the zero-value vec-

tor (main analysis; e.g., Fig 2). For reconstructions without the DGN, we also performed

reconstructions from a uniform-random-value image (ranged between 0 and 255) and the

zero-value image in addition to the spatially uniform image with the mean RGB values of
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natural images (main analysis; e.g., Fig 3). For comparison, reconstructed images from differ-

ent initial states are compared within the same subjects. The results showed slightly different

but almost equivalent images from different initial states, demonstrating the stability of our

reconstructions.

(PDF)

S7 Fig. Other examples of reconstructions with a variable number of multiple DNN layers.

The black and gray surrounding frames indicate presented and reconstructed images respec-

tively (VC activity, without the DGN).

(PDF)

S8 Fig. Examples of reconstructions from individual DNN layers. The black and gray sur-

rounding frames indicate presented and reconstructed images respectively (without the

DGN). We used DNN features from individual layers (DNN1, DNN2, . . ., or DNN8) as well as

the combination of all DNN layers (DNN1–8) for the reconstruction analysis, in which either

of true or decoded features (VC activity) were provided to the reconstruction algorithm.

While reconstructions from individual layers, especially from higher layers, showed poorer

reconstruction quality even from true features, combining multiple layers produced almost

complete reconstructions of original images from true features and good reconstructions from

decoded features (cf., Fig 4 and S7 Fig).

(PDF)

S9 Fig. Correlations between feature decoding accuracy and reconstruction quality. To

investigate the relations between feature decoding accuracy and reconstruction quality, we

first evaluated feature decoding accuracies for individual samples instead of those for individ-

ual DNN units (cf., S1 Fig; see Materials and Methods: “Evaluation of reconstruction quality”

for how to evaluate the reconstruction quality for individual samples). To evaluate the feature

decoding accuracy for each sample, Pearson’s correlation coefficients were caluculated

between the decoded and true feature values for a single stimulus image using all units within

each layer. To avoid estimating spuriously high correlations due to baseline and scale differ-

ences across units, feature values of each unit of the test data (test natural-image) were z-nor-

malized using means and standard deviations estimated from the training data (training

natural-image) before calculating correlations. Using the estimated feature decoding accuracy

and reconstruction quality for individual samples (N = 50), Pearson’s correlation coefficients

were further calculated between the reconstruction quality (VC activity; with or without the

DGN, DNN1–8) and the feature decoding accuracy from individual layers or mean accuracy

averaged across 19 layers. While the correlations varied across layers and subjects, the results

on average showed positive correlations between the feature decoding accuracy and the recon-

struction quality for all combinations of the assessments and the reconstruction algorithms,

suggesting that higher decoding accuracy would lead to better reconstruction quality. Interest-

ingly, the analysis showed distinct correlation patterns across layers between the two assess-

ment types, showing that high correlaions were specifically observed from early layers with the

pixel-wise spatial correlations although moderately high correlations were observed rather

evenly from most layers with the human judgment. These results may reflect the different

characteristics of the two assessments, indicating that the pixel-wise correlation is suited to

evaluate accuracy in low-level features whereas the human judgment is capable of evaluating

accuracy in multiple-levels of visual features.

(PDF)

S10 Fig. All examples of artificial shape reconstructions. The black and gray surrounding

frames indicate presented and reconstructed images respectively (VC activity, DNN 1–8,
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without the DGN). The three rows of reconstructed images correspond to reconstructions

from three subjects.

(PDF)

S11 Fig. All examples of alphabetical letter reconstructions. The black and gray surrounding

frames indicate presented and reconstructed images respectively (VC activity, DNN 1–8, with-

out the DGN). The three rows of reconstructed images correspond to reconstructions from

three subjects.

(PDF)

S12 Fig. Reconstruction quality of artificial shapes for individual subjects. Evaluations on indi-

vidual subjects’ results are separately shown (VC activity; DNN1–8; without the DGN; N = 40;

chance level, 50%; cf., Fig 6C left). Evaluations of reconstructions using pixel-wise spatial correla-

tion showed 69.6%, 72.1%, and 69.8% for Subject 1–3, respectively. Evaluations of reconstructions

using human judgment showed 91.7%, 91.3%, and 90.1% for Subject 1–3, respectively.

(PDF)

S13 Fig. Reconstruction quality of alphabetical letters for individual subjects. Evaluations

on individual subjects’ results are separately shown (VC activity; DNN1–8; without the DGN;

N = 10; chance level, 50%; cf., Fig 6C right). Evaluations of reconstructions using pixel-wise

spatial correlation showed 98.9%, 87.8%, and 100.0% for Subject 1–3, respectively. Evaluations

of reconstructions using human judgment showed 100.0%, 98.9%, and 100.0% for Subject 1–3,

respectively.

(PDF)

S14 Fig. All examples of artificial shape reconstructions obtained from different visual

areas (Subject 1). The black and gray surrounding frames indicate presented and recon-

structed images respectively (DNN 1–8, without the DGN).

