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Chondrocytes that are impregnated within hydrogel constructs sense applied
mechanical force and can respond by expressing collagens, which are deposited
into the extracellular matrix (ECM). The intention of most cartilage tissue engineering
is to form hyaline cartilage, but if mechanical stimulation pushes the ratio of collagen type
I (Col1) to collagen type II (Col2) in the ECM too high, then fibrocartilage can form instead.
With a focus on Col1 and Col2 expression, the first part of this article reviews the latest
studies on hyaline cartilage regeneration within hydrogel constructs that are subjected to
compression forces (one of the major types of the forces within joints) in vitro. Since the
mechanical loading conditions involving compression and other forces in joints are
difficult to reproduce in vitro, implantation of hydrogel constructs in vivo is also reviewed,
again with a focus on Col1 and Col2 production within the newly formed cartilage.
Furthermore, mechanotransduction pathways that may be related to the expression of
Col1 and Col2 within chondrocytes are reviewed and examined. Also, two recently-
emerged, novel approaches of load-shielding and synchrotron radiation (SR)–based
imaging techniques are discussed and highlighted for future applications to the
regeneration of hyaline cartilage. Going forward, all cartilage tissue engineering
experiments should assess thoroughly whether fibrocartilage or hyaline cartilage is
formed.
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INTRODUCTION

In osteoarthritis (OA), articular cartilage at the end of bones, such as in the knee or elbow joint,
degrades by various injuries or normal wear and tear caused by aging. In addition, cartilage damage
can affect the mobility of injured young patients (Buckwalter and Mankin, 1998). Articular
cartilage is hyaline cartilage, an avascular tissue that contains chondrocytes within a dense
extracellular matrix (ECM) mainly composed of proteoglycans and collagen type II (Col2)
(Landinez et al., 2009; Becerra et al., 2010). Since hyaline cartilage does not have self-healing
potential, various clinical strategies, such as partial or total joint replacement, microfracture, and
chondrocyte implantation, have been developed and employed to treat damaged articular cartilage.
However, these treatments do not result in ever-lasting outcomes, and patients typically need
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secondary surgeries. Relevant to this review article, another
challenge of these treatments is that they can lead to
formation of fibrocartilage, which has inferior mechanical
properties to hyaline cartilage in carrying out the function of
articular cartilage (Li K et al., 2017).

To provide a more permanent solution to articular cartilage
damage, cartilage tissue engineering (CTE) is an interdisciplinary
approach that combines knowledge of engineering and cell
biology. In this regard, various synthetic and natural
biomaterials with proper biocompatibilities have been used to
fabricate hydrogel, polyester-based solid, and/or hybrid
constructs (Little et al., 2011; Olubamiji et al., 2016a;
Olubamiji et al., 2016b; You et al., 2016; You et al., 2017;
Armiento et al., 2018; You et al., 2018; Sadeghianmaryan
et al., 2020). Hydrogels have received much interest as
scaffolds for CTE studies because similar to native cartilage, cells
can be impregnated within hydrated polymer networks to maintain
chondrocyte morphology and phenotype (Vega et al., 2017).

A major limitation, however, is that hydrogels do not have
adequate mechanical strength to withstand applied forces after
in vivo implantation, and this force application can change the
type of cartilage formed. Applied forces are transmitted to the
impregnated cells, which respond by expressing such proteins as
Col1 and Col2 (Bian et al., 2010; Nebelung et al., 2012). The
presence of Col1 is a big problem for articular cartilage
regeneration because hyaline cartilage has little to no Col1,
whereas Col1 is a marker of fibrocartilage (Ham, 1965).
Bioreactors have been utilized in vitro to simulate the joint’s
compressive forces in vivo. To various levels of success,
mechanical stimulation of hydrogels promoted some
biological activities of chondrocytes, including non-specific
measures of collagen secretion (Schulz and Bader, 2007;
Natenstedt et al., 2015). However, a critical aspect of such
studies is to see what type of collagens was produced in
response to compression forces in vitro. If the ratio of Col1:
Col2 is relatively high, then the experiment produced a more
fibrocartilage-like tissue, which has inferior biological and
mechanical properties to hyaline cartilage when seeking to
regenerate articular cartilage.

Whether implanted hydrogels work for hyaline cartilage
regeneration in vivo, where various physiological and
mechanical factors are involved, needs to be investigated
before going to clinical applications (Chu et al., 2010). To be
fair, the in vivo mechanical environment of joints is extremely
complex, making it extremely difficult to simulate using a
bioreactor. The implantation of hydrogel constructs within the
joints of various animal models needs to be investigated to see
whether the resulting tissue formed is the desired hyaline cartilage
or fibrocartilage. Again, the ratio of Col1:Col2 produced in these
experiments is critical, so we begin by reviewing how current
in vitro and in vivo studies have analyzed specific collagen
expression in determining whether hydrogel-loaded constructs
produce hyaline cartilage or fibrocartilage.

In almost every experimental study to date, the implanted
constructs need to be extracted by invasive and destructive
techniques after euthanizing the animals in order to evaluate
the type of cartilage formed. Different visualizing tools can also be

utilized to assess tissue regeneration and construct degradation
without the need to sacrifice the animals (Izadifar et al., 2016b;
Ning et al., 2021). By using the novel imaging techniques covered
in this review, the number of required animals for preclinical
experiments would be reduced, and these methods can be adapted
for future clinical applications.

