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Abstract: Advanced glycation end-products (AGEs) contribute to vascular complications and organ
damage in diabetes. The unique AGE epitope (AGE10) has recently been identified in human
serum using synthetic melibiose-derived AGE (MAGE). We aimed at developing ELISA for AGE10
quantification, determining whether AGE10 is present in diabetic patients (n = 82), and evaluating its
association with diabetic complications. In a competitive ELISA developed, the reaction of synthetic
MAGE with anti-MAGE was inhibited by physiological AGE10 present in serum. In this assay,
new murine IgE anti-MAGE monoclonal antibodies, which do not recognize conventional AGEs, a
synthetic MAGE used to coat the plate, and LMW-MAGE (low molecular mass MAGE) necessary to
plot a standard curve were used. AGE10 was significantly higher in patients with microangiopathy,
in whom it depended on treatment, being lower in patients treated with aspirin. AGE10 levels
were positively correlated with estimated glomerular filtration rate (eGFR) and negatively with
creatinine. As a marker of stage ≥3 chronic kidney disease or microangiopathy, AGE10 displayed
moderate overall accuracy (respectively, 69% and 71%) and good sensitivity (82.6% and 83.3%) but
poor specificity (58.1% and 57.8%). In conclusion, newly developed immunoassay allows for AGE10
quantification. AGE10 elevation is associated with microangiopathy while its decrease accompanies
stage ≥3 chronic kidney disease.

Keywords: advanced glycation end-products; diabetes; microangiopathy; glomerular filtration

1. Introduction

Biochemical pathways contributing to diabetes-related damage of organs and blood
vessels are being intensively investigated and the relevance of protein glycation is well
recognized now. Glycation is a physiological process involved in aging, which, however,
accelerates substantially in metabolic disorders [1,2]. The important role of protein glyca-
tion in conditions associated with hyperglycemia has been emphasized for many years.
Most of advanced glycation end-products (AGE) are formed during the non-enzymatic
Maillard reaction [3], wherein, Schiff base is formed in the initial stages. Then, it is con-
verted into Amadori product which, in a cascade of various reactions, ultimately leads to
the AGE formation. Glycation occurs between the reducing sugars or low molecular mass
aldehydes (e.g., α-oxoaldehydes, hydroxyaldehydes) and the basic groups of proteins,
lipids or nucleic acids, yielding compounds varying in structure and stability [4].

Long-lived proteins such as plasminogen activator inhibitor (PAI)-1, fibrinogen or al-
bumin and extracellular matrix (ECM) proteins are particularly susceptible to glycation and
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subsequent formation of AGE [5,6]. In turn, glycation of proteins with short half-lives leads
to the formation of Amadori products such as HbA1c in case of hemoglobin. Glycation
impairs protein function to varying degrees. Moreover, modified proteins become resis-
tant to degradation and are targeted by immune cells inducing inflammation [7], which,
unresolved, may lead to cancer [8]. The accumulation of AGE has been shown in adipose
tissue, muscles, nerves or blood plasma [9–13]. Moreover, the AGE presence may disturb
the nerve impulse conduction in muscles contributing to amyotrophic lateral sclerosis
called Charcot disease [14]. Increased AGE accumulation in tissues, as well as glucose
intolerance or abnormal glucose metabolism are significant risk factors for accelerated
atherosclerosis and cardiovascular diseases [15]. Hyperglycemia can lead to dysfunction of
contractile myocytes (diabetic cardiomyopathy), occurring most often in patients with type
1 diabetes [14,16]. AGEs may damage ryanodine receptor in myocytes altering calcium
transfer from sarcoplasmic reticulum to mitochondria in the senescent myocardium [17].
The cardiovascular system diseases, especially coronary heart disease (CHD), are the lead-
ing cause of death in patients with type 2 diabetes [15]. The progressive glycation can also
affect the central nervous system (CNS), damaging the brain and peripheral nerves and
autonomic nervous system (ANS) [18,19].

Kidneys are among organs particularly affected by AGE accumulation [20]. The loss of
negative charge of the nephron filtration barrier accelerates the process, causing oxidative
stress and upregulating expression of pro-inflammatory cytokines [20]. Animal studies
have shown that AGE exacerbated diabetic nephropathy, which, in turn, contributed to
the thickening and hardening of the glomerular basement membrane, fibrosis of tubular
structures of renal mesangial cells, and increased the expression of TGF-β and collagen
IV [21]. Moreover, as a result of chronic hyperglycemia, the synthesis of angiotensin II
increases, rising the blood pressure, aggravating inflammation and oxidative stress, and
leading to proteinuria and, ultimately, glomerular fibrosis [22].

Recently, we have characterized a new synthetic glycation end-product, MAGE, which
is produced by the modification of proteins by melibiose. MAGE is a synthetic analogue
of AGE epitope that presence has been detected in tissues from invertebrates, such as
snails, and vertebrates, including fish, frog, chicken, pig, horse, rat, rabbit and human.
MAGE creates isomers of fructosamine that contain an attached disaccharide, in which
both carbohydrate moieties (i.e., galactose and glucose) are in a closed form, in contrast to
fructosamine formed from glucose or fructose [23]. The exact structure of AGE epitope re-
mains unraveled while that of MAGE is elaborated in Staniszewska et al. [24]. Importantly,
autoantibodies against this epitope have been detected in serum samples from diabetic
patients [24]. They had high specificity because they did not react with proteins glycated by
different glycation agents such as glucose, fructose, methylglyoxal, lactose, trans-2-nonenal,
glycoaldehyde or maltose. This AGE epitope, according to the AGE’s nomenclature [25,26],
was named AGE10.

The clinical significance of AGE10 has not been established yet as there was no assay
developed allowing for its quantification. Therefore, the aim of present study was to develop
an ELISA assay allowing for AGE10 quantification in human serum using monoclonal anti-
MAGE antibodies generated in mice. The devised method was then validated on clinical
samples and AGE10 association with biochemical parameters and clinical presentation of
diabetic patients was determined.

2. Materials and Methods
2.1. Analytical Methods Used during Developing an Immunoassay for AGE10 Quantification

An overview of a process of developing competitive immunoassay (ELISA) for AGE 10
detection is presented in Figure 1.
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Figure 1. An overview of a process of AGE10 ELISA development; FPLC—the fast protein liquid
chromatography, LC-MS—liquid chromatography mass spectrometer, LMW-MAGE—low molecular
mass MAGE, MAGE—melibiose-derived AGE, MB-MELs—products of reaction of myoglobin with
melibiose, NAcαLys-MEL—products of reaction of Nα-acetyllysine with melibiose.

2.1.1. Preparation of ELISA Reagents (Step 1)

Development of competitive ELISA required synthesis of antigens for plate-coating
(Step 1.1 in Figure 1), synthesis of low molecular mass MAGE as standards (LMW-MAGE)
for a standard curve (Step 1.2 in Figure 1), and synthesis of primary antibodies (Step 1.3 in
Figure 1).

Preparation of plate coating-antigen MAGE
Preparation of plate coating-antigen MAGE (Step 1) included synthesis of glycation

products of reaction of myoglobin with melibiose (MB-MELs), their separation, and identifi-
cation of fraction (MAGE) the most reactive against anti-MAGE antibodies (Figure 1).

MB-MELs synthesis (Step 1.1.1)
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Appropriate amount of myoglobin (MB) from Merck (Darmstadt, Germany) was
mixed with melibiose (MEL) (Merck), dissolved in 1 mL H2O miliQ, frozen at −80 ◦C,
lyophilized and placed for 45 min at 85 ◦C in a microwave reactor (Initiator 2.5, Biotage,
Uppsala, Sweden), equipped with a pressure compressor (Jun-Air Model 2xOF302-40B
230 V/50 Hz, Redditch, UK) at constant power of 200 W.

MB-MELs separation—FPLC and SDS/PAGE (Step 1.1.2)
Samples after synthesis were treated with 1 mL of 0.01 M ammonium acetate buffer

pH 6.8 and subjected to chromatographic separation. Chromatography was carried out
in 10 mM ammonium acetate buffer, pH 6.8, on a column (1.6 cm × 100 cm, XK 16/100,
Pharmacia, Apeldoorn, the Netherlands) packed with hydroxymethyl resin (Toyopearl
resin HW-55S, Tosoh, Thermo Fisher Scientific, Massachusetts, GA, USA), equilibrated in
advance with the same buffer. The separation was performed in the fast protein liquid
chromatography (FPLC) system (ÄKTAexplorer, Amarsham, Pharmacia Biotech, Ramsey,
NJ, USA), recording the elution profile at three wavelengths: 225 nm, 280 nm and 297 nm.
The separation was carried out at the flow rate of 0.1 mL/min and the volume of the
collected fractions was 1 mL. Peak fractions were combined, lyophilized and weighed.

Chromatographically-separated modified proteins were subsequently analyzed by
SDS/PAGE electrophoresis on a 12% polyacrylamide gel. Protein samples (10 µg) were
suspended in sample buffer (0.06 M Tris-HCl pH 6.8, 2% SDS, 10% glycerol, 0.025% bro-
mophenol blue, 5% β-mercaptoethanol) and applied on the gel. Electrophoresis was
performed at a constant current of 40 mA for 1.5 h using Mini-Protean Tetra Cell elec-
trophoresis apparatus (Bio-Rad, Hercules, CA, USA). A 0.25% Coomassie Brilliant Blue
R-250 solution (Bio-Rad) was used for protein staining and an aqueous solution of 50 mM
methanol and 75 mM acetic acid was used to decolorize background. The results were
analyzed using Vilber Lourmat gel/blot analysis system (Transilluminator UV/white light
Z363820, Merck, Darmstadt, Germany).

MAGE identification—ELISA (Step 1.1.3)
The plates (Nunc MaxiSorp®, Thermo Fisher Scientific, Massachusetts, GA, USA)

were coated with MB-MEL products contained in the fractions obtained in the FPLC
chromatographic separation (100 µL/well) and incubated for 5 h at room temperature,
followed by an overnight incubation at 4 ◦C. Subsequently, plates were washed 3-times
(3 × 400 µL/well) with Tris-Buffered Saline, 0.1% Tween 20 Detergent (Merck) TBS-T
and blocked for two hours at room temperature with 5% defatted milk dissolved in TBS.
After washing, plates were treated with anti-MAGE (100 µL/well; 1:2000) for one hour at
37 ◦C, washed, and incubated for 2 h at room temperature with horseradish peroxidase
(HRP)-conjugated goat anti-mouse-IgE (Jackson ImmunoResearch Laboratory, West Grove,
PA, USA) (1:3000). Following washing, plates were incubated with o-phenylenediamine
dihydrochloride (OPD; Merck) for 10 min at room temperature. Absorbance was measured
at 492 nm with microplate reader (LabEnspire, PerkinElmer, Waltham, MA, USA).

Preparation of standards—LMW-MAGE (Step 1.2)
Preparation of LMW-MAGE as standards included four steps: synthesis of low molec-

ular mass glycation products from N-acetyl-α-lysine and melibiose (NAcαLys-MEL), their
separation followed by the selection of optimal LMW-MAGE, based on their inhibitory
potential, and the determination of molecular mass of selected LMW-MAGE.

NAcαLys-MEL synthesis (Step 1.2.1)
The mixture of N-acetyl-α-lysine (Merck) and melibiose (Merck, Darmstadt, Germany)

was frozen at−80 ◦C and freeze-dried. The reaction was then carried out in a microwave re-
actor (Initiator 2.5, Biotage) with a pressure compressor (Jun-Air) Glycation was performed
at 60 ◦C for 25 min at a constant power of 200 W.

NAcαLys-MEL separation—FPLC (Step 1.2.2)
Mixture of glycation products was treated with 1 mL of 0.01 M ammonium acetate

buffer pH 6.8 and subjected to chromatographic separation on 1.6 cm × 100 cm, XK 16/100
column (Pharmacia), packed with hydroxymethyl resin (Toyopearl resin HW-40S, Tosoh,
Thermo Fisher Scientific). The separation was performed in the FPLC system (Pharmacia),
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at the flow rate: 0.1 mL/min, and the volume of the collected fractions was 1 mL. The
elution profiles were measured at 225 nm, 280 nm and 297 nm. The obtained fractions
were combined, lyophilized and weighed. Samples were then desalinated on Bio-Gel P-2
(Bio-Rad) on XK16/100 column (Pharmacia) in H2OmiliQ at a flow rate of 0.1 mL/min. The
volume of the collected fractions was 1 mL. The elution profile was determined at 225 nm,
297 nm and 325 nm. After separation, the fractions were combined, frozen, lyophilized
and weighed.

LMW-MAGE selection—competitive ELISA (Step 1.2.3)
ELISA plates (Nunc MaxiSorp®, Thermo Fisher Scientific) were coated with 1 µg/well

synthetic medium-cross-linked MAGE (FPLC-separated), dissolved in 100 µL of 120 mM
carbonate buffer pH 9.6 (20 mM sodium carbonate, 100 mM sodium bicarbonate). Plate
incubation, blocking and washing were performed as described above for sandwich ELISA.
Samples containing 0, 5, 10, 20 and 40 µg LMW glycation products in 160 µL of PBS
were mixed 1:1 with anti-MAGE antibodies (diluted 1:2000 in PBS), incubated (1 h at
37 ◦C) and applied on a plate in triplicates (100 µL/well). Following 2 h incubation
at 37 ◦C and an overnight incubation at 4 ◦C, plates were washed 3 times with TBS-T
buffer. Subsequently, 100 µL of secondary murine anti-IgE antibodies conjugated with
HRP (Jackson ImmunoResearch), diluted 1:4000 in PBS, were added and incubated at room
temperature for 2.5 h. Following washing, plates were incubated with OPD (10 min at room
temperature). Absorbance was measured at 492 nm with microplate reader (PerkinElmer).

Determination of LMW-MAGE mass (Step 1.2.4)
Molecular masses of LMW-MAGE products were determined by liquid chromatogra-

phy mass spectrometry (LC-MS) as described earlier [23]. Samples were separated on the
nanoAcquity UPLC system (Waters, Milford, MA, USA) under the conditions described
in Supplementary Materials Table S1. The total separation time (including the time for
column regeneration) was 30 min.

A Symmetry C18 chromatography column (100 µm× 100 mm; grain diameter: 3.5 µm)
was used in the chromatography. The mobile phase was a mixture of water (A) and acetoni-
trile (B). Before loading the samples on the analytical column, the material was prebound
to the pre-column and rinsed for 5 min with a mixture of water (99.5%) and acetonitrile
(0.5%), at a flow of 5 µL/min, for additional purification from possible contamination. The
analytical column was thermostated and its temperature was 35 ◦C. The samples were
stored in an autosampler at 7 ◦C. The concentration of compounds in the samples was
approximately 0.1 µg/µL. The volume of 5 µL of LMW-MAGE products from the given
sample were injected onto the column. Spectrometric analyzes were performed on a hybrid
mass spectrometer (XevoG2 Q-TOF, Waters) equipped with a nanoelectrospray source
under the conditions described in Supplementary Materials Table S2.

Measurements were performed in the high sensitivity mode of the analyzer, under
positive polarization conditions. The reading was carried out for 20 min for ions in the
mass range: (initially) 300 to 1500 m/z, and (in later analyzes) 80 to 800 m/z. During the
measurement, the spectra were recorded with the frequency of 2/s in the “centroid” mode.

2.1.2. Development AGE10 ELISA (Step 1.2)

Preparation of serum samples from patients and standards (LMW-MAGE)
In the final ELISA, plates were coated with MAGE (antigen) and serum samples

from patients were source of AGE10 epitopes. As they might be present either on protein
surface or buried within, thus unavailable for antibodies, serum samples were subjected to
proteinase K treatment. Serum samples (35 µL) were suspended in 70 µL of 60 mM Tris-
HCl pH 8.0 with 5 mM CaCl2 and 50% glycerol, containing proteinase K (30 U/mg) from
Tritirachium album (Merck) at 0.2 mg/mL. Samples were mixed, centrifuged (2000× g,
1 min) and incubated at 50 ◦C overnight. Then, proteinase K was denatured (110 ◦C, 15 min)
and samples were cooled and centrifuged (15,000× g, 15 min). Aliquots of 90 µL were
diluted in PBS (1:1) (Merck) devoid of Ca2+ and Mg2+, mixed (1:1, v/v) with anti-MAGE in
PBS (final dilution 1:3000) and subsequently incubated at 37 ◦C for 1 h.
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Standards—LMW MAGE in PBS at concentration range 0-400 µg/mL—were mixed
(1:1, v/v) with anti-MAGE in PBS (final dilution 1:3000) and subsequently incubated at
37 ◦C for one hour.

AGE10 ELISA
Microtiter plates were coated with MAGE (1 µg/well; 5 h at room temperature),

washed with TBS-T and blocked overnight with non-fat milk at 4 ◦C. Following washing,
serum samples and standards with murine anti-MAGE monoclonal antibodies (1:2000),
prepared as above, were applied and incubated at 37 ◦C for 2 h. After washing, goat
anti-mouse IgE antibodies conjugated with HRP (1:3000) (Jackson ImmunoResearch) were
applied for 2.5 h (room temperature) and then washed and OPD was added (10 min, room
temperature). Absorbance was read at 492 nm on microplate reader (PerkinElmer). All
samples and standards were assessed in triplicates.

2.2. Study Population

Serum samples from 82 patients (51 women and 31 men) treated in the Department of
Angiology, Hypertension and Diabetes of Medical University of Wroclaw from May 2012
to November 2012 were collected. The research was approved by the Bioethics Committee
of the Medical University in Wrocław (No. KB-384/2012).

Laboratory parameters including data on glycated hemoglobin (HbA1c), glucose,
C-reactive protein (CRP), total cholesterol, LDL, HDL, triglycerides, uric acid, albuminuria,
and creatinine concentration were quantified using routine diagnostic procedures and
collected prospectively. Glomerular filtration rate (eGFR) was calculated using the MDRD
formula. Diabetic complications were defined as follows: macroangiopathy as a presence
of peripheral arterial disease and/or heart disease without myocardial infarct and/or
myocardial infarct in the past and/or ischemic stroke in the past on the basis of medical
documentation; peripheral arterial disease as an ankle brachial index less than 0.9 and/or
revascularization in anamnesis (percutaneous angioplasty or traditional surgical treatment)
and/or significant stenosis of arteries in legs (more than 70%); heart disease as a revascu-
larization without myocardial infarct performed in the past (percutaneous angioplasty of
coronary arteries/coronary artery bypass grafting) or a positive exercise stress test in the
anamnesis; myocardial infarct as typical changes in the past, including elevated cardiac
biomarkers and changes on an electrocardiogram (ST segment changes, new left bundle
branch block, or pathologic Q waves); ischemic stroke as typical clinical symptoms and
ischemic changes in computed tomography or in magnetic resonance imaging in the past;
microangiopathy as a presence of retinopathy or nephropathy on the basis of medical
documentation; retinopathy as typical changes for diabetes in retina in ophthalmological
examination and/or in fluorescein angiography; polyneuropathy as typical for diabetes
changes in peripheral nerves in neurological examination and/or result of electromyogra-
phy; nephropathy as microalbuminuria defined as urinary albumin excretion in the range of
30–299 mg/24 h or macroalbuminuria defined as urinary albumin excretion ≥300 mg/24 h;
hyperlipidemia as plasma concentrations of total cholesterol ≥175 mg/dL, triglyceride
≥150 mg/dL and HDL level <40 mg/dL in men or HDL <45 mg/dL in women or the
level of LDL ≥100 mg/dL (or above the recommended values for a given cardiovascular
risk group); hypertension as systolic blood pressure ≥140 mmHg and/or diastolic blood
pressure ≥90 in two measurements or treatment with antihypertensive drugs. The degree
of damage in the kidney disease was estimated by serum creatinine/estimated glomerular
filtration rate (eGFR) with eGFR is less than 90mL/min/1.73m2 considered abnormal.

Blood (30 mL) was collected from the median cubital vein into plastic tubes with a clot
activator (Becton Dickinson Vacutainer, East Rutherford, NJ, USA). The blood was collected
in the morning and stored for up to three hours at room temperature. Then, samples were
centrifuged (2000× g for 15 min) and the supernatant was aliquoted and frozen at −20 ◦C
until analysis.
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Preparation of Murine Monoclonal Anti-MAGE Antibodies (Step 1.3)

Groups of 6-week-old male BALB/c mice were injected with a mixture of 50 µg
of rabbit glycated immunoglobulins (RIg-MAGE) and 50 µg horse glycated myoglobin
(MB-MAGE) emulsified in complete Freund’s adjuvant (CFA). The first dose was given
subcutaneously near the inguinal lymph nodes. After one month of a single dose injection,
mice were immunized intraperitoneally with the same dose of antigens mixture, ten times
with 2-week intervals. Blood samplings for detection of specific antibody production were
performed under anesthesia of animals. Fusions of myeloma cells with immune spleen
cells were carried out using the method of Kohler and Milstein procedure modified by
Dippold [27]. Cells were fused with SP2/0 mouse plasmacytoma cells for one-minute
incubation in 0.2 M of polyethylene glycol 1500 solution (BDH, Laboratory Supplies, UK)
prepared by dissolving 5 g of autoclaved PEG 1500 in 7.5 mL of PBS, pH 7.4 containing
15% of dimethyl sulfoxide. Experiments were approved by the Local Animal Care and Use
Committee at the Hirszfeld Institute of Immunology and Experimental Therapy PAS (LKE
53/2009). The class of anti-MAGE were determined by Rapid Mouse Isotyping Kit-Gold
Series, LFM-ISO-1-5 (RayBiotech Inc., Norcross, GA, USA).

The presence of clones producing anti-MAGE antibodies were detected by ELISA.
Wells of a plate were coated by BSA-MAGE (bovine serum albumin–MAGE), MB-MAGE
(myoglobin–MAGE) and Lys-MAGE (lysozyme–MAGE) and their unglycated equiva-
lents (BSA, MB, Lys). Nunc Maxisorp plates were coated with an appropriate antigen
(0.5 µg/well) dissolved in 100 µL of carbonate buffer pH 9.6 (16 mM sodium carbonate,
34 mM sodium bicarbonate) and incubated overnight at 4 ◦C. The next day, the plate was
washed 3-times with TBS with 0.05% Tween 20 (TBS-T), pH 7.4 (15 mM Tris, 150 mM NaCl,
0.05% Tween) and blocked overnight at 4 ◦C with 5% ovalbumin (Sigma-Aldrich, St. Louis,
MO, USA) in TBS at 200 µL/well. The next day plate was washed as before. Then, 50 µL
medium containing hybridoma clones (growth after cell fusion) was added into each well
in triplicates and incubated at 4 ◦C overnight. The next day the plate was washed as before
and 1:4000 diluted HRP-conjugated goat anti-mouse IgE (Jackson ImmunoResearch Labo-
ratory) in TBS was added to each well (at 50 µL/well) and incubated at room temperature
for 2.5 h. Then the plate was washed as before and the reaction was caused by solution
of 30 mg OPD (Thermo Scientific) dissolved in 10 mL of citrate buffer, pH 4.5, containing
50 mM citric acid, 70 mM sodium citrate, 5% methanol and 0.03% H2O2 (at 50 µL/well).
The plate was incubated for 10 min at room temperature and then the reaction was stopped
by 40% H2SO4. Absorbance was measured at 492 nm in microplate readers (Microplate
Spectrophotometer, Powerwave XS, Biotek, Milan, Italy).

2.3. Statistical Analysis

The normality of distribution was tested using D’Agostino-Pearson test and homo-
geneity of variances using Levene test. Data on AGE10 were normally distributed and are
therefore presented as means with 95% confidence interval (CI). They were analyzed using
one-way ANOVA with Tukey–Kramer post-hoc test (multigroup comparisons) or t-test for
independent samples (two-group comparisons). Two-way ANOVA or analysis of covari-
ance (ANCOVA) were used to co-examine data such as microangiopathy and treatment or
microangiopathy and eGFR effects on AGE10. Correlation analysis was conducted using
Pearson correlation test. The discriminative power of AGE10 as a biomarker was tested
using receiver operating characteristics (ROC) curve analysis.

All calculated probabilities were two-tailed and p-values ≤0.05 were considered
statistically significant. The analyses were performed using MedCalc® Statistical Software
version 19.6 (MedCalc Software Ltd., Ostend, Belgium; https://www.medcalc.org; accessed
on 3 September 2020).

https://www.medcalc.org
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3. Results
3.1. ELISA Reagents
3.1.1. Plate-Coating Antigen (MAGE)

To enable quantitative determination of AGE10 in biological material, an ELISA assay
using anti-MAGE antibodies was developed. In this assay, the wells of plates were covered
with synthetic MAGE, prepared by glycation of myoglobin with melibiose in a microwave
reactor. Reaction products were then separated by FPLC chromatography yielding three
peaks—highly cross-linked glycation products denoted 1(A), moderately cross-linked
glycation products denoted 1(B), and lowly cross-linked glycation products denoted 1(C),
which were subsequently analyzed in SDS-PAGE. Typical chromatogram and gel image
are presented in Figure 2a,b, respectively. The moderately cross-linked fractions, 1(B), were
then found to possess the highest reactivity towards anti-MAGE antibodies as detected in
ELISA (Figure 2c).
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3.1.2. Standards (LMW-MAGE)

The mixture of NAcαLys-MEL products obtained during the microwave synthesis
was subjected to chromatographic separation on a HW-40S column. The elution profiles
(Figure 3a) yielded two peaks, denoted 1(A) and 1(B). To desalinate samples, fractions
constituting a 1(B) peak were subjected to FPLC chromatographic separation on a Bio-Gel
P-2 column, resulting in further separation into three peaks, denoted 1(B0), 1(B1) and 1(B2)
(Figure 3b). Testing resulting peaks for LMW-MAGE presence using competitive ELISA
showed 1(B1) peak to be the most efficient in inhibiting MAGE/anti-MAGE reaction and
therefore to contain an analogue of AGE10 epitope (Figure 3c). All peaks were subjected to
mass-spectrometry analysis in order to determine the molecular mass of respective LMW
glycation products (Figure 3d). The presence of LMW-MAGE, with a mass to charge (m/z)
ratio of 513.23, appearing at approx. 2.1 s, was detected mainly in 1(A) and 1(B1) samples—
the peaks showing the highest inhibitory activity against MAGE/anti-MAGE reaction.

J. Clin. Med. 2021, 10, x FOR PEER REVIEW 9 of 21 
 

 

 
(c) 

Figure 2. Glycation of myoglobin with melibiose and selection of MAGE with the highest reactiv-
ity towards anti-MAGE mouse monoclonal antibodies: (a) FPLC chromatogram with marked three 
peaks denoted 1(A), 1(B), and 1(C); (b) SDS-PAGE image of selected FPLC fractions representative 
for main peaks; (c) graphical presentation of competitive ELISA of selected FPLC fractions repre-
sentative for main peaks. Different detection wavelengths for the analysis of elution profile were 
marked by red (225 nm), pink (297 nm), and blue (280 nm). M, molecular mass marker. 

3.1.2. Standards (LMW-MAGE) 
The mixture of NAcαLys-MEL products obtained during the microwave synthesis 

was subjected to chromatographic separation on a HW-40S column. The elution profiles 
(Figure 3a) yielded two peaks, denoted 1(A) and 1(B). To desalinate samples, fractions 
constituting a 1(B) peak were subjected to FPLC chromatographic separation on a Bio-Gel 
P-2 column, resulting in further separation into three peaks, denoted 1(B0), 1(B1) and 1(B2) 
(Figure 3b). Testing resulting peaks for LMW-MAGE presence using competitive ELISA 
showed 1(B1) peak to be the most efficient in inhibiting MAGE/anti-MAGE reaction and 
therefore to contain an analogue of AGE10 epitope (Figure 3c). All peaks were subjected 
to mass-spectrometry analysis in order to determine the molecular mass of respective 
LMW glycation products (Figure 3d). The presence of LMW-MAGE, with a mass to charge 
(m/z) ratio of 513.23, appearing at approx. 2.1 s, was detected mainly in 1(A) and 1(B1) 
samples—the peaks showing the highest inhibitory activity against MAGE/anti-MAGE 
reaction. 

 
(a) 

Figure 3. Cont.



J. Clin. Med. 2021, 10, 4499 10 of 20J. Clin. Med. 2021, 10, x FOR PEER REVIEW 10 of 21 
 

 

 
(b) 

 
(c) 

 
(d) 

Figure 3. Purification and characterization of low molecular weight glycation products obtained
in the synthesis of N-acetyl lysine with melibiose (NAcαLys-MEL) in a microwave reactor: (a) The
elution profile of NAcαLys-MEL separated by FPLC chromatography (HW40-S column); (b) elution
profile of “1(B)” peak separated by FPLC chromatography (Bio-Gel P-2 column); (c) effectiveness
of NAcαLys-MEL fractions 1(A), 1(B0), 1(B1) and 1(B2) in inhibiting MAGE/anti-MAGE reaction;
(d) mass chromatograms for ion 513.23 m/z for NAcαLys-MEL peaks 1(A), 1(B0), 1(B1) and 1(B2).
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3.1.3. Preparation of Murine Anti-MAGE Monoclonal Antibodies

Selection of clones producing monoclonal anti-MAGE antibodies was performed with
ELISA. Three of 132 clones (Nos. 10, 19, 49) produced antibodies reacting with BSA-MAGE,
MB-MAGE, LYS-MAGE (Figure 4). The reactivity of antibodies with BSA, MB or Lys was
the screening control, respectively.
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Figure 4. The reactivity of antibodies from Clone Nos. 10, 19 and 49 with BSA-MAGE (bovine serum
albumin-MAGE), MB-MAGE (myoglobin-MAGE), LYS-MAGE (lysozyme-MAGE) and with BSA,
MB, LYS as respective controls.

The largest and statistically significant difference in reactivity between produced
monoclonal anti-MAGE antibodies using BSA-MAGE, MB-MAGE and LYS-MAGE and
corresponding unmodified proteins: BSA, LYS, MB was observed for Clone Number 10.
Although antibodies present in Clones No. 19 and 49 were reactive with BSA-MAGE,
MB-MAGE and LYS-MAGE, they were also very reactive with unmodified proteins (BSA,
MB, LYS) and these differences were not statistically significant. The appropriate ELISA
showed that the anti-MAGE antibodies were of IgE class.

3.2. AGE10 ELISA

The overall scheme of developed AGE10 ELISA is presented in Figure 5.
In order to optimize the test, it was carried out under various conditions of time

and temperature and at varying dilutions of reagents. Serum dilution was tested within
6–96 times range and 12-fold dilution was found optimal. Anti-MAGE dilutions tested were
within 50–10,000 times range and those of anti-mouse IgE antibodies within 100–10,000 times
range and the dilutions of 3000 times was found optimal on both accounts. Mass of MAGE
applied into wells within 0.1–20 µg/well range was assessed and 1 µg was found optimal.
Optimal incubation time with primary and secondary antibodies was 3 h for primary and
2 h for secondary antibodies, chosen from interval of 0.5–4 h tested. Regarding incubation
temperature, test performed better if incubation with both primary and secondary anti-
bodies was conducted at 37 ◦C than 22 ◦C (room temperature) with an incubation with
primary antibodies followed by overnight incubation at 4 ◦C. In addition, the reactivity
of the antibodies against the native myoglobin and the non-microwave treated MB/MEL
mixture was also evaluated and none was found.

Intra- and inter-assay coefficients of variation of the method (CV%) were deter-mined
to be 5 ± 0.2% and 5 ± 0.4%, respectively (n = 6). Limit of quantification (LOQ) for
developed assay was 18 µg/mL and limit of detection (LOD) was 5.8 µg/mL.
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modification by melibiose depicted as blue rectangles.

3.3. Determination of AGE10 Concentration in Sera—Validation of AGE10 ELISA

The characteristics of the studied population are shown in Table 1.
The utility of developed AGE10 ELISA was assessed using serum samples from

patients with type 2 diabetes mellitus. In the tested cohort, AGE10 concentrations ranged
from 0 to 400 µg/mL. AGE10 concentrations below limit of detection were observed in
13 patients (15.8%).

The association between AGE10 concentration and diabetes complications showed
AGE10 to be significantly higher in patients with microangiopathy (Table 2).
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Table 1. Characteristics of studied population.

Characteristics Parameter Values

Demographics: Age, mean ± SD 62 ± 10 years
Sex, n [F/M] 51/31

Disease, n (%):
T2DM 75 (91.4%)
T1DM 4 (4.9%)
T3DM 3 (3.7%)

Complication, n (%):

Hypertension 70 (85.4%)
Hyperlipidemia 67 (81.7%)

Macroangiopathies 53 (64.6%)
Microangiopathy 18 (22%)

CHD 24 (29.3%)
PAD 21 (25.6%)

Nephropathy 10 (12.2%)
Retinopathy 9 (10.6%)

Polyneuropathy 29 (35.4%)
Myocardial infarction 9 (10.6%)

Stroke 9 (10.6%)

Treatment, n (%):

Metformin 58 (70.7%)
Sulfonylurea 35 (42.7%)

Insulin 33 (40.2%)
Aspirin 49 (59.8%)

Clopidogrel 6 (7.3%)
Oral anticoagulants 10 (12.2%)

Laboratory parameters, mean ± SD:

HbA1c [%] 8.12 ± 2.13
LDL [mg/dL] 98 ± 34
HDL [mg/dL] 46.4 ± 15.8
TC [mg/dL] 180.4 ± 91.2
TG [mg/dL] 180 ± 91.2

GLC [mg/dL] 166.8 ± 70.1
CRP [mg/dL] 2.59 ± 2.18

Albuminuria [g/dL] 18.76 ± 10.37
Creatinine [mg/dL] 0.96 ± 0.22

eGFR [mL/min/1.73 m2] 74.11 ± 17.2

N, number of observations; SD, standard deviation; F/M, female-to-male ratio; T2DM, type 2 diabetes mellitus;
T1DM, type 1 diabetes mellitus; T3DM, other types of diabetes; CHD, ischemic heart disease; PAD, peripheral
artery disease; HbA1c, glycated hemoglobin; LDL, low-density lipoprotein; HDL, high-density lipoprotein;
TC, total cholesterol; TG, triglycerides; GLC, glucose; CRP, C-reactive protein; eGFR, estimated glomerular
filtration rate.

Table 2. AGE10 association with complications of diabetes.

Complication
Mean AGE 10 (95%CI), n

p
Without Complication With Complication

Macroangiopathy 110 (76–144), 29 111 (86–137), 53 0.953
Ischemic stroke 108 (86–128), 73 139 (56–223), 9 0.327

PAD 105 (82–128), 61 128 (83–174), 21 0.318
Myocardial infarction 114 (93–136), 73 85 (17–152), 9 0.362
Ischemic heart disease 119 (96–143), 58 90.5 (50–13), 24 0.197

Microangiopathy 98 (75–120), 64 158 (116–200), 18 0.013
Nephropathy 112 (90–134), 72 101 (39–163), 10 0.719
Retinopathy 106 (85–127), 73 152 (83–221), 9 0.156

Polyneuropathy 105 (80–129), 53 123 (86–159), 29 0.404
Hyperlipidemia 81 (46–115), 15 118 (94–141), 67 0.160

Hypertension 95 (51–139), 12 114 (91–136), 70 0.512
CI, confidence interval; n, number of observations; PAD, peripheral artery disease. Data were analyzed using
t-test for independent samples.

The possible relationship between AGE10 and indices of inflammation (CRP), kid-
ney function (albuminuria/creatinine index in morning urine sample and eGFR), lipid
metabolism (HDL, LDL, triglycerides), glycemia and its control (glucose and HbA1c con-
centration) was investigated (Table 3). AGE10 was inversely correlated with creatinine
concentration and positively with eGFR. As kidney function and microangiopathy are
related, both parameters were co-examined using analysis of covariance (ANCOVA) and



J. Clin. Med. 2021, 10, 4499 14 of 20

found to have an independent effect on AGE10 (p = 0.05 for microangiopathy and p = 0.004
for eGFR). These two factors explained 17% of variance in AGE10 concentration (R2 = 0.168)
observed in patients with type 2 diabetes.

Table 3. Correlation between AGE10 and demographic data, inflammatory, metabolic, and kidney
function indices.

Index Correlation Coefficient (r), p

CRP 0.05, p = 0.688
Glucose 0, p = 0.946
HbA1c 0.04, p = 0.735

HDL-cholesterol −0.15, p = 0.218
LDL-cholesterol −0.05, p = 0.684

Triglycerides −0.11, p = 0.360
Creatinine −0.25, p = 0.036

eGFR 0.34, p = 0.005
Albumin/Creatinine ratio −0.21, p = 0.171

Age −0.09, p = 0.415
CRP, C-reactive protein; HbA1c, glycated hemoglobin; eGFR, estimated glomerular filtration rate. Data were
analyzed using the Pearson test.

None of applied medication had significant impact on AGE10 concentration in diabetic
patients in general (Table 4). However, aspirin treatment seems to abolish the difference in
AGE10 concentration between patients without and with microangiopathy (Figure 6).

Table 4. AGE10 association with applied treatment.

Medication
Mean AGE 10 (95%CI), n

p
Untreated Treated

Oral anticoagulants 114 (92–135), 72 92 (29–155), 10 0.495
Aspirin 97 (68–125), 33 120.5 (92–149), 49 0.253

Clopidogrel 106 (86–127), 76 172 (60–283), 6 0.094
Metformin 96 (66–125), 24 117 (91–143), 58 0.340

Sulfonylurea 101 (76–125), 47 125 (90–160), 35 0.242
CI, confidence interval; n, number of observations. Data were analyzed using t-test for independent samples.
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3.4. AGE10 Potential as a Biomarker

The potential of AGE-10 as a biomarker of microangiopathy and stage ≥3 chronic
kidney disease, defined as eGFR <60, was assessed.

As a marker of microangiopathy presence, AGE10 had 71% overall accuracy (Figure 7a).
At optimal cut-off of >83.4 µg/mL, associated sensitivity was 83.3% and specificity of 57.8%.
As a marker of stage ≥3 chronic kidney disease, AGE10 had 69% overall accuracy (Figure 7b).
At optimal cut-off of ≤133 µg/mL, associated sensitivity was 82.6% and specificity of 58.1%.
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4. Discussion

Non-enzymatic modification of macromolecules by sugars is a main culprit in the
pathogenesis of diabetic complications [28–30] and the resulting products may serve
as biomarkers of metabolic disorders and treatment efficacy. Currently, fructosyllysine,
glycated albumin (GA) and glycated hemoglobin (HbA1c) are used in clinical practice.
However, they are not proper AGE but less stable Amadori products [31–33]. Therefore,
longer-lived and stable AGE markers are sought after. Immunoassays, due to their rel-
ative simplicity and low cost, are frequently used as diagnostic tools. Regarding AGE,
however, their widespread use is hampered by lack of assays allowing to quantify individ-
ual AGE epitope [34,35]. Except for the most known AGE—carboxymethyllysine (CML),
commercially available immunoassays detect a mixture of various AGEs. Still, a body of
evidence is gathering showing that individual AGEs have indeed potential as markers of
diabetic complications, e.g., a methylglyoxal-derived hydroimidazolone-1 is proposed as
an early marker of atherosclerosis in childhood diabetes [36], AGE4 (albumin modified
by methylglyoxal) is an independent predictor of polyneuropathy in diabetes [35] and
AGE1 (albumin modified by glucose) is significantly associated with lipid abnormalities in
diabetes [37], justifying efforts put into developing epitope-specific immunoassays.

Here, we propose an immunoassay allowing for quantification of modified serum
proteins using synthetic Melibiose derivative MAGE. Melibiose (α-D-gal-(1→6)-D-glc)
enters the body with a plant-based diet, in particular with products such as cocoa beans
and soy roots and stems [38,39] or with honey [40]. It can also be provided by gut mi-
crobiota such as Bifidobacterium breve [41]. This disaccharide crosses the intestinal wall
using the passive paracellular permeation pathway [42] and might react with plasma and
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extracellular matrix proteins. MAGE is an analog of an adduct commonly found in several
tissues of humans and various animal species [24]. That epitope recognized by anti-MAGE
monoclonal antibody might be clinically relevant has been shown in sera from patients
with diabetes and atherosclerosis [24].

A competitive assay developed here employs novel monoclonal anti-MAGE anti-
bodies, synthetic MAGE, and LMW-MAGE used for preparing a standard curve. In order to
obtain MAGE and LMW-MAGE, it was necessary to develop an in vitro synthesis method.
Thus, so far, the most common approach to AGE synthesis consists of pro-longed (several
weeks) incubation of a given glycating factor (predominantly glucose) with a model protein
at a specific temperature and in specific buffers or other polar solvent, which subsequently
necessitates time-consuming dialysis of obtained AGE [33,43]. Frequently, additional
prior incubation of model protein with H2O2 is conducted as the oxidized protein is
more susceptible to glycation [44]. Manipulating glycation conditions—incubation time,
temperature, pH, concentration of glycating factors and concentration of model proteins—
has been used in order to shorten the process and increase its efficiency. Recently, carrying
out the process using ultrasound [43] or microwaves [45] has been successfully tried. The
method of MAGE and LMW-MAGE synthesis using microwaves at anhydrous conditions
presented here allowed to shorten the process to 40 and 25 min, respectively.

The developed ELISA enabled AGE10 quantification in patients with various diabetic
complications. We showed that its level is higher in patients with microangiopathy. Dia-
betic microangiopathy is caused by damage to the small blood vessels, mainly the retinal
capillaries, nerves and glomeruli. In retinopathy, AGEs accumulate in the retina, vitreous
fluid and the lens of the eyes, impeding vision and light scatter [46]. AGEs also change the
conformation of eye’s proteins reducing the transparency of the lens [47]. In addition, reti-
nal pigment epithelial cells contain RAGE, AGE receptors, and their interaction maintains
inflammation, increases production of vascular endothelial growth factor, causes neurode-
generation and microvascular disorders [48,49]. In neuropathy, AGEs cause the thickening
of the basement membrane and increase parietal permeability. The AGE-RAGE interactions
in the perineural and endoneural blood vessels lead to vascular malfunction and the initia-
tion of hypoxia. Moreover, AGEs weaken the immune system, increasing the likelihood
of skin wounds in the feet [50,51]. Likewise, AGEs in nephropathy are accumulated in
kidneys within the glomerular basement membrane, podocytes, tubules, endothelial cells
and mesangium [52] and react with RAGEs, exacerbating inflammation [53]. Moreover,
AGEs activate parietal epithelial cells, leading to thickening of the Bowman’s capsule
surrounding the glomerulus, altering the efficacy of renal filtration [35]. AGE4 causes
mitochondrial dysfunction and stress in endoplasmic reticulum of nephrons [54]. Accumu-
lation of AGEs results in renal toxicity which gradually reduces the kidney filtration and
leads to chronic kidney disease [55]. Moreover, the level of fluorescent LMW-AGEs has
the significant relation with mortality in patients receiving chronic hemodialysis [56]. The
association between AGE10 and microangiopathy observed in current study was evident
solely in patients non-treated with aspirin.

The AGE10-reducing effect of aspirin agrees with previously reported drug im-pact on
AGE. Low-dose aspirin has been shown to reduce blood glucose level in animal models of
diabetes [57], therefore, reducing the rate of glycation strongly dependent on concentration
of glycating agents. Aspirin decreases AGE accumulated in tissues by blocking the renin-
angiotensin system and reducing inflammation and generation of reactive oxygen species
(ROS) in addition to maintaining glycemic control. Regarding ROS, aspirin [34] chelates
transition metals thus prevent Fenton reaction and can scavenge free carbonyls. Moreover,
aspirin prevents glycation of plasma proteins, including hemoglobin, but the molecular
mechanism is not fully understood. Probably, aspirin acetylates free amino groups of a
protein, although it is likely only one aspect of its anti-glycation activity [36]. An example
of a glycation product, the formation of which is inhibited by aspirin, is pentosidine. The
aspirin action contributes to reduction of the amount of pentosidine in collagen preventing
retinopathy [37].
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The inverse relationship between AGE10 and kidney function observed here, that is, a
positive correlation with eGFR and negative with creatinine, might seem counter-intuitive
as AGE10 accumulates in pathological conditions. However, it is speculated that accelerated
AGE formation from plasma proteins might be a protective mechanism, allowing long-lived
proteins, such as extracellular matrix proteins, to avoid glycoxidative damage. Enolase, a
glycolytic enzyme may serve as an example. It can trap reactive dicarbonyls and form AGEs,
making other proteins less susceptible to modification. The concentration of enolase in the
cytosol of cells exceeds the level necessary for the course of glycolysis, and the excess of this
protein is used by the cell for other, non-enzymatic purposes [58,59]. Still, the impairment
of renal filtration is associated with proteinuria and therefore the excretion of AGE10 might
be accelerated. As such, it would be of interest to determine AGE10 concentrations in urine
of diabetic patients at various stages of kidney failure.

As an interest in AGEs as possible diagnostic markers is increasing, we tested the
discriminative power of this new epitope, AGE10, as an indicator of microangiopathy and
stage ≥3 chronic kidney disease. AGE10 had moderate overall accuracy, defined as area
under ROC curve expressed in %. At optimal cut-off, AGE10 occurred to be satisfactorily
sensitive marker but characterized by poor specificity, regardless, whether indicating
microangiopathy or stage ≥3 chronic kidney disease.

Although AGEs are potential biomarkers of various metabolic disorders because they
are diverse, persistent compounds, and their formation is intensified under oxidative and
carbonyl stress, they are present in blood in trace amounts. AGE10 is one of the few
AGEs for which a method of quantitative determination in biological material has been
developed. Many of them have so far been impossible to detect. Due to the fact that the
structure of the AGE10 epitope has not yet been known, it is not possible to determine
AGE10 using more sensitive methods, e.g., LC-MS mass spectrometry. Still, our study has
several limitations that ought to be mentioned. As the exact structure of AGE10 epitope
is only under investigation, the assay is utilizing its synthetic analogue—MAGE—the
structure of which has already been resolved [24]. Consequently, molecular mass of AGE10
remains unknown and its level has to ex-pressed in mass units. Regarding the devised
assay, a cross-reactivity with other AGEs has not been tested in the present paper but
specificity of anti-MAGE antibodies has previously been evaluated [24]. Anti-MAGE
antibodies have shown no cross-reactivity with proteins modified with lactose, glucose,
fructose, methylglyoxal or glyceraldehyde. Lastly, the developed ELISA is tested on non-
homogeneous cohort of patients with respect to diabetes type, severity and duration which
may affect study results presenting AGE10 association with diabetes complications.

5. Conclusions

Presented methods allowed for preparation of assay components (MAGE, LMW-
MAGE, murine monoclonal IgE anti-MAGE antibodies), necessary for developing the
competitive ELISA for AGE10 quantification. Applied in a cohort of diabetic patients,
the developed assay demonstrated AGE10 elevation in association with microangiopathy
while its decrease in stage ≥3 chronic kidney disease. Further studies are needed to resolve
structure of AGE10 and clarify its clinical relevance.
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