(PDF)

S15 Fig. Reconstruction quality of shape and color for different visual areas for individual

subjects. Evaluations on individual subjects’ results are separately shown (DNN1–8; without

the DGN; N = 40; chance level, 50%; cf., Fig 7B). Evaluations by pixel-wise correlations and

human judgment both showed almost consistent tendency across different subjects, showing

that shapes were reconstructed better from early visual areas, whereas colors were recon-

structed better from relatively higher visual areas.

(PDF)

S16 Fig. Other examples of imagery image reconstructions. The black and gray surrounding

frames indicate presented and reconstructed images respectively (VC activity, DNN 1–8, with-

out the DGN). The three rows of reconstructed images correspond to reconstructions from

three subjects. The rightmost images in the bottom row show reconstructions during mainte-

nance of fixation without imagery.

(PDF)

S17 Fig. Vividness scores for imagery images reported by subjects. Vividness scores

reported during the imagery experiment are shown in descending order of mean vividness

scores across trials for individual images. For each subject, the vividness scores were averaged

across trials for the same imagery images (N = 20). For the pooled results, to eliminate baseline

and variability differences across subjects, the vividness scores obtained from individual sub-

jects were first converted to z-scores within each subject, and then averaged across all trials

from three subjects (N = 60). The rightmost two bars indicated as “artificial” and “natural”
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show mean vividness scores separately pooled for artificial shapes (15 artificial shapes) and

natural images (10 natural images). Error bars indicate 95% confidence intervals across trials.

(PDF)

S18 Fig. Reconstruction quality of imagined artificial shapes for individual subjects. Evalua-

tions on individual subjects’ results are separately shown (VC activity; DNN 1–8; without the

DGN; N = 15; chance level, 50%; cf., Fig 8D). Evaluations of reconstructions using pixel-wise spatial

correlation showed 49.5%, 52.4%, and 53.8% for Subject 1–3, respectively. Evaluations of recon-

structions using human judgment showed 85.6%, 84.4%, and 79.5% for Subject 1–3, respectively.

(PDF)

S19 Fig. Reconstruction quality of imagined artificial shapes for individual subjects sepa-

rately evaluated for color and shape by human judgment. Evaluations on individual sub-

jects’ results are separately shown (VC activity; DNN 1–8; without the DGN; N = 15; chance

level, 50%; cf., Fig 8E). Evaluations of reconstructions with respect to color showed 71.1%,

56.7%, and 66.7% for Subject 1–3, respectively. Evaluations of reconstructions with respect to

shape showed 91.1%, 88.9%, and 81.1% for Subject 1–3, respectively.

(PDF)

S20 Fig. Imagery image reconstructions from V1. The black and gray surrounding frames

indicate presented and reconstructed images respectively (V1 activity, DNN 1–8, without the

DGN). The three rows of reconstructed images correspond to reconstructions from three sub-

jects. The rightmost images in the bottom row show reconstructions during maintenance of

fixation without imagery.

(PDF)

S21 Fig. Reconstruction quality of imagined artificial shapes (reconstructed from V1).

Evaluations on individual subjects’ results and their pooled result are separately shown (V1

activity; DNN 1–8; without the DGN; N = 15 for individual subjects and N = 45 for the pooled

result; chance level, 50%; cf., Fig 8D). Evaluations of reconstructions using pixel-wise spatial

correlation showed 48.2%, 51.3%, 48.4%, and 48.8% for Subject 1–3 and the pooled result,

respectively. Evaluations of reconstructions using human judgment showed 57.7%, 73.5%,

60.1%, and 63.8% for Subject 1–3 and the pooled result, respectively.

(PDF)

S22 Fig. Reconstruction quality of imagined artificial shapes separately evaluated for color

and shape by human judgment (reconstructed from V1). Evaluations on individual subjects’

results and their pooled result are separately shown (V1 activity; DNN 1–8; without the DGN;

N = 15 for individual subjects and N = 45 for the pooled result; chance level, 50%; cf., Fig 8E).

Evaluations of reconstructions with respect to color showed 60.0%, 56.7%, 55.6%, and 57.4%

for Subject 1–3 and the pooled result, respectively. Evaluations of reconstructions with respect

to shape showed 63.9%, 77.8%, 63.3%, and 68.3% for Subject 1–3 and the pooled result, respec-

tively. As shown with the reconstructed images from VC (cf., Fig 8E), separate evaluations of

color and shape reconstructions of artificial images from V1 also showed that shape rather

than color had a major contribution to the high proportion of correct answers by human raters

(three subjects pooled; two-sided signed-rank test, P< 0.05).

(PDF)

S1 Movie. Deep image reconstruction: Natural images. The iterative optimization process is

shown (left, presented images; right, reconstructed images).

(MOV)
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S2 Movie. Deep image reconstruction: Artificial shapes. The iterative optimization process

is shown (left, presented images; right, reconstructed images).

(MOV)

S3 Movie. Deep image reconstruction: Imagery images. The iterative optimization process is

shown (left, imagined images; right, reconstructed images).

(MOV)
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