Cells respond to applied mechanical forces by varying
biochemical signals that can affect gene expression within the
cells (Knobloch et al., 2008). Some CTE studies illustrated that
compressive force applied to mono-layer chondrocytes or 3D
chondrocyte-impregnated hydrogels activate cellular signaling
pathways (Allen et al., 2012; Bougault et al., 2012; Sanz-Ramos
et al., 2012). Several signaling mechanisms are involved in
mechanical stimulation of chondrocytes, and their influence
on gene expression will be also reviewed in this article.

As an overview for this article, mechanical compressive
loading can play a crucial role in the regeneration of new
hyaline cartilage within hydrogel constructs by stimulating
cells to express collagen genes and depositing these collagens
to the ECM. The cartilage in joints is abundant in Col2, but
deposition of Col1 from the impregnated cells can lead to a
fibrocartilage-like tissue with inferior mechanical and biological
properties compared to native articular cartilage. Thus, the
generation of Col1 and Col2 in mechanically loaded,
chondrocyte-impregnated hydrogels is the focus of this article.

Hyaline vs. Fibrocartilage: Cellular,
Molecular, and Mechanical Differences
Hyaline cartilage is a shiny, white, translucent, and flexible
cartilage and can be found in the articular surfaces of movable
joints such as knee and elbow. Other than joints, hyaline cartilage
is also present in the rib tips, nose, larynx, and the rings of the
trachea (Parsons, 1998). Cell types do differ between hyaline
cartilage and fibrocartilage, but they are two types of
chondrocytes: one is called a hyaline matrix–rich chondrocyte,
and the other is a cell-rich fibrous chondrocyte (Benjamin and
Ralphs, 1991). Articular cartilage has a very low cell density (5%
of cartilage mass), and hyaline matrix–rich chondrocytes are
surrounded by the cartilage ECM either as single cells or as
clusters of cells (Anderson et al., 1964). In total, 30% of the
hyaline cartilage ECM by weight is a solid component that is rich
in ground substance including mostly glycosaminoglycans
(GAGs) and Col2 fibers. Sulfation of GAGs in the ECM
attracts water, which makes up 70% of the ECM of hyaline
cartilage by weight and gives articular cartilage its tremendous
compressive resistant strength (Brown and Eames, 2016).
Articular cartilage has four different zones, including a
superficial zone, a middle or transitional zone, a deep zone,
and a calcified zone. Contents of the GAGs and collagens vary
from the superficial zone to the calcified zone. The collagen
content decreases from the top to the bottom of the articular
cartilage, whereas the GAGs increase in this direction. Apart from
the very thin superficial zone, the other zones are types of hyaline
cartilage. The mechanical properties of articular cartilage also
vary according to the zonal organization of the ECM molecules,
and the compressive modulus increases from the superficial zone
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to the calcified zone of the articular cartilage (Schinagl et al.,
1997).

Fibrocartilage is a white, dense, opaque, and flexible cartilage
located in the intervertebral discs of the spine, tendons, ligaments,
and jaw (Benjamin and Ralphs, 2004). Cell density within
fibrocartilage is higher than that in hyaline cartilage, and the
two major types of cells in fibrocartilage are chondrocytes and
fibroblasts. Single or very small groups of fibroblasts and cell-rich
fibrous chondrocytes are in lacunae, and their shape can be
round, but most fibrocartilage lacunae are axially aligned with
the collagen fibers (Benjamin and Evans, 1990). In contrast to
hyaline cartilage, fibrocartilage has abundant Col1 in addition to
Col2. Fibrocartilage contains denser and spatially organized
collagen fibers than hyaline cartilage, so fibrocartilage is the
strongest type of cartilage in the body (Poole et al., 1982;
Kheir and Shaw, 2009). Critically for current clinical problems
in articular cartilage regeneration, fibrocartilage also has very low
levels of GAGs, which means that it lacks the compressive
resistant force needed at surfaces of articulating joints
(Armiento et al., 2019).

Table 1 shows the differences between hyaline cartilage and
fibrocartilage. The main difference between them is the high level of
Col1 in fibrocartilage, whereas Col1 is very low or absent in hyaline
cartilage. Also, the different ECM features of hyaline and
fibrocartilage give them different mechanical features from each
other. Hyaline cartilage has high compressive and low tensile
properties, whereas fibrocartilage has low compressive and high
tensile properties.

In Vitro Bioreactors Can Mimic In Vivo
Compression Forces
Mechanical forces at an appropriate magnitude in a physiological
range are essential for the maintenance of hyaline cartilage to
prevent its degeneration. These forces stimulate chondrocytes for
the biosynthesis of cartilaginous molecules needed for the
integrity and maintenance of cartilage. However, over-loading
can result in cartilage damage and degenerative joint diseases
(Musumeci, 2016). Native cartilage in joints endures different
mechanical forces without getting damaged, and hence fabricated
cartilage constructs must withstand similar mechanical forces
meanwhile generating and maintaining hyaline cartilage.

In this regard, biodynamic machines have been utilized as
in vitro bioreactors to culture cell-impregnated hydrogels in
order to understand how cells might respond to the
physiological or superphysiological loadings that they might
encounter if they were implanted in vivo. However, many types

of force exist in joints, and simulating all those forces in a single
bioreactor is not feasible (Wimmer et al., 2004; Grad et al., 2011).
Hence, most of the custom-made or commercial bioreactors have
been developed to apply a single type of force, such as compression
(Kisiday et al., 2004; El-Ayoubi et al., 2011), tension (Lee J. K et al.,
2017; Wu S et al., 2017), or shear (Marlovits et al., 2003; Gemmiti
and Guldberg 2009). Multi-force bioreactors also have been
developed to include two types of force, such as compression
and linear shear stress, in a bioreactor chamber (Marlovits et al.,
2003; Waldman et al., 2007). Compressive loading is one of the
major mechanical forces applied on articular cartilage (Martel-
Pelletier et al., 2008), and accordingly, most in vitro studies
investigated the responses of cells to compressive forces (Hunter
et al., 2002; Bryant et al., 2008; Pelaez et al., 2009; Wang et al.,
2009).

Hydrogels are a popular type of constructs for CTE applications
and have been used extensively for in vitro mechanical
compressions and in vivo implantations (Bryant et al., 2008).
These constructs are soft polymeric networks with low
mechanical properties. Hydrogels will never mimic cartilage
ECM because at most a hydrogel has a few 100 kPa
compression modulus that is 0.03–1% of native cartilage having
a compression modulus of 0.08–320MPa increasing from the
superficial to the calcified zone (Schinagl et al., 1997; Yang and
Temenoff, 2009; Karimi et al., 2015). The effects of mechanical
compression on chondrocytes impregnated within hydrogels both
in vitro and in vivo will be discussed in the following sections.

Static Compression Suppressed Cartilage
Regeneration
Application of a compression force can be in a static force regime
by which a constant compressive strain is subjected to the
engineered constructs for a continuous and limited time.
Compressive strain is the deformation of the constructs in one
spatial dimension due to the applied compressive force. Various
studies applied static compression loadings on cartilage explants
and engineered cartilage constructs. However, this type of force
regime did not show satisfactory results of cartilage growth and
even inhibited the secretion of cartilage ECM (Jones et al., 1982;
Gray et al., 1988; Mouw et al., 2007). For example, bovine cartilage
explants were compressed for 24 h, and as a result, transcription
levels for Col2a1 and aggrecan were down-regulated compared to
those of unloaded samples (Fitzgerald et al., 2004). Chondrocytes
seeded on non-woven polyglycolic acid (PGA) composites and
subjected to 50% static compression for 24 h resulted in 35 and
57% reduction in total protein and sulfated GAG secretion,

TABLE 1 | Summary of characteristics of hyaline and fibrocartilage.

Hyaline Fibrocartilage

Location Joints, rib tips, nose, larynx, and the rings of the trachea Intervertebral discs of the spine, tendons, and ligaments and jaw
Appearance Shiny, white, and translucent White, dense, and opaque
Cell type Hyaline matrix–rich chondrocytes Cell-rich fibrous chondrocytes and fibroblasts
Cell organization Round single or cluster of cells in lacunae Single and small groups of cells in lacunae, round or aligned in rows
ECM GAGs and Col2 GAGs, Col1, and Col2
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respectively (Davisson et al., 2002). Static compression of agarose
gels did not change the biosynthesis of cartilage over short periods
of loading but did reduce cartilage production after longer
durations of compression (Buschmann et al., 1995). 25 and 50%
static compression of chondrocytes cultured in Col1 hydrogels
inhibited both Col1a2 and Col2a1 expressions after 24 h (Hunter
et al., 2002). ECM pore sizes of cells might be reduced due to static
compression when they are impregnated in hydrogels.
Consequently, nutrient transportation into cells is reduced,
suppressing the expression of cartilage ECM (Freeman et al.,
1994; Guilak et al., 1995). Such widely reported inhibitory
effects of static compression on chondrocytes led most
researchers to switch to dynamic compression force applications.

Dynamic Compression Showed Limited
Positive Effects on Cartilage Regeneration
In the natural environment of a joint, articular cartilage is
subjected to dynamic forces during walking, running, and
jumping motions (Chen C et al., 2013). Therefore, recent
studies subjected hydrogel constructs to dynamic forces in
order to observe the response of chondrocytes (Sauerland
et al., 2003; Martel-Pelletier et al., 2008; Ryan et al., 2009).

Two major parameters within dynamic compression systems are
the magnitude of compressive strain and the duration of loading.
Human joints undergo cartilage deformations during physiological
movements. Various techniques have estimated the applied
physiological strains, when human joints move, to be in a range
of 3–20% cartilage thickness deformation (Armstrong et al., 1979;
Macirowski et al., 1994; Eckstein et al., 1999; Eckstein et al., 2000).
Consequently, CTE in vitro compression studies worked in this
strain range, mostly using 10% strain as a simulated physiological
strain (Mauck et al., 2000; Mauck et al., 2003; Lima et al., 2007).

The GAG content was commonly analyzed in samples
subjected to physiological compression strains, but
unfortunately, specifying the levels of Col1 and Col2
production, which would be required to analyze fibrocartilage
formation, were neglected in most studies (Mauck et al., 2000;
Shelton et al., 2003; Kisiday et al., 2004). For example,
chondrocyte-impregnated agarose hydrogels were subjected to
3% dynamic strain with different frequencies ranging from 0.001
to 1.0 Hz for different loading durations. Higher DNA and GAG
accumulation were reported at 23 days (a relatively late
timepoint) in the dynamically loaded samples (Buschmann
et al., 1995). Assessment of hydroxyproline to indicate total
collagen content was performed on chondrocytes seeded in
agarose, fibrin, or peptide hydrogels that were loaded with
different strains (2.5–14%) (Mauck et al., 2000; Mauck et al.,
2003; Hunter et al., 2004; Kisiday et al., 2004). For example,
chondrocyte-impregnated agarose gel discs were dynamically
loaded using a custom-designed bioreactor at a frequency of
1 Hz and 10% strain for 4 weeks. Both GAG and hydroxyproline
contents were greater for the loaded samples than unloaded
controls at day 21 (Mauck et al., 2000). Initial cell density in
these experiments also positively influenced both mechanical
properties and cartilage tissue growth within the 10% strain-
loaded hydrogels. The dynamic force regime had 1 Hz frequency

and was applied 2 h per day and 5 days per week. Enhancement in
GAG and collagen content (∼150%) and mechanical properties
(∼2 fold) were observed with 10 × 106 cells/ml. Mechanical
properties were improved compared to the unloaded group,
especially when using a higher cell density, but GAG and
collagen contents were the same for loaded and unloaded
samples (Mauck et al., 2003). The total collagen content could
be indirectly quantified through hydroxyproline content;
however, this assessment does not reveal how much Col1 vs.
Col2 was produced in the loaded constructs.

In contrast, a few studies assayed Col1 and Col2 specifically
within loaded constructs in the range of physiological strain
(∼10%). Col2a1 promoter activity was decreased when
chondrocyte-impregnated agarose hydrogels were subjected to
10% strain dynamic loading at 1 Hz frequency for a relatively
short experimental time of 3 h (Mauck et al., 2007). Chondrocytes
impregnated in photopolymerized methacrylated hyaluronic acid
(HA) constructs were subjected to 10% strain dynamic loading
with a frequency of 1 Hz for 1 and 5 days (Chung et al., 2008).
Compared to the unloaded group, loaded samples upregulated
both Col1a1 and Col2a1 gene expression and had an increased
Col2a1/Col1a1 ratio. However, these samples were loaded for
relatively short time periods compared to the in vivo situation,
which subjects constructs to loading for many years, if not decades.

Long-term loading better reflects in vivo conditions, but most
studies on chondrocyte-impregnated hydrogels loaded for a
relatively long time only reported Col2 production,
disregarding assessments for Col1. This is a huge gap in
current CTE compression studies. However, data are still
useful on how cells in a hydrogel environment respond to
loading by producing Col2, but whether these data reflect
hyaline cartilage or fibrocartilage formation is an unanswered
question. For example, stronger Col2 staining was seen in agarose
constructs that underwent long-term loading (Kelly et al., 2008;
Ng et al., 2009). Brighter staining of GAGs, Col2, and aggrecan
was observed in alginate hydrogels impregnated with
osteoarthritic chondrocytes that were dynamically compressed
with 15% strain at 1 Hz over 2 weeks, than that in unloaded
samples (Jeon et al., 2012). However, other studies showed
decreased Col2 production. For example, Col2 deposition was
reduced in both juvenile and adult chondrocyte-impregnated
poly (ethylene glycol) (PEG) hydrogels that were subjected to
long-term (14 days) dynamic compressive loading at 1 Hz and
10% strain (Farnsworth et al., 2013). Unfortunately, there was no
assessment for Col1 deposition in this study.

In a bad omen for hydrogel-only CTE approaches, several
studies showed that long-term dynamic loading of hydrogel
constructs stimulated chondrocytes to produce fibrocartilage-like
tissue, such as a reduction in Col2 or increase in Col1 production.
Long-term dynamic loading of PEG hydrogels with 15% strain
compression at 1 Hz frequency upregulated Col1a2 gene
expression, relative to the unloaded group, but these expression
levels returned to that seen in the unloaded group at a later
timepoint. On the other hand, Col2a1 expression did not
change in the loaded group in this study over 7 days of
compression (Bryant et al., 2008). Higher accumulation of Col2
was observed in Col1 hydrogels loaded with 10% strain at 0.3 Hz
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than that in the unloaded samples after 28 days of loading
(Nebelung et al., 2012). However, no significant difference
in the Col2a1/Col1a1 ratio was found between loaded and
unloaded samples, and this ratio was less than one for the
loaded constructs. A Col2/Col1 ratio less than one indicated the
formation of a fibrocartilage-like tissue under this applied
physiological strain.

For in vitro studies that loaded hydrogel constructs, the lack of
assessing both Col1 and Col2 is very problematic. However, the
general outcome could be that short-term loading is useful for
upregulation of Col2, although these experiments do not simulate
long-term force application experienced in articular cartilage in vivo.
When both Col1 and Col2 were analyzed, current long-term in vitro
loading studies of chondrocyte-impregnated hydrogel constructs
suggested that fibrocartilage was forming instead of hyaline
cartilage. Specifically, long-term loading of hydrogels did not
result in higher Col2 and/or lower level of Col1 production.
Table 2 summarizes key findings and characteristics of different
in vitro compression experiments on chondrocyte-impregnated
hydrogel constructs.

Implantation Studies Can Elucidate
Function of Hydrogels in In Vivo
Animal Models for Articular Cartilage Regeneration
Examining the in vivo function of fabricated hydrogels within
animal models is essential before moving forward to clinical
applications because these experiments test the performance of

CTE constructs in a preclinical setting. Implantation of constructs
into joints is much better than other sites, such as subcutaneous
implantations to mimic the force environment of future clinical
applications; however, studies investigating the formation of
cartilage in subcutaneously implanted hydrogels are a useful
first step for observing the function of chondrocyte-
impregnated constructs in vivo. Performing an in vivo CTE
study requires consideration of several different parameters,
such as the size and weight of the animal, joint size, cartilage
thickness, load distribution within the joint, costs, convenience of
the operation, and animal handling (Malda et al., 2013; Moran
et al., 2016). Animals used for implantation of hydrogel CTE
constructs generally fall into two categories, small and large
models, and multiple types of animals from each group will be
discussed below.

Rodents such as mice and rats are cost-effective small animal
models that are also easy to breed and house. However, cartilage
implantation in joints of these animals has been rarely carried out
because the very small joint size makes it difficult to perform an
operation (Gelse et al., 2003; Kuroda et al., 2006). Mice and rats
also have very thin cartilage with thin layers of chondrocytes, so
the outcomes of implantation might not predict human
applications. Nevertheless, mouse models have been used for
subcutaneous and intramuscular implantation of hydrogel
constructs for 6–8 weeks. These implantation sites might be
useful for testing the biodegradation of the hydrogels as well
as cartilage matrix formations in vivo, although they do not
provide mechanical conditions existing in joints that might

TABLE 2 | Summary of information for various in vitro compression strategies.
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influence these parameters (Haisch et al., 2000a; AMIEL et al.,
2001).

Rabbits have been used extensively for research in the CTE
field and implantation of tissue-engineered constructs (Chu et al.,
2010). Similar to mice and rats, rabbits are also affordable and
easy to breed and house. The joint size of rabbits is larger than
that of other small animals, which makes the surgery procedures
easier (International, 2005). Rabbits have relatively thicker
cartilage (0.3–0.44 mm) than mice and rats (∼0.3 mm),
although it is still much thinner than human cartilage
(∼2.35 mm) (Räsänen and Messner, 1996; Frisbie et al., 2006;
Vos et al., 2012). Rabbit cartilage showed great endogenous repair
in articular defects compared to that of other animals and
humans (Hunziker, 1999). The very low self-healing of human
cartilage is related to low cell densities (1,800 cells/mm3), whereas
higher cellularity of the rabbits (7,500 cells/mm3) contributes to
more endogenous cartilage repair (Moran et al., 2016).

The sheep is a commonly used large animal model that has
similar joint anatomy to the human joint. These animals are easily
accessible, cost-effective, and also easy to handle and house.
However, they have thinner cartilage (0.4–0.5 mm) than the
human cartilage, thus created defects reaching to the
subchondral bone region in most studies (Lu et al., 2000;
Frisbie et al., 2006). Despite the mentioned disadvantages,
sheep can be an appropriate large animal model for
assessment of hydrogels in mechanically loaded conditions.

Goats are popular large animal models for cartilage
implantation (Brehm et al., 2006; Lind et al., 2008; Marmotti
et al., 2013). Their large joint size allows creating large defects in
articular cartilage that are unable of spontaneous healing (Jackson
et al., 2001; Ahern et al., 2009). The cartilage thickness is around
1.1 mm in goats, greater than that in sheep, but it is still lower
than human cartilage thickness (Jackson et al., 2001). Although
defects of 12 mm diameter can be created in goats, commonly
created defects are smaller than the natural defects in humans.
Generally, goats are proper large animal models for the
assessment of implants in small cartilage defects (Ahern et al.,
2009).

A good example of a large and robust animal model is the
horse, and this animal is similar to the human in terms of
different aspects of the joint characteristics. Their joint is very
big with similar anatomy to the human joint, and they have a
thick cartilage region (1.75 mm) (Frisbie et al., 2006; Moran et al.,
2016). Cartilage and osteochondral defects with various thickness
and diameter can be created in horses because of their great
cartilage size. However, their large weight of 400–600 kg causes
rigorous loading forces on cartilage (Ahern et al., 2009; Chu et al.,
2010). High mechanical forces on the joint, large and expensive
facilities for housing and breeding, and specialized personnel and
equipment are important factors to be considered for carrying out
cartilage surgeries on horses (Ribitsch et al., 2020).

Pig models offer several advantages for cartilage surgeries.
Mature pigs have a wide range of weight up to 250 kg, and they
mimic human joints in terms of size, mechanical loading, and
cartilage thickness (1.5–2 mm), which allows the creation of
chondral and osteochondral defects with various sizes.
However, their housing and performing operations on them

are very costly. Besides, specialized facilities and surgeons are
required to perform the surgeries and afterward housing.
Nevertheless, if a group of experts could overcome the costs
and needs for pig surgery, this animal is an appropriate model for
cartilage repair studies (Frisbie et al., 2006; Chu et al., 2010; Meng
et al., 2020). On the other hand, many studies have performed
surgeries on mini-pigs weighing 40–70 kg to overcome issues
with larger pigs, although lower loading forces are on the joints of
mini-pigs due to their lighter weight (Christensen et al., 2015).

Selection of an appropriate animal model is crucial to relate
the results of an implantation study to clinical settings. In this
regard, small animal models, such as rats and rabbits, seem to be
good candidates because they are cost-effective in purchasing and
housing. The results cannot be correlated to clinical applications
because of the various disadvantages mentioned previously.
However, they can be used for early stages of assessments
such as biodegradation and biocompatibility of the tissue-
engineered hydrogels as well as the formation of cartilage
ECM in vivo. On the other hand, large animals, such as pigs
and horses, are more appropriate models for pretesting implants
before clinical trials because of the high similarity of their joints to
human joints in size, cartilage thickness, joint mechanics, and
magnitude of applied forces on cartilage. Summary of this section
is illustrated in Figure 1 with the advantages and limitations
related to small and large animal models.

Small Animal Models Are Useful for Initial In
Vivo Experiments
Different types of hydrogels such as agarose (Armiento et al.,
2018), fibrin (Westreich et al., 2004), alginate (Paige et al., 1996;
Eslaminejad et al., 2007; Liao et al., 2017), HA (Park et al., 2019),
composite hydrogels (Li T et al., 2019) such as chitosan and
chondroitin sulfate (CS) (Li C et al., 2019) and also novel
biomaterials such as sericin methacryloyl (Qi et al., 2018) have
been implanted subcutaneously in mouse and rabbit models.
Despite the absence of joint mechanical conditions, subcutaneous
investigations are important and appreciated in terms of
evaluating hydrogel constructs under a physiological in vivo
condition.

Most of the subcutaneous implantation studies only assessed
cartilage formation by histology and gross observations (Chen
et al., 2017). For example, polymerized alginate was used as an
injectable gel for cartilage formation, and chondrocyte-
impregnated alginate hydrogels were injected subcutaneously
into a nude mouse (Paige et al., 1996). Gross and histology
observations showed the formation of cartilage-like tissues at 8
and 12 weeks post implantation, but neither the deposition of
aggrecan nor collagen molecules were analyzed. Formation of
cartilage ECM histology was also reported by implantation of a
fibrin hydrogel in rabbit and mouse models (Sims et al., 1998;
Westreich et al., 2004). Cartilage formation was reported in 85%
of fibrin samples injected into subcutaneous sites of rabbits, and
the newly formed tissue appeared like cartilage, from the gross
and histological aspects (Westreich et al., 2004). Although these
studies reported the formation of cartilage ECM in implanted
hydrogels, the assessments were not sufficient, and further
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analyses must be carried out to determine the type of cartilage
formed.

Some studies assessed Col2 deposition within implanted
hydrogels (Choi et al., 2007; Yun and Moon, 2008; Öztürk
et al., 2020), although few of them performed assessments for
production of both Col1 and Col2. For instance, chondrocyte-
impregnated recombinant collagen hydrogels supported
neocartilage formation by deposition of Col2, although Col1
was also present in the implanted constructs (Pulkkinen et al.,
2010). Gelatin methacrylate (GelMA) and glycidyl methacrylate-
modified GelMA (GelMAGMA) hydrogels showed the presence
of Col2 and slight deposition of Col1 in the dorsa of mice 6 weeks
after implantation (Li X et al., 2017).

Subcutaneous implantation is an easier surgery than joint
surgeries, but the mechanical environment in the joint is
worth performing surgeries and observing the functions of
cells in response to forces. After completion of any in vivo
joint experiment, animals are euthanized, joint samples are
extracted, and then sections are generated from OCT or
paraffin-embedded explants for further histological and
immunohistochemical assessments. Many joint implantation
studies focused on evaluating the formation of
glycosaminoglycans and collagen fibers by histology
assessments (Fragonas et al., 2000; Holland et al., 2005; Kim
et al., 2013). Alginate is a popular biomaterial that has been
extensively used for cartilage regeneration (Wong et al., 2001;
Balakrishnan and Banerjee, 2011). As an example, autologous
nasal chondrocytes were impregnated in alginate hydrogels and
implanted into rabbit joints. Repaired hyaline cartilage–like tissue
was reported in osteochondral defects of the trochlear groove
based on histological staining (Chen et al., 2018). Self-settling
cellulose-based hydrogels that were impregnated with nasal
chondrocytes showed no signs of inflammation 6 weeks after
implantation into rabbit knees, and cartilage matrix formed,
based on histology and Col2 immunohistochemistry (Vinatier
et al., 2009). In a recent study, a novel injectable alginate hydrogel
containing porous polymeric microspheres with calcium
gluconate as a cross-linker showed evidence of cartilage repair
after implantation into the patellar groove of rabbit knees (Liao
et al., 2017). Specifically, GAGs and Col2 were highly expressed,

and the repaired cartilage appeared to integrate with host
cartilage. However, Col1 production was not assessed to
determine whether the new cartilage is hyaline cartilage or
fibrocartilage.

Necessary assessments of Col1 production must be
performed by some sort of immunological analysis in
order to assess hyaline cartilage vs. fibrocartilage (Zhao
et al., 2015), and only a few studies so far have done so.
Chondrocyte-impregnated recombinant collagen hydrogels
were implanted into osteochondral defects in the femoral
trochlea of rabbits (Pulkkinen et al., 2013). The deeper parts
of the defects contained Col2 after 6 months, while Col1 was
mostly present in the superficial regions. In a recent study,
two types of fibrin gels were implanted into rabbit joints with
either redifferentiated or dedifferentiated chondrocytes, and
both Col1 and Col2 depositions were tested in the implants.
After 6 weeks of implantation, the outcome was more of a
fibrocartilage-like tissue for both types of constructs,
although deposition of Col2 was still higher than that of
Col1. The ratio of Col2/Col1 was reported as 2.8 and 2.1 for
dedifferentiated and redifferentiated constructs, respectively
(Bianchi et al., 2019). According to these studies, Col2
formation has been generally reported to be high in the
implanted defects, but the formation of Col1 was still
observed within the defects. Despite this general outcome,
a couple of studies reported low Col1 production. For
example, Col1 synthesis was not seen in chondrocyte-
impregnated collagen type II hydrogels 24 weeks after
implantation in rabbit joints (Funayama et al., 2008).

Large Animal Studies Lack Col1 vs. Col2
Assessment for Implanted Hydrogels
Implantation in large animal models can provide a better sight of
how the fabricated hydrogels regenerate cartilage in a
mechanically analogous environment to human joints. Joints
of large animals exhibit multiple mechanical forces, such as
compression, sheer, and tension, that are similar to human
joints in terms of magnitude and type. Simulating all
mechanical forces existing in the joint in vitro is not feasible;

FIGURE 1 | Summary of information for advantages and limitations of small and large animal models used in CTE. Specific characteristics for several animal models
are also presented in the figure (images for this part were generated from https://www.istockphoto.com).
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hence, it is essential to perform hydrogel implantation in the
joints of large animals. However, not many published studies
performed hydrogel implantations in large animals, which could
be due to technical and economic difficulties related to the
surgeries. Studies that implanted the hydrogel in large animals
allowed them to walk freely with force loading on all joints.
Various assessments have been used to analyze the extracted joint
samples, and some have only performed histology analyses. Also,
various biomaterials have been used for implantation in different
animal models. Therefore, this section will review different
hydrogels based on the types of biomaterial used (Liu et al.,
2002; Sanz-Ramos et al., 2014).

Fibrin has been a commonly used biomaterial for
impregnating chondrocytes and cartilage regeneration within
large animal defects, including horses, goats, and pigs
(Hendrickson et al., 1994; Van Susante et al., 1999; Peretti
et al., 2006). For example, xenografted rabbit chondrocytes
were impregnated in fibrin glue and implanted in adult goats.
Xenografted defects showed initially better cartilage regeneration,
but after 1 year, both grafted and control defects were similar and
filled with fibrocartilaginous tissue. After 3 weeks of
implantation, 17% of total collagen in the grafted constructs
was Col2, and while this number was enhanced to 75% after
1 year, Col1 was not analyzed (Van Susante et al., 1999). In
another study, an osteochondral defect in a goat model was
treated with a double-phase construct comprised chondrocyte-
impregnated fibrin glue upon a hydroxyapatite cylinder (van
Susante et al., 1998). Repaired tissue was reported as fibrocartilage
based on histology. Nevertheless, several animal studies have
reported immunological responses from the host animals to
exogenous fibrin implants (Kawabe and Yoshinao, 1991;
Haisch et al., 2000b).

Alginate has been also used in several in vivo implantation
studies for CTE applications (Wong et al., 2001; Balakrishnan and
Banerjee, 2011; Farokhi et al., 2020). Chondrocytes and stem cells
from different sources that have been cultured within the 3D
matrix of alginate hydrogels have synthesized components of
cartilage matrix. Despite these findings, few studies implanted
alginate hydrogel constructs into the joints of large animal models
(Hauselmann et al., 1996; Diduch et al., 2000; Mierisch et al.,
2003; Almqvist et al., 2009). Osteochondral defects of sheep joints
treated with chondrocyte-impregnated alginate spheres showed
no histological sign of cartilage formation 21 days after
implantation, containing fibrous tissue with fibroblast-like
spindle cells and no safranin O staining (Heiligenstein et al.,
2011). Alginate–gelatin composite hydrogels containing
periosteal cells and chondrocytes implanted in sheep joints
showed higher levels of Col2 and perhaps lower levels of Col1,
than the untreated defects (Schagemann et al., 2009). However,
Col1 intensity was very close to Col2 in the implanted groups,
much higher than that in normal hyaline cartilage, indicating that
the newly formed cartilage was likely fibrocartilage.

Collagen has been also used for different tissue engineering
applications, including CTE, despite being expensive and having
low availability and mechanical properties (Galois et al., 2006).
Chondrocyte-impregnated collagen hydrogels were implanted in
trochlear defects of a canine model, and fibrous and fibrocartilage

tissues were formed within the defects (Nehrer et al., 1998).
Regeneration of cartilage was improved by cell-impregnated
collagen hydrogels in sheep knees, but the conclusions were
only based on histology and quantifications with the Mankin
score without any assessments for Col1 and Col2 (Sanz-Ramos
et al., 2014). Chondrocytes and bone marrow stromal cells
(BMSCs) seeded onto bi-layered collagen matrices formed a
lower layer of Col1 and Col3 as a somewhat mechanically
stable base, and the upper layer consisted of Col2 (Dorotka
et al., 2005). The outcome was greater repair and hyaline-like
cartilage regeneration for the seeded implants with a
microfracture treatment, based on histology, and Col1 and
Col2 staining. Chronologically predifferentiated mesenchymal
stem cells (MSCs) impregnated within Col1 hydrogels and
implanted in sheep showed better cartilage repair for the
predifferentiated MSCs than for chondrocytes in terms of
histology and Col2 staining (Marquass et al., 2011). Col1
staining was pretty high in all experimental hydrogel groups,
although the article related that to immunoreaction with the Col1
hydrogel itself.

CS, a polysaccharide biomaterial that is a major component of
cartilage ECM, has shown beneficial effects for cartilage
formation both in vitro and in vivo (Ronca et al., 1998; Li
et al., 2004; Chen W. C et al., 2013). However, similar to all
hydrogels, pure CS exhibits low strength as a scaffold and
degrades very fast, making in vivo application very challenging
(Chang et al., 2010). Using CS as a bioadhesive for defects created
in goat femoral condyles, cell-free poly (ethylene glycol)
diacrylate (PEGDA) hydrogels were injected into the defects
with marrow stimulation (Wang et al., 2007). The results
showed that safranin O staining was quantitively higher for
the hydrogel-treated defects than that for the untreated defects.

Chitosan is a natural polysaccharide and partially de-
acetylated derivative of chitin that has structural similarity to
the native GAGs present in the cartilage (Suh and Matthew,
2000). Chondrocyte-impregnated chitosan hydrogels implanted
in sheep knees showed formation of hyaline-like cartilage after
24 weeks, according to histology and Col2
immunohistochemistry (Hao et al., 2010). Interestingly, the
cell density of implanted hydrogels was very high (4 × 107),
although it was not discussed as an effective parameter on
cartilage formation. In another study, chitosan–glycerol
phosphate (GP) was implanted in horse joints to apply high
mechanical forces on the hydrogel (Martins et al., 2014). While
the hydrogel was biocompatible after 180 days, and cells
synthesized Col2 and proteoglycans, Col1 was not assessed.

Several studies used various natural and synthetic materials to
fabricate composite constructs to enhance biological properties of
the constructs (Filová et al., 2007; Filova et al., 2008). For
example, a composite hydrogel of fibrin and HA with
autologous chondrocytes was implanted in the knees of
miniature pigs, and results were dependent on the initial cell
densities, with a lower cell density showing better histological
parameters (Rampichová et al., 2010). Immunohistochemistry of
Col2 yielded positive staining at the borders of the defects,
whereas the center of the defects was characterized by
fibrocartilaginous tissue based on the histology scores and low
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Col2 staining. Injecting a cell-impregnated hydrogel into a porous
scaffold has been a useful method for the fabrication of hybrid
composites with enhanced mechanical properties (Filová et al.,
2007). For example, chondrocytes impregnated into the fibrin
hydrogel or an MPEG-PLGA scaffold/chondrocyte/fibrin
composite were compared with an untreated defect or an
untreated defect with a microfracture intervention (Lind et al.,
2008). The composite construct had the best cartilage repair,
based on the macroscopic appearance and histology scores only,
without any assessments for Col1 and Col2. As reviewed in this
section, very few studies investigated Col1 vs. Col2 production
within implanted hydrogels, and they mostly focused on just
histology and analysis of Col2. Only one study reported hyaline
cartilage formation based on Col1 and Col2 staining (Dorotka
et al., 2005), whereas two studies showed high levels of Col1
staining within the implanted hydrogel constructs (Schagemann
et al., 2009; Marquass et al., 2011).

Biomedical Imaging as Future Tools for
Analyzing Implanted Constructs
Post-surgery assessments for hyaline cartilage regeneration are
destructive and invasive and require a high number of animals,
which makes in vivo operations expensive and complicated (Lind
et al., 2008; Heiligenstein et al., 2011; Izadifar et al., 2014; Kundu
et al., 2015). Alternative methods have been utilized to visualize
implanted constructs in a non-destructive and 3D manner,
including confocal microscopy, Raman spectroscopy, optical
coherence tomography, positron emission tomography, and
single-photon emission computed tomography (Huzaira et al.,
2001; Müller and Zumbusch, 2007; Ahearne et al., 2008; Nam
et al., 2015). However, these techniques have limitations at
increasing tissue depth and volume (Appel et al., 2013; Nam
et al., 2015).

Micro-computed tomography (micro-CT) is a helpful tool
that can visualize implanted constructs and recognize structural
details of the constructs as well as surrounding tissues (Izadifar
et al., 2016b; Duan et al., 2021; Ning et al., 2021). However,
investigation of hydrogel constructs and soft tissues, such as skin,
muscle, and cartilage, is relatively challenging with conventional
desktop micro-CT because of its poor contrast with low
attenuation coefficients from hydrogels and soft tissues
(Muehleman et al., 2002; van Lenthe et al., 2007; Zhu et al.,
2011). Further improvements, such as utilizing high-atomic-
number element probes or other contrast agents, are required
to enhance the quality of the images generated from desktop
micro-CT scanning (Mizutani and Suzuki, 2012; Pauwels et al.,
2013). For this reason, micro-CT has beenmostly used to evaluate
implanted hard scaffolds in bone to visualize the formation of
new bone in the implants (Hedberg et al., 2005; von Doernberg
et al., 2006; Renghini et al., 2009).

Micro-CT can visualize formation of calcified cartilage, which
is a mineralized tissue of articular cartilage unlike most cartilage
that is unmineralized. In one study, cartilage-derived matrix
(CDM) scaffolds alone and as a composite scaffold with a
calcium phosphate (CaP) base were implanted into
osteochondral defects of horse joints, and micro-CT analysis

visualized newly formed calcified cartilage and the CaP
component of the composite as well as their integration with
surrounding native bone (Bolaños et al., 2017). Formation of
mineralized tissue was also distinguished using micro-CT in
hybrid 3D-printed PCL/fibrin constructs that were implanted
in rabbit joints (Shao et al., 2006). Although the degree of bone
regeneration could be quantified from the micro-CT data,
visualization of cartilage regeneration was not possible.
Magnetic resonance imaging (MRI) has been also utilized to
characterize regeneration of cartilage after implantation of tissue-
engineered constructs. Ramaswamy et al. usedMRI to analyze the
implanted photopolymerizable poly [ethylene glycol] diacrylate
(PEODA) hydrogel within the rabbit chondral defects
(Ramaswamy et al., 2008). MRI neither allowed to visualize
the amount of the tissue filling within the defects nor could
determine whether the implanted hydrogels were maintained
within the defects. Transverse relaxation time (T2) was measured
in this study, and other similar studies, as a parameter to
investigate the regrowth of cartilage (Watrin-Pinzano et al.,
2004; Keinan-Adamsky et al., 2006; Ramaswamy et al., 2008).
Ramaswamy and coworkers found that there was a negative and
linear relationship between the MRI T2 parameter and the
percentage of tissue filling (Ramaswamy et al., 2008).
However, a major drawback with MRI scanning is low
resolution of the generated images and distinguishing the
implanted hydrogel constructs from the surrounding cartilage
might be challenging with MRI.

Synchrotron-radiation (SR)–based imaging technique is a
novel tool that offers coherent collimated X-rays comprised a
high flux of photons that are originated from a storage ring or
other type of specialized particle accelerators. Synchrotron X-ray
beams with high-energy photons can diffuse through the dense
structures such as bone and not only visualize the bony structure
but also whatever is being implanted inside the tissue. Fusion of
the micro-CT technique and novel SR-based techniques such as
phase-contrast imaging (PCI) and diffraction enhanced imaging
(DEI) have enabled the imaging of structures such as hydrogels
and cartilage that have low absorption coefficients and
attenuation contrasts. