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Summary
Background Adolescent idiopathic scoliosis (AIS) is the most common type of spinal disorder affecting children. Clinical
screening and diagnosis require physical and radiographic examinations, which are either subjective or increase ra-
diation exposure. We therefore developed and validated a radiation-free portable system and device utilising light-based
depth sensing and deep learning technologies to analyse AIS by landmark detection and image synthesis.

Methods Consecutive patients with AIS attending two local scoliosis clinics in Hong Kong between October 9, 2019,
and May 21, 2022, were recruited. Patients were excluded if they had psychological and/or systematic neural dis-
orders that could influence the compliance of the study and/or the mobility of the patients. For each participant, a Red
Green Blue-Depth (RGBD) image of the nude back was collected using our in-house radiation-free device. Manually
labelled landmarks and alignment parameters by our spine surgeons were considered as the ground truth (GT).
Images from training and internal validation cohorts (n = 1936) were used to develop the deep learning models.
The model was then prospectively validated on another cohort (n = 302) which was collected in Hong Kong and
had the same demographic properties as the training cohort. We evaluated the prediction accuracy of the model
on nude back landmark detection as well as the performance on radiograph-comparable image (RCI) synthesis.
The obtained RCIs contain sufficient anatomical information that can quantify disease severities and curve types.

Findings Our model had a consistently high accuracy in predicting the nude back anatomical landmarks with a less than
4-pixel error regarding the mean Euclidian and Manhattan distance. The synthesized RCI for AIS severity classification
achieved a sensitivity and negative predictive value of over 0.909 and 0.933, and the performance for curve type
classification was 0.974 and 0.908, with spine specialists’ manual assessment results on real radiographs as GT. The
estimated Cobb angle from synthesized RCIs had a strong correlation with the GT angles (R2 = 0.984, p < 0.001).

Interpretation The radiation-free medical device powered by depth sensing and deep learning techniques can provide
instantaneous and harmless spine alignment analysis which has the potential for integration into routine screening
for adolescents.
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Introduction
Scoliosis is a three-dimensional (3D) deformity of the
spine defined as a Cobb angle1 (CA: measured by an
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synthesis
*Corresponding author. 5/F, Professorial Block, Queen Mary Hospital, Pokf
**Corresponding author. Department of Orthopaedics and Traumatology, T

E-mail addresses: cheungjp@hku.hk (J.P.Y. Cheung), tgzhang@hku.hk (T

www.thelancet.com Vol 61 July, 2023
angle formed by the upper endplate of the uppermost
tilted vertebra and the lower endplate of the lowermost
tilted vertebra of the structural curve) greater than 10◦
radiograph-comparable image; CA, Cobb angle; MIS, medical image
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Research in context

Evidence before this study
PubMed was searched on August 29, 2022 for all research
articles containing the terms “artificial intelligence” OR “deep
learning” AND “radiation-free” OR “no-radiation” AND
“scoliosis”, without any date or language restrictions. Cited
references in the retrieved articles were further searched. Only
six relevant studies were identified that explored radiation-
free techniques based on ultrasound images, back surface
point clouds and RGB images as medical data for spine
alignment analysis. Most of these studies suffered from data
scarcity and were validated in small cohorts without
prospective validation. To date, no study has explored the
potential of deep learning for medical image synthesis (MIS)
using non-medical imaging modality data.

Added value of this study
To our knowledge, this study is the first to develop a non-
radiation medical device powered by deep learning models for
accurate anatomical landmark detection and realistic
radiographic-comparable images (RCIs) synthesis using optical
and depth images. Furthermore, the synthesised RCIs can be
used to estimate the Cobb angle and the estimated results
have excellent agreement and correlation with the ones

calculated from real radiographs. Our work contributes to the
potential usage of fast and harmless assessments of scoliosis
in clinics, underscores the value of light-based depth sensing
techniques in scoliosis diagnosis and treatment, and provides
insight into a new direction of research for non-radiation
bone alignment assessment. Our model achieved satisfactory
clinical performance with prospective evaluation.

Implications of all the available evidence
A non-radiation device with the deep learning powered
analysis platform can provide rapid and harmless examination
of spine and has the potential for integration into routine
screening of adolescents. Our study demonstrates a promising
performance of using light-based depth sensing techniques in
conjunction with deep learning for scoliosis analysis. This
screening tool may be of use in resource-constrained or
remote regions, such as those with a shortage of radiographic
medical imaging devices or specialists. An additional
international multi-centre trial is needed to assess the impacts
of demographic variables, such as body-mass index and skin
colour, and improve the reliability of our system and device
before clinical use.
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on standing plain radiographs. Among all types of
scoliosis (i.e., idiopathic, congenital, neuromuscular,
and syndromic), adolescent idiopathic scoliosis (AIS) is
most common in the paediatric population, with a
prevalence up to 2.2% of boys and 4.8% of girls2,3 in
Hong Kong. Untreated cases may progress rapidly
during the pubertal growth spurt, causing body disfig-
urement, cardiopulmonary compromise, and back
pain.4,5 In addition, the degeneration of the spine may
damage the surrounding muscles, ligaments and joint
structures which can worsen pain and cause additional
physical limitations. Early detection and interventions to
prevent curve progression is therefore critical.6

