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ABSTRACT

The DMC1 protein, a meiosis-specific DNA recom-
binase, catalyzes strand exchange between homol-
ogous chromosomes. In rice, two Dmc1 genes,
Dmc1A and Dmc1B, have been reported. Although
the Oryza sativa DMC1A protein has been partially
characterized, however the biochemical properties
of the DMC1B protein have not been defined. In
the present study, we expressed the Oryza sativa
DMC1A and DMC1B proteins in bacteria and puri-
fied them. The purified DMC1A and DMC1B proteins
formed helical filaments along single-stranded DNA
(ssDNA) and double-stranded DNA (dsDNA), and
promoted robust strand exchange between ssDNA
and dsDNA over five thousand base pairs in the
presence of RPA, as a co-factor. The DMC1A and
DMC1B proteins also promoted strand exchange
in the absence of RPA with long DNA substrates
containing several thousand base pairs. In contrast,
the human DMC1 protein strictly required RPA to
promote strand exchange with these long DNA
substrates. The strand-exchange activity of the
Oryza sativa DMC1A protein was much higher than
that of the DMC1B protein. Consistently, the DNA-
binding activity of the DMC1A protein was higher
than that of the DMC1B protein. These biochemical
differences between the DMC1A and DMC1B pro-
teins may provide important insight into their func-
tional differences during meiosis in rice.

INTRODUCTION

Meiosis combines two successive rounds of nuclear divi-
sion, meiosis I and meiosis II, with a single round of DNA
replication to produce haploid gametes from diploid cells
in eukaryotes (1). Meiotic homologous recombination
occurs between homologous chromosomes during cell divi-
sion at meiosis I. This recombination between homologous
chromosomes ensures their correct segregation at meiosis
I through the formation of chiasmata, which physically
connect homologous chromosomes (1–3).

Meiotic homologous recombination is initiated by the
formation of a double-strand break (DSB), which is intro-
duced by the SPO11 protein (4–6). Single-stranded DNA
(ssDNA) tails are then produced at the DSB site, and they
invade the homologous double-stranded DNA (dsDNA).
This strand-invasion step, called homologous pairing,
forms new Watson–Crick base pairs (heteroduplex)
between the invading strand and its complementary
strand of parental dsDNA. After this homologous-pairing
step, the heteroduplex region is expanded by the subse-
quent strand-exchange step, to ensure correct pairing
between homologous chromosomes by extensive homol-
ogy matching between paired chromosomes. The
Escherichia coli RecA protein was the first enzyme found
to catalyze the homologous-pairing and strand-exchange
steps (7–10). Two RecA homologues, the RAD51 and
DMC1 proteins, have been identified in eukaryotes
(11–14), and they have also been shown to catalyze homol-
ogous pairing and strand exchange (15–21).

The RAD51 and DMC1 proteins bind to ssDNA
produced at DSB sites, and form extensive helical
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nucleoprotein filaments along the DNA (20–25), like
the RecA protein (26,27). These nucleoprotein filaments
capture intact dsDNA, and form the ternary complex
containing ssDNA and dsDNA within the filament. The
homologous-pairing and strand-exchange reactions are
accomplished by the ternary complex. Therefore, the abil-
ity to form a filament along DNA is an important property
for a RecA-type recombinase, such as the RAD51 and
DMC1 proteins.

The RAD51 protein is expressed in both meiotic
and mitotic cells (11,13), but the DMC1 protein is only
present in meiotic cells (12,14), suggesting that the DMC1
protein functions as a specific factor for meiotic homolo-
gous recombination. The DMC1 protein was first discov-
ered in yeast (12), and subsequently has been found in
many mammals (14) and plants (28–35). The knockout
of the dmc1 gene in the mouse causes asynapsis and
sterility (36,37), as in Dmc1-deficient yeast (12), and, in
Arabidopsis, mutations in the Dmc1 gene result in meiotic
defects (38). These facts indicate that the DMC1 protein is
actually an essential factor for meiotic recombination.

The yeast and mammalian genomes contain only one
Dmc1 gene. Among plants, the Arabidopsis genome also
contains a single Dmc1 gene. On the other hand, in rice,
two Dmc1 genes, Oryza sativa Dmc1A and Dmc1B, which
are located on chromosomes 12 and 11, respectively, have
been reported (32–35). An RNA interference study indi-
cated that the Dmc1A and Dmc1B genes are required for
the pairing between homologous chromosomes during
meiosis in rice (39). The individual functions of these
Oryza sativa Dmc1A and Dmc1B genes have not been
clarified yet, but differences in their expression profiles
during meiosis have been reported (34). Therefore, the
rice DMC1A and DMC1B proteins may have some dis-
tinct functions during meiosis.

Previously, the Oryza sativa DMC1A protein, purified
under denaturing conditions, was found to possess homol-
ogous-pairing activity with short oligonucleotides (40,41);
however, its recombinase activity, such as filament forma-
tion and extensive strand exchange, has not been studied
yet. In addition, no biochemical experiments have been
performed with the Oryza sativa DMC1B protein.
Therefore, in the present study, we purified the Oryza
sativa DMC1A and DMC1B proteins without denatura-
tion to evaluate their recombinase activities. We found
that the purified DMC1A and DMC1B proteins formed
helical filaments along DNA, and exhibited robust strand-
exchange activities in vitro.

MATERIALS AND METHODS

Protein preparations

TheOryza sativa Dmc1A andDmc1B genes were expressed
even in rice somatic cells, which were maintained on culture
medium containing an auxin, 2,4-dichlorophenoxyacetic
acid (2,4-D) (33,34). Accordingly, full-length cDNA
sequences encoding the Oryza sativa DMC1A and
DMC1B proteins (NCBI accession nos. AB079873 and
AB079874, respectively) were amplified from total RNA
preparations from the cultured cells of rice (O. sativa,

cv. Nipponbare), by using the standard protocols for
reverse transcription PCR (RT-PCR) and rapid ampli-
fication of cDNA ends (50-RACE and 30-RACE). The
DNA fragments containing the Oryza sativa Dmc1A and
Dmc1B coding sequences were then inserted into the
pZErO-2 plasmid (Invitrogen, Carlsbad, CA, USA), and
were further subcloned into the NdeI-BamHI sites of
the pET-15b vector (Novagen, Darmstadt, Germany).
These Oryza sativa DMC1A and DMC1B expression vec-
tors were introduced into the Escherichia coli strain BL21-
CodonPlus(DE3)-RIL (Stratagene, La Jolla, CA, USA) or
the E. coli recAD strain BLR(DE3) (Novagen, Darmstadt,
Germany) supplemented with the CodonPlus-RIL plas-
mid. The cells harboring the DMC1A and DMC1B expres-
sion vectors were cultured at 378C in 5 l of LB medium
supplemented with 0.5% glucose, ampicillin and chloram-
phenicol. The protein expression was induced by adding
IPTG to a final concentration of 1mM, when the OD600

of the culture was about 0.5, and the incubation tempera-
ture was decreased to 258C. We tested the induction of
DMC1A or DMC1B protein expression at 18, 25 and
308C, and confirmed that there are few differences in the
protein production under these temperature conditions.
We then compared the solubility of the DMC1A proteins
produced under the 18 and 258C conditions, and found that
the protein generated under the 258C conditions bound
more effectively to the Ni-beads. Therefore, we employed
the 258C conditions for the protein expression. The cells
were harvested after an overnight incubation (12–18 h),
and the cell pellet was frozen at �808C. The DMC1A and
DMC1B proteins were produced as hexahistidine-tagged
proteins. The cell pellet was thawed, and was suspended
in buffer A [50mM Tris-HCl (pH 8.0 at 258C), 500mM
NaCl, 1mM DTT, 10% glycerol] supplemented with
10mM imidazole and 1mM PMSF. The cells were dis-
rupted by sonication, and the insoluble fraction was
removed by centrifugation at 48C. The supernatant was
mixed with 2ml of Ni-Sepharose 6 Fast Flow resin
(GE Healthcare Bio-sciences, Uppsala, Sweden) for
60min at 48C, and was packed into an empty column.
The hexahistidine-tagged DMC1A and DMC1B proteins
bound to the Ni-Sepharose resin were eluted with an 80ml
linear gradient of 10–500mM imidazole in buffer A.
Fractions containing the DMC1A and DMC1B protein
were collected, and the hexahistidine tag was removed
with thrombin protease (1 unit per mg of the DMC1A or
DMC1B protein; GE Healthcare Bio-sciences, Uppsala,
Sweden) during overnight dialysis against buffer B
[20mM Tris-HCl (pH 8.0 at 258C), 2mM 2-mercapto-
ethanol, 0.25mMEDTA, and 10% glycerol] supplemented
with 400mM KCl (for the DMC1A protein) or 100mM
KCl (for the DMC1B protein). Removal of the hexahisti-
dine tag was confirmed by SDS-PAGE. The DMC1A
sample, but not the DMC1B sample, was centrifuged at
10 000 r.p.m. for 5min to remove aggregates, and the super-
natant was diluted with the same volume of buffer C
[20mM Tris-HCl (pH 8.0 at 258C), 1mM DTT, 0.25mM
EDTA and 10% glycerol]. The sample was then applied to
a ToyoScreen AF-Heparin HC-650M 5-ml column
(TOSOH, Tokyo, Japan). The DMC1A and DMC1B
proteins were eluted with a 40ml linear gradient of
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0.2–1.1M KCl (0.1–1.1M KCl for the DMC1B protein) in
buffer C, and the fractions containing the proteins were
collected. The KCl concentration of the DMC1A and
DMC1B protein solutions was adjusted to 500mM with
buffer C containing 2M KCl, and the proteins were con-
centrated with an Amicon Ultra-15 centrifugal filter device
(30 000 NMWL;Millipore, Billerica, MA, USA). The puri-
fied DMC1A and DMC1B proteins were dialyzed against
buffer D [20mM HEPES-KOH (pH 7.5 at 258C), 500mM
KCl, 1mM DTT and 10% glycerol]. Aliquots of the
purified DMC1A and DMC1B proteins were frozen in
liquid N2, and were stored at �808C. We confirmed that
freezing did not affect the DNA-binding activities of the
proteins. The human DMC1 protein was purified by the
method described previously (42), except for the use of
Ni-Sepharose resin and a ToyoScreen AF Heparin
column (TOSOH, Tokyo, Japan), instead of the Ni-NTA
agarose resin (QIAGEN, Hilden, Germany) and the
Heparin-Sepharose column (GE Healthcare Bio-sciences,
Uppsala, Sweden), respectively. Human RPA was expres-
sed in E. coli cells, and was purified according to the pub-
lished protocol (43). The protein concentration was
determined using the Bradford method, with bovine
serum albumin (Nacalai Tesque, Kyoto, Japan) as the
standard.

MALDI-TOF-MS analysis

One microliter of 5% trifluoroacetic acid (TFA) was
added to 10 ml of a 1mg/ml Oryza sativa DMC1A or
DMC1B protein sample, and the mixture was bound to
a ZipTip (C18) pipette tip (Millipore, Billerica, MA,
USA). After the protein was bound, the tip was first
rinsed with 0.1% TFA and 5% methanol, and then
rinsed with 0.1% TFA. The DMC1A or DMC1B protein
was eluted with 0.1% TFA and 80% acetonitrile, and was
deposited onto the sample plate, which was precoated with
a dried layer of sinapic acid (Sigma-Aldrich, St Louis,
MO, USA). A MALDI-TOF mass spectrometry analysis
was performed with an AXIMA-CFR mass spectrometer
(Kratos Analytical, Manchester, UK). Bovine carbonic
anhydrase II was used as a standard protein for external
calibration. Each single spectrum was obtained as an accu-
mulation of 250 laser shots.

DNA substrates

fX174 virion DNA (circular ssDNA) and fX174 RF I
DNA (supercoiled dsDNA) were purchased from New
England Biolabs (Ipswich, MA, USA). fX174 linear
dsDNA was prepared by digesting fX174 RF I DNA at
the PstI site. All DNA concentrations are expressed in
moles of nucleotides.

The strand-exchange assay

The Oryza sativa DMC1A protein, the DMC1B protein,
and the human DMC1 protein were each incubated with
25 mM fX174 circular ssDNA at 378C for 10min. After
this incubation, 1 ml of 20 mM RPA was added to the reac-
tion mixture, which was incubated at 378C for 10min. The
reactions were then initiated by the addition of 1 ml of
200mM fX174 linear dsDNA in 10 ml of 28mM

HEPES-KOH buffer (pH7.5), containing 200mM KCl,
1mM DTT, 1mM ATP, 1mM MgCl2, 3% glycerol,
0.1mg/ml bovine serum albumin, 20mM creatine phos-
phate and 75 mg/ml creatine kinase, and were continued
for 1 h. It should be noted that a trace amount of nicked
circular dsDNA, which was not visible by ethidium bro-
mide staining but was detected by SYBR Gold staining,
was present as a contaminant in the fX174 linear dsDNA
used in this study. The reactions were stopped by the addi-
tion of 0.08% SDS and 0.4mg/ml proteinase K (Roche
Applied Science, Basel, Switzerland), and the samples
were further incubated at 378C for 20min. The deprotei-
nized reaction products were separated by 1% agarose
gel electrophoresis in 1� TAE buffer (ice-cold, 40mM
Tris-acetate and 1mM EDTA) at 3.0V/cm for 4 h. The
products were visualized by SYBR Gold (Invitrogen,
Carlsbad, CA, USA) staining. Band intensities were quan-
tified by an LAS-1000 imaging analyzer (Fujifilm, Tokyo,
Japan) equipped with the Image Gauge software (44).

Assays for DNA binding

The fX174 circular ssDNA (10 mM) or the linear fX174
dsDNA (10mM) was mixed with the Oryza sativa
DMC1A protein, the DMC1B protein or the human
DMC1 protein in 10 ml of a standard reaction solution,
containing 20mM HEPES-KOH (pH 7.5), 1mM DTT,
0.1mg/ml bovine serum albumin, 1mM MgCl2, 200mM
KCl, 4% glycerol and 1mM ATP. The reaction mixtures
were incubated at 378C for 10min, and were then analyzed
by 0.8% agarose gel electrophoresis in 1� TAE buffer at
3.0V/cm for 3 h. The bands were visualized by SYBR
Gold (for ssDNA) or ethidium bromide (for dsDNA)
staining. In the competitive DNA binding assay, the
fX174 circular ssDNA (20mM) and the supercoiled
fX174 dsDNA (20mM) were mixed with the Oryza
sativa DMC1A protein, the DMC1B protein, or the
human DMC1 protein in 10 ml of a standard reaction solu-
tion, containing 28mM HEPES-KOH (pH 7.5), 200mM
KCl, 1mM DTT, 1mM ATP, 1mM MgCl2, 4% glycerol
and 0.1mg/ml bovine serum albumin. The reaction mix-
tures were incubated at 378C for 10min, and were then
analyzed by 1% agarose gel electrophoresis in 1� TAE
buffer at 3.0V/cm for 4 h. The bands were visualized by
SYBR Gold staining.

ATPase activity

The Oryza sativa DMC1A protein, the DMC1B protein,
and the human DMC1 protein, purified from the E. coli
recAD strain BLR(DE3) (Novagen, Darmstadt,
Germany), were each incubated with 1mM ATP
(Roche, ATP sodium salt) in 28mM HEPES-KOH
buffer (pH 7.5), containing 200mM KCl, 1mM MgCl2,
1mM DTT, 4% glycerol and 0.1mg/ml bovine serum
albumin, in the presence or absence of ssDNA (40 mM)
or dsDNA (40 mM). The reactions were performed at
378C. After a 10min pre-incubation in the absence of
ATP, the reactions were initiated by adding 1mM ATP.
At the indicated times, a 20 ml aliquot of the reaction mix-
ture was mixed with 30 ml of 100mM EDTA to quench
the reaction. The amount of inorganic phosphate released
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was determined by a colorimetric assay, as described
previously (45).

Electron microscopy

The Oryza sativa DMC1A and DMC1B proteins (1 mM)
were each mixed with fX174 replicative form II DNA
(1 mM) or fX174 circular ssDNA (1 mM) in 20mM
HEPES-KOH buffer (pH 7.5), containing 200mM KCl,
1mM MgCl2, 1mM DTT, 4% glycerol and 1mM ATP or
1mM ATPgS, and were incubated for 15min at 378C.
Samples (3 ml) were adsorbed on a carbon coated Cu
grid (400 meshes per inch), which was subjected to glow
discharge for 20 s, and were stained with 2% uranium
acetate. The samples were examined with a JEM2000FX
electron microscope (JEOL, Tokyo, Japan).

RESULTS

Purification of theOryza sativaDMC1A and DMC1B
proteins without denaturation

The rice genome encodes two Dmc1 genes, Dmc1A and
Dmc1B (32–35). In the present study, we purified the
Oryza sativa DMC1A and DMC1B proteins. The Oryza
sativa Dmc1A and Dmc1B genes were cloned by RT-
PCR, and the predicted amino acid sequences are shown
in Figure 1A. The DMC1A protein was overexpressed in
Escherichia coli cells as a fusion protein, with anN-terminal
hexahistidine tag (His6 tag) containing a cleavage site for
thrombin protease (Figure 1B, lane 3). Although a substan-
tial amount of the DMC1A protein was present in the
soluble fraction, a large amount of the protein still
remained in the insoluble fraction (Figure 1B, lane 4).

Figure 1. Purification of the Oryza sativa DMC1A and DMC1B proteins. (A) Amino acid sequences of the Oryza sativa DMC1A and DMC1B
proteins, and the human DMC1 protein. The sequences were aligned with the ClustalX software (65), and the figure was produced with the
BOXSHADE program. Black and gray boxes indicate identical and similar amino acid residues, respectively. Black dots above the sequences
denote the non-conserved amino acid residues between the DMC1A and DMC1B proteins. (B) Purification of the DMC1A protein. Proteins
from each purification step were analyzed by SDS-PAGE with Coomassie Brilliant Blue staining. Lane 1, the molecular mass markers; lane 2,
the whole cell lysate without IPTG; lane 3, the whole cell lysate with IPTG; lane 4, the soluble fraction of the cell lysates; lane 5, the Ni-Sepharose
fraction; lane 6, the Ni-Sepharose fraction after thrombin protease treatment; lane 7, the ToyoScreen AF-Heparin HC-650M fraction. (C) The
purified Oryza sativa DMC1A, Oryza sativa DMC1B and human DMC1 proteins. Lane 1, the molecular mass markers; lane 2, the human DMC1
protein (1mg); lane 3, the Oryza sativa DMC1A protein (1mg); lane 4, the Oryza sativa DMC1B protein (1 mg).
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We purified the DMC1A protein from the soluble fraction
by a method including Ni-Sepharose column chromatogra-
phy, removal of the hexahistidine tag from the DMC1A
portion with thrombin protease, and ToyoScreen AF-
Heparin column chromatography (Figure 1B, lanes 5–7).
The DMC1B protein was also purified by a procedure simi-
lar to that used for the DMC1A protein (Figure 1C).
We then measured the molecular masses of these Oryza

sativa DMC1A and DMC1B proteins by mass spectro-
scopic analyses. The molecular masses predicted from
the amino acid sequences of the recombinant DMC1A
and DMC1B proteins are 37 824 daltons and 37 885 dal-
tons, respectively. We performed the mass spectroscopic
measurements six times. The average molecular mass of
the DMC1A protein was 37 817 daltons, with a standard
deviation (SD) of 14.9. On the other hand, the average
molecular mass of the DMC1B protein was 37 903 dal-
tons, with an SD value of 22.1. These results indicated
that the purification method established in this study pro-
duced the correct DMC1A and DMC1B proteins.
As shown in Figure 2A, the purified DMC1A and

DMC1B proteins hydrolyzed ATP in the presence of
ssDNA. To eliminate the possibility of RecA contamina-
tion in the purified DMC1A and DMC1B fractions, we
tested the ssDNA-dependent ATPase activities of the
DMC1A and DMC1B proteins purified from E. coli
cells lacking the recA gene. Like the human DMC1 pro-
tein, the DMC1A and DMC1B proteins hydrolyzed ATP
less efficiently in the presence of dsDNA (Figure 2B).
The kcat values of the ssDNA-dependent ATP hydrolysis
by the DMC1A and DMC1B proteins were about
0.7min�1 and 0.8min�1, respectively. The reported kcat
values of the human DMC1 protein were 1.5min�1 (18)
and 0.6min�1 (21), while that of the Saccharomyces cere-
visiae Dmc1 protein was 0.7min�1 (19). Therefore, the
DMC1A and DMC1B proteins possess similar levels of
ATPase activity, as compared to the human DMC1 and
S. cerevisiae Dmc1 proteins.

Filament formation by theOryza sativaDMC1A
and DMC1B proteins

The DMC1 protein alone reportedly forms a ring struc-
ture (20,25,42,46), and binds to DNA as stacked rings
(20,21,25,46,47). The DMC1 protein also forms a helical
filament structure on DNA in the presence of ATP (20,21).
The DMC1 filament formed along ssDNA in an ATP-
dependent manner is considered to be the active form
for homologous pairing and strand exchange (20). We
tested whether the Oryza sativa DMC1A and DMC1B
proteins could form the helical filament along ssDNA.
Our electron microscopic analyses revealed that the
DMC1A and DMC1B proteins formed helical filaments
with ssDNA in the presence of ATP (Figure 3A and B).
The formation of nucleoprotein filaments by the DMC1A
and DMC1B proteins with ssDNA was also observed in
the presence of ATPgS (Figure 3C and D), but not in the
absence of nucleotide cofactors. DMC1A and DMC1B
also formed filaments with dsDNA (Figure 3E).
Therefore, these results indicated that the DMC1A and
DMC1B proteins form nucleoprotein filaments along
DNA, like the human DMC1 protein.

Strand exchange activity of theOryza sativaDMC1A
and DMC1B proteins

We further studied the strand-exchange activities of the
DMC1A and DMC1B proteins. The DMC1A protein
reportedly promoted strand exchange with short oligonu-
cleotides (41). In the present study, we studied the reaction
with DNA substrates containing several thousand base
pairs, in which extensive unidirectional migration of the
DNA branch formed between ssDNA and dsDNA is pro-
moted (9,10).

To test the extent of the strand-exchange activity of
the DMC1A and DMC1B proteins, fX174 phage
circular ssDNA (5386 bases) and linearized fX174
dsDNA (5386 base pairs) were used as DNA substrates.
With this combination of DNA substrates, two reaction

Figure 2. The ATPase activities of the Oryza sativa DMC1A and DMC1B proteins. (A) The ssDNA-dependent ATPase activities of the DMC1A and
DMC1B proteins. Time course experiments are shown. Circles and squares indicate experiments with the Oryza sativa DMC1A and DMC1B
proteins, respectively. Closed symbols with solid lines and open symbols with broken lines indicate experiments in the presence and absence of
ssDNA, respectively. (B) The dsDNA-dependent ATPase activities of the DMC1A and DMC1B proteins. Time course experiments are shown.
Closed symbols with solid lines and open symbols with broken lines indicate experiments in the presence and absence of dsDNA, respectively.
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products were detected: a joint molecule between ssDNA
and dsDNA (JM) and a nicked circular DNA (NC)
(Figure 4A). The strand exchange must be promoted
over a span of five thousand base pairs to form the NC
product, a complete strand-exchange product, which is
generated by the extensive branch migration activity of
the DMC1 proteins (Figure 4A). The strand-exchange
reactions were conducted in the presence of RPA
(2 mM), which is an essential factor for the strand
exchange mediated by the human DMC1 protein (20,21).

As shown in Figure 4B–D, the DMC1A and DMC1B
proteins exhibited robust strand-exchange activity. The
strand-exchange activity of the DMC1A and DMC1B
proteins was not detected in the absence of ATP
(Supplementary Figure 1). The strand-exchange reactions
were conducted in the presence of 200mM KCl, which is
required to efficiently promote the strand-exchange reac-
tion by the human DMC1 protein (20). We tested the KCl
requirement for the Oryza sativa DMC1A protein, and
found that a 200mM KCl concentration is also suitable
for the strand-exchange reaction by the protein
(Supplementary Figure 2). A significant amount of the
NC product was formed in the reactions containing the

DMC1A and DMC1B proteins (Figure 4B and D), as
compared to the reactions with the human DMC1 protein,
indicating that the DMC1A and DMC1B proteins could
promote strand exchange over five thousand base pairs.
The human DMC1 protein purified from insect cells
reportedly formed the strand-exchange products with
about 25% of the input DNAs, in the presence of excess
amounts of the protein (20). Our human DMC1 protein
purified from bacterial cells formed the JM products with
about 30% of the input DNAs, with excess amounts of the
protein (10 mM), indicating that the human DMC1 protein
used for the control experiments of this study was as active
as the protein purified from insect cells (20).
No synergistic action in the strand-exchange reaction

was observed when the DMC1A and DMC1B proteins
co-existed in various stoichiometries, although an additive
effect was seen (Figure 5A). Intriguingly, the DMC1A and
DMC1B proteins promoted strand exchange in the
absence of RPA, whereas the human DMC1 protein
strictly required RPA to promote strand exchange
(Figure 5B). Therefore, the DMC1A and DMC1B pro-
teins promote strand exchange more efficiently than the
human DMC1 protein.

Figure 3. Electron microscopic images of the Oryza sativa DMC1A and DMC1B filaments. The DMC1A (A and C) and DMC1B (B and D)
filaments in the presence of fX174 circular ssDNA and ATP (A and B) or ATPgS (C and D). (E) The DMC1A and DMC1B filaments in the
presence of fX174 form II DNA and ATPgS. The black bar denotes 100 nm.
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DNA-binding activity of theOryza sativaDMC1A
and DMC1B proteins

We next tested the DNA-binding activities of the DMC1A
and DMC1B proteins. A gel mobility shift assay revealed
that both the DMC1A and DMC1B proteins bound to
ssDNA in the presence of ATP with higher affinity than
the human DMC1 protein (Figure 6A). These DNA-
binding properties of the DMC1A and DMC1B proteins
were not affected by omitting ATP (Supplementary
Figure 3). Under these reaction conditions, 4 mM of
the DMC1A and DMC1B proteins saturated 10 mM
of the ssDNA (Figure 6A, lanes 9 and 14). Therefore, the
DMC1A and DMC1B proteins bind to ssDNA with a
stoichiometry of about 3 nucleotides per monomer, like
the other RecA-family proteins. DMC1A and DMC1B
concentrations of about 1.0mM were sufficient for binding
50% of the input ssDNA to the protein (Figure 6B). On the
other hand, the dsDNA-binding activities of the DMC1A
and DMC1B proteins were not significant, as compared
to that of the human DMC1 protein (Figure 6C and D).
The DMC1A-DNA complexes migrated more slowly
than the DMC1B-DNA complexes (Figure 6A and C).

These results suggested that the DMC1A protein binds
to DNA more cooperatively than the DMC1B protein.
Consistently, the strand-exchange activity of the DMC1A
protein was also higher than that of the DMC1B protein,
under the conditions without RPA (Figure 5B). A compet-
itive DNA-binding assay revealed that the DMC1A and
DMC1B proteins preferentially bound to ssDNA under
the conditions used in the strand-exchange experiments
(Figure 7), although the bands corresponding to the
DMC1B-ssDNA complexes overlapped with the free
dsDNA bands (lanes 10–12). In contrast, the human
DMC1 protein did not exhibit a binding preference to
either ssDNA or dsDNA under these reaction conditions
(Figure 7, lanes 2–4). The high affinity binding and the
marked preference for ssDNA by the DMC1A and
DMC1B proteins may alleviate the requirement for RPA
during the strand-exchange reaction.

DISCUSSION

In the homologous recombination processes, the strand-
exchange step may play an essential role to ensure the

Figure 4. The strand-exchange activities of the Oryza sativa DMC1A and DMC1B proteins. (A) A schematic diagram of the strand-exchange assay.
(B) The strand-exchange assay in the presence of RPA. The Oryza sativa DMC1A, Oryza sativa DMC1B and human DMC1 proteins were each
incubated with fX174 circular ssDNA at 378C for 10min. After the addition of RPA, fX174 linear dsDNA was added to initiate the reaction. The
reactions were continued for 60min. The DNA products were then deproteinized, and were separated by agarose gel electrophoresis. The joint
molecules and the nicked circular products are indicated by JM and NC, respectively. Lanes 1–4, human DMC1; lanes 5–8, DMC1A; lanes 9–12,
DMC1B. The concentrations of the DMC1A, DMC1B and human DMC1 proteins were 0 mM (lanes 1, 5 and 9), 2.5 mM (lanes 2, 6 and 10), 5 mM
(lanes 3, 7 and 11), and 10 mM (lanes 4, 8 and 12). (C and D) The band intensities of the JM (C) and NC (D) products in panel (B) were quantified as
the peak volumes of densitometric scans. The ratios (%) of the products relative to the sum total of the peak volumes of all DNAs are plotted
against the protein concentration. Average values from three independent experiments are shown with the standard error values. Circles, squares and
triangles indicate experiments with the DMC1A, DMC1B and human DMC1 proteins, respectively.
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correct pairing between homologous chromosomes, by
searching for extensive spans of homology between
paired DNA molecules, just after homologous pairing.
Therefore, extensive strand-exchange activity may be espe-
cially important for meiotic homologous recombination,
in which homologous chromosomes, but not sister chro-
matids, are utilized as substrates for recombination. The
DMC1 and RAD51 proteins are known to promote
strand exchange in eukaryotes, and the DMC1 protein
may play a specific role in the extensive strand exchange
during meiotic homologous recombination. The human
DMC1 protein was previously reported to promote exten-
sive strand exchange (20,21). However, extensive strand-
exchange activity over several thousand base pairs has not
been reported with the other DMC1 orthologues, thus far.
In the present study, we found that the Oryza sativa

DMC1A and DMC1B proteins exhibited robust strand
exchange, and promoted it over five thousand base
pairs. Electron microscopic analyses revealed that the
DMC1A and DMC1B proteins formed the helical nucleo-
protein filament, which is considered as the active form for
strand exchange (20,21). Interestingly, the DMC1A and
DMC1B proteins did not require RPA to promote
strand exchange with long ssDNA and dsDNA substrates,
although the human DMC1 protein strictly requires RPA
(20,21). These results suggest that the DMC1A and
DMC1B filaments possess stronger strand-exchange activ-
ity than the human DMC1 protein.
The DMC1 protein is highly conserved among yeasts,

vertebrates and plants. Only one Dmc1 gene was found in
genomes of yeasts and vertebrates; however, in rice, two
Dmc1 genes, Dmc1A and Dmc1B, have been reported
(32–35). The Dmc1A and Dmc1B genes are considered to
have duplicated about 7 million years ago (49,50). These
two Dmc1A and Dmc1B genes display different expression
profiles during meiosis (34), suggesting that the DMC1A
and DMC1B proteins have distinct functions. In the
present study, we found that the DMC1A and DMC1B
proteins both exhibited robust strand-exchange activity;
however, the strand-exchange activity of the DMC1A pro-
tein was obviously higher than that of the DMC1B protein.
Consistently, the DMC1A protein displayed higher coop-
erative DNA-binding activity than the DMC1B protein.
The DMC1A and DMC1B proteins used in the present

study have only five amino acid differences. These amino
acid residues are Ser8/Asp8, Ile93/Met93, Lys117/Glu117,
Ala150/Thr150 and Leu288/Pro288 (DMC1A/DMC1B).
According to the structures of the RecA/Rad51/Dmc1
family proteins, these residues are expected to be located
on the solvent surface. The Leu288/Pro288 residue is
located in the L2-DNA binding region, suggesting that
this residue may be directly involved in the DNA-binding

Figure 5. Additive action and effect of RPA in the strand-exchange activ-
ities of the Oryza sativa DMC1A and DMC1B proteins. (A) The strand-
exchange assay in the presence of various amounts of the DMC1A and
DMC1B proteins. The indicated amounts of the DMC1A and DMC1B
proteins (total 5mM) were incubated with fX174 circular ssDNA at 378C
for 10min. After the addition of RPA, fX174 linear dsDNA was added
to initiate the reaction. The reactions were continued for 60min. Lane 1,
no DMC1; lane 2, 10 mM human DMC1; lanes 3–8, DMC1A; lanes 9–12,
DMC1A and DMC1B mixture, lanes 13–18, DMC1B. (B) The

strand-exchange assay in the absence of RPA. The DMC1A, DMC1B
and human DMC1 proteins were each incubated with fX174 circular
ssDNA at 378C for 10min. Then, fX174 linear dsDNA was added to
initiate the reaction. The reactions were continued for 60min. Lanes 3–6,
human DMC1; lanes 7–10, DMC1A; lanes 11–14, DMC1B. Lanes 1, 3, 4,
7, 8, 11 and 12 are control experiments with RPA. Lanes 2, 5, 6, 9, 10, 13
and 14 are experiments without RPA. The concentrations of the DMC1A,
DMC1B and human DMC1 proteins were 0 mM (lanes 1 and 2), 5 mM
(lanes 3, 5, 7, 9, 11 and 13), and 10 mM (lanes 4, 6, 8, 10, 12 and 14).
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activity of the DMC1A and DMC1B proteins. The most
drastic amino acid difference is between the DMC1A-
Lys117 (basic amino acid) and DMC1B-Glu117 (acidic
amino acid) residues. The Lys117/Glu117 and Ala150/
Thr150 residues are located close to the Walker A-motif
for ATP binding. Recently, the crystal structures of RecA-
DNA complexes revealed that the ssDNA and the ATP
bind to RecA-RecA interfaces within the active filament
form (51). Therefore, the Lys117/Glu117 and Ala150/
Thr150 residues may indirectly affect the ssDNA binding
by the DMC1A and DMC1B proteins. These biochemical
differences between the DMC1A and DMC1B proteins
found in the present study may be the key to understanding
the functional differences of these proteins during meiosis
in rice.
The strand-exchange activity of the DMC1 proteins was

reportedly stimulated by their cognate co-factors (52–57).
These factors include proteins that may function on the
chromatin structure, such as RAD54 and its related

proteins (58–64). It is also possible that the DMC1A
and DMC1B proteins interact with different co-factors
in vivo, and these five amino acid differences may be
responsible for such specific interactions of the DMC1A
and DMC1B proteins with their cognate co-factors.
Proteomics or/and comprehensive two-hybrid analyses
will be useful to identify the co-factors that specifically
interact with the DMC1A and DMC1B proteins.
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