Screening using forward bending assessment and
scoliometer measurement are the main options to iden-
tify individuals with AIS.7,8 Radiographic examination is
the reference standard to quantify AIS severity and curve
types.9 AIS follow-up and progression monitoring require
repetitive radiographic examinations.10 Children are
especially sensitive to radiation due to higher metabolic
activity of their cells.11 Thus, accurate and radiation-free
approaches12 for spine alignment analysis is desirable.

Non-radiation techniques for scoliosis assessment
have been studied for years. Previous methods include
3-dimensional ultrasound,13 digital inclinometer,14 ras-
terstereography15 and electrogoniometer.16 Deep
learning has made considerable progress in image
generation and transformation.17,18 Clinically, such
techniques have been used for medical image synthesis
(MIS) to facilitate the clinical workflow,19,20 for example,
treatment planning21 and PET attenuation correction.22

Despite the diverse applications, most of the studies
focused on image synthesis between two medical mo-
dalities,23,24 and seldom explored the feasibility of image
synthesis between medical and optical imaging systems.

We aim to accurately quantify AIS spine malalign-
ment with no radiation. Thus, Light-Based Radiograph-
Comparable Image (RCI) Synthesis was explored, and a
deep learning approach to synthesize RCI from nude
back images containing RGB and depth information
(RGBD) was developed (Fig. 1a). Different from the
previous techniques, our models generate synthesized
RCI containing anatomical morphology information of
the spine to accurately quantify spinal alignment. We
prospectively validated the reliability of our models with
multiple tasks in two clinics, including back landmark
auto-detection, RCI synthesis, and scoliosis severity and
curve type classification. Our technology has the potential
to facilitate radiation-free, fast, and accurate AIS analysis.

Methods
Data collection and preparation
From October 9, 2019, to January 15, 2022, all consecu-
tive patients with AIS aged between 10 and 18 years old
were recruited to form the training and internal valida-
tion dataset for the technology development. From
January 16, 2022, to May 21, 2022, consecutive patients
with AIS who attended two local clinics in Hong Kong
were recruited in our prospective testing dataset. Patients
were excluded if they had psychological and/or systematic
www.thelancet.com Vol 61 July, 2023
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Fig. 1: The pipeline of light-based RCI synthesis system and the demographics of data. a, Illustration of the pipeline of the light-based RCI
synthesis system. The system includes a pipeline consisting of 1) a RGBD and radiograph standardization module, 2) a back landmark detection
module, 3) a landmark guided RCI synthesis module and 4) a quantitative alignment analysis module. The first is implemented with rule-based
and adaptive algorithms to standardize the images, while the last three modules adopt deep learning techniques. b, Application and evaluation
of the AI system. RGBD images captured with the smartphone and our equipment are transmitted to the cloud data center and backend AI
server that hosting the light-based RCI synthesis and AlignPro system for analysis. Then, the results can be instantly transmitted and displayed
back to the smartphone and equipment. c, Proportion of different severity levels and genders in all participants. d, An example of aligned RGB,
depth and corresponding radiograph. Abbreviation definition: RCI: Radiograph-comparable image; RGB: Red green blue; RGBD: Red green blue-
depth; AI: Artificial intelligence.
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neural disorders that could influence the compliance of
the study and/or the mobility of the patients. Other
exclusion criteria were: 1) any trauma that might impair
posture and mobility, 2) severe dermatological conditions
that might impair the optical imaging results, and 3) any
known oncological disease. The dataset included patients
from two scoliosis clinics: 1) The Duchess of Kent Chil-
dren’s Hospital and 2) Queen Mary Hospital in Hong
Kong. The sex of each participant was determined in
terms of physiological characteristics (according to the
information on his/her ID card). For each patient, a
bareback RGBD image and a whole-spine standing
posteroanterior radiograph were acquired. The RGBD
imaging system consists of an RGBD camera,25 a portable
computer and a self-designed mobile stand
(Supplementary Fig. S1 and Supplementary Fig. S2). The
radiograph was acquired using the EOS™ (EOS® Im-
aging, Paris, France) biplanar stereoradiography ma-
chine. The differences between the two clinics are
minimal and a detailed study protocol was prepared to
guide the experimental settings and patient behaviours
when collecting data. To avoid any misoperation, the
involved technicians and clinical assistant were well-
trained before joining the study. The proposed system
consists of four modules (Fig. 1a): 1) a RGBD and
radiograph standardization module, 2) a back landmark
detection module, 3) a landmark guided RCI synthesis
module, and 4) a quantitative alignment analysis module.

Ethics
Institutional authority review board (UW15-596)
approval was obtained in the two local clinics in Hong
Kong and all participants were required to provide
written informed consent before joining this study.

Image pre-processing
Image pre-processing was conducted to standardize the
images and resolve the misalignment of RGBD images
and radiographs obtained from different imaging sys-
tems. A novel image registration algorithm was devel-
oped for this purpose to align the RGBD and
radiographs according to the landmarks of the 7th cer-
vical vertebra (C7) and the tip of coccyx (TOC) in ra-
diographs and RGBD images. To eliminate the capture
angle impacts when collecting RGBD images, random
sample consensus (RANSAC) was used to standardize
the image capture angle. Each captured image was
standardized according to the checkboard plane which
was placed perpendicular to the ground and beside the
patient (as shown in Supplementary Fig. S3a). Finally,
both aligned radiograph and RGBD image were cropped
to a 512 × 256 patch, only containing the back region (as
shown in Supplementary Fig. S3b).

Data labelling
For RGBD images, 6 anatomical landmarks on the
nude back were annotated according to experienced
surgeons’ recommendations, including 1) C7, 2) left
inferior scapular angle, 3) right inferior scapular an-
gles, 4) left posterior inferior iliac spine (PIIS), 5) right
PIIS, and 6) TOC (Fig. 1d). For radiographs, two
landmarks (i.e., C7 and TOC) were annotated as the
registration reference (Fig. 1d). All landmarks were
manually annotated by our spine surgeons with more
than 20 years of clinical experience. The CA of each
radiograph was manually labelled by two spine spe-
cialists. Measurements of the CAs had an absolute
inter-rater variability from 4 to 6 (mean = 4.5 ± SD 0.6)
between the two spine specialists.20

Definition of deformity severity, curve types
The severity of spine deformity was classified into 3
categories according to our clinical standard.26,27 Curves
with a CA larger than 40◦ were classified as severe,
between 20◦ and 40◦ were considered as moderate, be-
tween 0◦ and 20◦ were considered as normal-mild. The
deformity severity assessment standard and clinical
management are presented in Supplementary Table S1.
The curve type was regarded as thoracic (T) if the curve
apex was between the 1st and the 11th thoracic vertebrae
and considered as thoracolumbar or lumbar (TL/L) if
the curve apex was between the 12th thoracic vertebra
and the 5th lumbar vertebrae.

Light-based RCI synthesis system
The light-based RCI synthesis system consisted of a
back landmark detection module and an RCI synthesis
module (Supplementary Fig. S4). The back landmark
detection module adopted the modified HRNet back-
bone (Supplementary Fig. S5) to predict the 6 anatom-
ical landmarks. It utilised different branches to extract
multi-scale features from the images and then inte-
grated these features to achieve better model outputs.
The number of channels output by the module was 6
and each channel was a heatmap, providing the proba-
bility of the position of the landmark. The RCI synthesis
module adopted the CycleGAN framework but used
ResNet as the generator. It took the concatenation of the
RGBD images (4-channels) and the 6 detected landmark
heatmaps (6-channels), in total 10-channel data, as input
and outputs RCI image. The details of the ResNet model
and PatchGAN model can be found in Supplementary
Fig. S6.

The quantitative alignment analysis module utilised
the online platform (AlignPro27) for automatic CA pre-
diction. Both original radiographs and generated RCIs
were sent to the server of AlignPro and then we could
obtain the endplate landmarks of the end vertebrae
located in different spinal curves. The obtained land-
marks were further analysed and adjusted by our senior
clinicians to eliminate noise in the automatic pre-
dictions and fill the missing landmarks without refer-
ence to the original radiographs. The final output CAs
from this module were calculated according to the
www.thelancet.com Vol 61 July, 2023
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landmarks reviewed by the clinicians using the AlignPro
platform.

RGBD imaging device
The RGBD imaging device mainly consists of an RGBD
camera, a portable computer, and a self-designed mobile
stand. The RGBD camera is an Azure Kinect DK camera
which is used to record both appearance and depth in-
formation of the nude back. A portable computer (with
Windows OS, an Intel Core i5 CPU and 16 GB memory)
is connected to the camera and users can operate the
camera for RGBD image capturing and archiving
through our self-developed software. Both camera and
computer are installed on a portable stand for the con-
venience of users. The appearance of our device for data
collection is shown in Supplementary Fig. S1.

Performance metrics for landmark detection
Mean Euclidean distance (MED) and mean Manhattan
distance (MMD) were adopted as quantitative mea-
surements to evaluate the performance of the landmark
detection. MED measures the average Euclidean dis-
tance between the predicted landmark and GT land-
mark, while MMD also measures the average distance
along the axes. The definition of these two measure-
ments is:

MED= 1
N

∑N
n=1

( 1
M

∑M
i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(xi−x̂i )2+(yi−ŷi)2√ ), (1)

MMD= 1
N

∑N
n=1

( 1
M

∑M
i=1

(|xi − x̂i | +
⃒⃒
yi − ŷi

⃒⃒)), (2)

where denotes the coordinates of the GT landmark,
denotes the coordinates of the predicted landmark, M is
the number of landmarks and N is the patient number.

Quality metrics for the RCI synthesis
Five image quality metrics, namely Fréchet inception
distance (FID),28 Visual information fidelity (VIF),29

Learned perceptual image patch similarity (LPIPS),30 Nat-
ural image quality evaluator (NIQE),31 and Blind/refer-
enceless image spatial quality evaluator (BRISQUE),32

were selected to evaluate the RCI synthesis performance
(details refer to Supplementary Section 2.2).

Statistical analysis
To evaluate the performance of our model on back
landmark detection, we analysed the statistics and error
distribution for each landmark using violin plot, box
plot, and scatter plot in Fig. 2. The error was measured
using MED and MMD. The box plot indicates the 1st,
2nd, and 3rd quartile (Q1, Q2 and Q3), interquartile
range (IQR), minimum and maximum value (exclude
www.thelancet.com Vol 61 July, 2023
the outliers) of the data points. The violin plot provides
an intuitive view of the error distribution. The region
smaller than zero was cropped due to the nonnegativity
of MED and MMD. Meanwhile, the region larger than
the 95th percentile was also cropped to ignore the out-
liers. The scatter plot shows how the error data points
distributed along the y-axis.

To quantitatively assess the validity of the CA pa-
rameters estimated from the synthesized RCI, linear
regression and Bland–Altman analysis were conducted.
In the regression plot (Fig. 4a), the regression line (blue
line), 95% confidence interval line (green dashed line) of
the predictions, and the ideal correspondence (red line)
between the predicted CAs on synthesized RCIs and GT
radiographs are presented. The Bland–Altman analysis
was performed between the mean of the predicted CAs
on RCIs and GT radiographs and their residual to assess
the agreement between them.

Three classification tasks, namely severity grading (3
types: normal-moderate, moderate, and severe), curve
detection, and the curve type prediction (2 types: T and
TL/L), were assessed using confusion matrix analysis
(Fig. 4c–f). For curve detection, we distinguished the
patients from healthy controls according to the normal
range of CA (CA <10◦). To evaluate the severity grading
and curve type classification performance of our deep
learning model, five statistical measurements were
calculated, including sensitivity (Sn), specificity (Sp),
precision (Pr), negative predictive value (NPV), and ac-
curacy (Acc) according to the following equations:

Sn= TP
TP+FN , (3)

Sp= TN
TN+FP , (4)

Pr= TP
TP+FN , (5)

NPV= TP
TP+FN , (6)

Acc = TP+TN
TP+FP+TN+FN, (7)

where TP, TN, FP, and FN refer to true positive, true
negative, false positive, and false negative predictions,
respectively. All statistical analysis were done using
Python (v3.8) and several python packages, including
5
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Fig. 2: Statistical analysis and visual results of the landmarks detection on the bareback. a, A combination of violin plot, box plot and
scatter plot of the MED (left figure) and MMD (right figure) values for the 6 landmarks. b, Depth and combined heatmaps of the 6 bareback
anatomical landmarks for landmark detection. Here, we present 3 samples for each disease severity (normal-mild, moderate and severe). Left
side presents the contour plot of the depth image of each patient with predicted and GT landmarks. The colourbar demonstrates the height of
the surface measured in millimeter in terms of the height of landmark C7. The higher the region is, the closer the region to the camera (e.g., red
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Severity Male Female Mean max
CA, degree

Mean age (SD),
years

Mean BMI
(SD), kg/m2

Curve type

T TL/L Mixed

Training and internal validation cohorts

Normal-Mild 187 392 15.1 13.9 (2.2) 18.4 (2.7) 81 151 290

Moderate 282 850 27.5 14.5 (2.5) 18.7 (2.9) 100 222 810

Severe 57 168 49.6 15.0 (2.1) 18.8 (3.0) 24 23 178

Prospective cohort

Normal-Mild 32 53 14.9 13.8 (2.1) 17.2 (2.2) 19 24 33

Moderate 38 146 26.5 14.5 (2.3) 17.9 (2.4) 17 44 123

Severe 6 27 46.2 16.1 (2.3) 18.4 (2.4) 4 3 26

Abbreviation definition: CA: Cobb angle; SD: Standard deviation; BMI: Body mass index; T: Thoracic; TL/L: Thoracolumbar/Lumbar.

Table 1: Demographic information of the study population.

Articles
Numpy (v1.18.5), SciPy (v1.5.2), Ptitprince (v0.2.6),
pandas (v1.1.3), seaborn (v0.11.0), and Matplotlib
(v3.3.2).

The sub-sampling sample size determination
method (SSDM) was used to examine how sample size
affects our two models. Unfortunately, SSDM’s appli-
cation to deep learning in medical imaging is still in its
early stages, and there is no suitable SSDM to the
problem studied in this research. As a result, we chose a
practical SSDM, i.e., a curve-fitting method,33 in this
paper to empirically assess the model’s effectiveness at
various sample size proportions. The training data was
randomly sub-sampled by a proportion factor of 4%, 8%,
16%, 32%, 64%, 100%, and for each factor, the models
were trained 10 times (Supplementary Fig. S8 and
Supplementary Fig. S9). For each training run, the
weights from the training history with the minimal
validation loss were stored and then assessed on the
prospective testing dataset, yielding 10 test loss esti-
mates for each proportion factor (Supplementary
Fig. S10). For both deep learning models, with the
increasing training samples, the model performance
improved. For the landmark detection model, sampling
proportion should be larger than 32% to ensure the
model performance and stability while for the RCI
synthesis model, all training samples should be used to
achieve the best model performance.

Role of the funding source
Our study was funded by the Innovation and Technol-
ogy Fund (MRP/038/20X) and Health Services Research
Fund 08192266. The funders of the study had no role in
study design, model development, data collection and
analysis, interpretation, or writing of the article. The
means closer to the camera while blue means away from the camera). Rig
landmark heatmap as foreground. The colourbar denotes the probability o
and blue means lower probability). Abbreviation definition: MED: Mean eu
C7: the 7th cervical vertebra. The violin plot shows the distribution of the
the distribution of the data, with the box representing the interquartile r
representing the range of data.

www.thelancet.com Vol 61 July, 2023
corresponding authors had full access to all the data in
the study and had final responsibility for the decision to
submit for publication.
Results
Datasets
Between October 9, 2019, and May 21, 2022, 2238 par-
ticipants were enrolled. The demographic information
of the technology development and prospective testing
cohorts is presented in Table 1. The study population
included 1936 patients (1410 female, 72.8%) in the
training and internal validation cohorts for the model
development. An additional 302 patients (226 female,
74.8%) were recruited prospectively from two local spine
clinics for performance testing. There was no patient
overlap between the model development and prospec-
tive testing cohorts. In the training and validation
cohort, there were 579 patients (29.9%) classified as
normal-mild, 1132 patients (58.5%) classified as mod-
erate, and 228 patients (11.6%) classified as severe. In
the prospective cohort, there were 85 patients (28.1%)
classified as normal-mild, 184 patients (60.9%) classified
as moderate, and 33 patients (10.9%) classified as se-
vere. The characteristics of different cohorts are sum-
marized in Table 1. The percentage of patients with
different severities, and for each severity, the proportion
for each sex is also presented (Fig. 1c).

Performance of back landmark detection on the
back images
Table 2 evaluates landmark detection on the prospective
test dataset. For each anatomical landmark, we reported
both mean and standard deviation (SD). The detection
ht side displays the RGB image of the patient as background, and the
f the appearance of the landmarks (e.g., red means higher probability
clidean distance; MMD: Mean manhattan distance; GT: Ground truth;
error values. The box plot is defined as a graphical representation of
ange, the line inside the box denoting the median, and the whiskers

7
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Metrics C7 (P1) Left inferior
scapular angle
(P2)

Right inferior
scapular angle
(P3)

Left PIIS (P4) Right PIIS (P5) TOC (P6)

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

MED (pixels) 1.0 0.5 3.0 2.1 2.9 2.3 1.6 1.2 1.7 1.2 1.0 0.5
MMD (pixels) 1.2 0.6 3.6 2.4 3.5 2.4 2.0 1.3 2.1 1.2 1.3 0.6

Abbreviation definition: MED: Mean Euclidean distance; MMD: Mean Manhattan distance; SD: Standard deviation. C7: 7th cervical vertebra; PIIS: Posterior inferior iliac spine;
TOC: Tip of coccyx. P1 – P6 correspond to the landmarks in Fig. 2.

Table 2: Evaluation metrics on landmark prediction between the 6 predicted landmarks and their corresponding ground truth landmarks on the
prospective test dataset.
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of C7 and TOC landmarks achieved the best perfor-
mance (mean ± SD) compared with other landmarks in
terms of MED and MMD (C7: MED = 1.0 ± 0.5,
MMD = 1.2 ± 0.6; TOC: MED = 1.0 ± 0.5, MMD:
1.3 ± 0.6). The detection of left and right PIIS achieved
an inferior performance (Left PIIS: MED = 1.6 ± 1.2,
MMD = 2.0 ± 1.3; Right PIIS: MED = 1.7 ± 1.2,
MMD = 2.1 ± 1.2). For the detection of left and right
inferior scapular angles, average values of both MED
and MMD achieved less than 4 pixels (Left inferior
scapular angle: MED = 3.0 ± 2.1, MMD = 3.6 ± 2.4;
Right inferior scapular angle: MED = 2.9 ± 2.3,
MMD = 3.5 ± 2.4). For all 6 landmarks, values of both
MED and MMD follow unimodal distribution quanti-
tatively as analysed by violin plot, box plot, and scatter
plot (Fig. 2a). Visual comparisons for landmark detec-
tion on back depth contours are presented in Fig. 2b
with heatmaps of the 6 landmarks. We present the vi-
sual results of examples of landmark detections for 9
patients diagnosed with different AIS severities and
types.

For landmark detection, the performance of 4 clas-
sical deep learning architectures with similar number
of parameters was compared (Supplementary
Table S2). For all 6 anatomical landmarks, HRNet34

backbone achieves the best performance in terms of
MED and MMD (Supplementary Table S3). The direct
outputs of back landmark detection module are 6
landmark heatmaps. A high value means the proba-
bility of the landmark located at this corresponding
position is high and vice versa. We used a probability
threshold to filter the heatmaps to evaluate the quality
of the output heatmaps. For different threshold values
(from 0.1 to 0.6), HRNet achieved highest landmark
retrieval rate for all 6 landmarks, and the retrieval rate
was relatively stable when changing the threshold value
compared with other architectures (Supplementary
Table S4).

Performance of our deep learning framework for
RCI synthesis
Patients with different severity levels and spinal curve
types are presented to demonstrate the synthesis per-
formance of our model on various cases (Fig. 3). The
RGB image, depth image (in grayscale), synthesized
RCIs and GT radiographs are displayed sequentially
from the left to right. The normal-mild (Fig. 3a and b),
moderate (Fig. 3c and d), and severe (Fig. 3e and f) AIS
cases are displayed, and for each severity level (except
Normal-mild), two cases with different curve types are
visualized.

The pixel-wise metrics such as peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) were un-
stable and inconsistent with the other metrics, and thus
were not suitable to be used as measurements for RCI
synthesis, after comparison of 12 combinations of gen-
erators and discriminators (Supplementary Table S5) in
terms of 7 quantitative image quality metrics. Except
PSNR and SSIM, the other 5 metrics, namely, 1) FID,28

2) VIF,29 3) LPIPS,30 4) NIQE,31 and 5) BRISQUE,32 per-
formed consistently and indicated that a ResNet35 with 9
blocks as generator and a 5 convolutional layer Patch-
GAN36 as discriminator achieved the best performance.

Performance on Cobb angle prediction
The reliability of the synthesized RCIs for CA quantifi-
cation had a strong correlation with the GT angles
(R2 = 0.984, p < 0.001) tested by linear regression.
Additionally, the slope of the regression line was 45.99◦
comparable to the ideal value of 45◦. According to the
Bland–Altman plot (Fig. 4b), the mean difference of CAs
obtained from GT and synthesized RCIs was minimal
at −0.86◦.

For each severity, three examples were visualized
with different curve types to demonstrate the robustness
of our model for heterogeneous cases (Fig. 5). Predicted
CAs using synthesized RCIs were comparable with the
angles measured using GT spine radiographs. The
spine morphology of the synthesized RCIs was also
close to the GT spine radiographs.

Performance on severity grading and curve type
classification and prediction
For severity classifications (Table 3), both specificity (Sp)
and accuracy (Acc) exhibited a relatively high score in
grading all three severity levels. The negative predictive
value (NPV) had a high score (0.981) for Normal-Mild
cases (Table 3). The precision had the highest score
www.thelancet.com Vol 61 July, 2023
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Fig. 3: RCI synthesis results from the RCI synthesis module. Each subfigure presents a case with a certain severity level and curve type of
scoliosis. From left to right, each subfigure presents the RGB image of the patient’s nude back, depth image of the patient’s nude back, the GT
radiograph of the spine region and the synthesized RCI. a and b exhibit the RCI synthesis results for normal-mild cases. c and d show the
moderate cases. Among them, the patient in. c has both T and TL curve while the one in. d has only TL curve. e and f present the severe cases.
Among them, the patient in e has T curve while the patient in f has both T and TL curve. Abbreviation definition: RCI: Radiograph-comparable
image; T: Thoracic; TL: Thoracolumbar; RGB: Red green blue; GT: Ground truth.
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for both Moderate cases (0.962) and Severe cases (1.000)
(Table 3). For curve type classification, the sensitivity
(Se) and precision (Pr) achieved highest scores (T:
Se = 0.978, Pr = 0.969; TL/L: Se = 0.974, Pr = 0.958). The
confusion matrices for severity classification (Fig. 4c)
comparison between synthesized RCI and GT spine
radiographs, curve detection for T curve (Fig. 4d), curve
www.thelancet.com Vol 61 July, 2023
detection for TL/L curve (Fig. 4e), and major curve
(Fig. 4f) were illustrated.
Discussion
Medical image synthesis (MIS) has been fully studied to
mutually transform inter- and intra-modality medical
9
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Fig. 4: The performance evaluation of our model on CA prediction. a, Linear regression analysis of CAs on the prospective test data. The x-
axis denotes the CA predicted from our synthesized RCIs, while the y-axis denote the CA obtained from GT radiographs. b, Bland–Altman plots
assessing the agreement of CAs obtained from synthesized and GT radiographs on the prospective test data. The x-axis represents the average
degree of CAs obtained from synthesized and GT Radiographs, while y-axis denotes the difference between them. c, confusion matrix for the
severity grading (3 types: normal-mild, moderate, and severe). d–e, confusion matrices for detection of the presence T and TL/L curves,
respectively. f, confusion matrix for major curve type prediction. Abbreviation definition: CA: Cobb angle; RCI: Radiograph-comparable image;
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images with deep learning. However, this study showed
a few crucial and novel points for this topic. First, we
demonstrate that an AI-powered system has the poten-
tial to synthesize RCI from optical images (RGBD
images). There is potential to provide a radiation-free
screening and analysis technique to assist AIS detec-
tion and diagnosis. Second, our experimental results
show that the analytic results obtained from synthesized
RCIs are coherent with the results from real radiographs
(GT). In this regard, the developed light-based RCI
synthesis system has the capacity to generate reliable
RCI to substantively assist the clinical diagnosis pro-
cedure for AIS.

An accurate detection of the 6 anatomical landmarks
with high confidence is crucial for RCI synthesis, since
it provides useful information to assist the identification
of spine morphology. With this in mind, the bareback
landmark detection module was designed to output
heatmaps of the 6 bareback landmarks, indicating both
landmark position and probability of its presence. The
validity and generalization of the bareback landmark
detection module was examined on the prospective test
dataset quantitatively and statistically, and we achieved
less than 4 pixels error on average for each back land-
mark in terms of both MED and MMD measurements
(Table 2). In addition, our model can accurately predict
the landmarks from nude back images of patients with
different severity levels of AIS (Fig. 3b).

To find the optimal deep learning architecture for
back landmark detection, we compared 4 different
classical frameworks (Supplementary Section 2.2).
Considering the number of parameters can impact the
capacity of the model,37 for fairness, we adjusted the
models accordingly to make them have roughly equiv-
alent number of parameters by changing the number of
filters, number of residual blocks, kernel and stride size
of convolutional layers etc. Supplementary Table S2
provides a summary of the models. In addition to
model parameters, we also compared the inference
memory and floating-point operations (FLOPs) of
different models. The metric inference memory refers
to the required memory when using the model for
testing while FLOPs is used to measure the model
complexity. As shown, we controlled the number of
parameters in different models to be similar to the ca-
pacity of different models. By minimizing the impacts
of model capacity, model performance is then largely
related to its architecture. Supplementary Table S3
compares the performance of different models for
landmark detection. As shown, HRNet outperforms the
other 3 deep learning models by a large margin,
GT: Ground truth; T: Thoracic; TL/L: Thoracolumbar/lumbar; SD: Standard d
predicted CA using real radiographs and RCIs, and the small value (p-val

www.thelancet.com Vol 61 July, 2023
especially for the detection of left and right inferior
scapular angle landmarks. Combining Supplementary
Table S2 and Supplementary Table S3, HRNet uses a
modest size of inference memory and relatively smaller
computations (FLOPs) to achieve the best performance.

To evaluate the quality of the predicted landmark
heatmaps, we used a threshold to filter the heatmap
results. When increasing the threshold value, some
landmark positions with low probability (smaller than
the threshold) were filtered out and could not be
retrieved. Supplementary Table S4 illustrates the
retrieval rate under different probability thresholds for
each of the 6 landmarks. As shown, compared with
other deep learning architectures, HRNet performs
consistently better on detection of all 6 landmarks with
different probability thresholds. A landmark located at
the position with a low probability value is usually not
accurate. The probability threshold can help to filter out
such inaccurate predictions. However, if the threshold is
too high, some good predictions can be filtered out
which will deteriorate the model performance. To
decide a rational threshold, we plot the curve between
the retrieval rate/MME/MED and probability threshold.
As shown in Supplementary Fig. S7, we select 0.6 as the
probability threshold to filter out bad predictions. With
this threshold, our HRNet can still retrieve over 90% of
the landmarks and the predicted landmarks with low
probabilities can be removed as well.

The quality of synthesized RCIs was assessed in two
aspects, namely the image quality and the usability of
synthesized images in analytic clinical applications.
Given the misalignment between RGBD images and
radiographs, it was not appropriate to use pixel-wise
image quality metrics (e.g., PSNR and SSIM), to eval-
uate the model performance. In this study, we intro-
duced 5 metrics which measure the quality of the
synthesized image in terms of the distribution or
properties of extracted image features (FID, LPIPS and
NIQE), image fidelity (VIF), and image spatial quality
(BRISQUE). Supplementary Table S5 compares the
performance of different metrics on synthesized RCIs.
As shown, both PSNR and SSIM had low values, and the
results were not consistent. In comparison, the
measuring results obtained in terms of FID, LPIPS,
NIQE, VIF, and BRISQUE were consistent, especially
for the best two combinations of generator and
discriminator.

The clinical quality and usability of synthesized RCIs
were assessed in multiple analytic clinical applications,
including the severity grading, curve type identification,
and CA prediction. According to the data demographic
eviation. The p-value helps to determine the correlation between the
ue <0.0001) indicates they have strong correlation.

11
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Fig. 5: Visual comparison of practical CA measuring in clinics using the original radiographs (left) and the synthesized RCI counterparts
(right). The first row presents normal-mild cases with single or double curves. The second row presents moderate cases with single or double
curves. The third row presents severe cases with double or triple curves. The patient number is printed on the top left corner on the GT
radiograph to indicate different patients. The curve type and CA measuring results are printed on the bottom of each radiograph. Abbreviation
definition: CA: Cobb angle; RCI: Radiograph-comparable image; GT: Ground truth.
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in Fig. 1c, moderate patients take up about 60% of the
participants. The second largest population is normal-
mild (about 30%), and the severe group is the minor-
ity (about 10%). Correspondingly, from the synthesized
RCIs, clinicians can distinguish the moderate and
normal-mild patients with high sensitivity (>95%), while
distinguishing the severe patients with relatively lower
sensitivity (0.909), as shown in Table 3. Even so, the
severity grading results are still satisfactory in terms of
the high accuracy, and the performance on curve type
classification can also validate the good quality of the
synthesized RCIs.

The agreement of CA prediction results was exam-
ined using linear regression analysis, and the results
indicated a strong correlation with the CAs predicted
from GT radiographs (Fig. 4: R2 = 0.984; p-value
www.thelancet.com Vol 61 July, 2023
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Evaluation metrics Severity level Curve type

Normal-Mild Moderate Severe T TL/L

Sensitivity 0.953 0.957 0.909 0.978 0.974

Specificity 0.963 0.941 1.000 0.911 0.855

Precision 0.911 0.962 1.000 0.969 0.958

NPV 0.981 0.933 0.989 0.935 0.908

Accuracy 0.960 0.950 0.990 0.960 0.947

Abbreviation definition: NPV: Negative predictive value; T: Thoracic; TL/L:
Thoracolumbar/Lumbar.

Table 3: Quantitative performance on severity grading and curve type
identification on the prospective test dataset.

Articles
<0.0001). In addition, the difference between predicted
CAs from two spine alignments sources are close
(mean difference = −0.86) (Fig. 4). In terms of visual
results presented in Fig. 5, the alignment of spine is
clearly synthesized, although there are mismatches in
some vertebral regions, the CA can be accurately
predicted.

Our study has a few limitations. The performance of
the CA prediction largely depends on the quality of the
synthesized RCIs which further relies on the accuracy
of detected anatomical landmarks. Considering the
nude back features of obese patients may not be
obvious enough to obtain accurate landmarks, no
overweight patients are recruited in this study. Another
potential limitation is skin colour. Since most of the
participants are Southeast Asian Chinese, the images
in the dataset used for training model may not be able
to accurately represent the skin colour of other popu-
lation groups. In addition, the system was tested in two
centres following the same procedure to collect data
with the same clinical assessment standard. The per-
formance of our model may reduce when directly
applied to another centre. We are planning an inter-
national multi-centre trial to further assess the reli-
ability of our system and device. To investigate the
impacts of sample size, the curve-fitting method has
been used. However, such a method is originally pro-
posed to study how sample size affects classification
model. Therefore, the investigation results may be not
accurate reflect the impacts of sample size to our
models. Nevertheless, some analysis regarding overall
trends still has certain reference value. For example,
when the sample size of training data decreases, the
stability and performance of both models deteriorate.
Furthermore, when the training sample size is very
small, both models have a high risk of overfitting.

In summary, we deployed the first prospectively
tested auto-alignment analysis model for spine mala-
lignment analysis using deep learning and RGBD
technologies with no radiation. With future multi-centre
validation, our platform can better assist clinicians and
clinical research in large volumes.
www.thelancet.com Vol 61 July, 2023
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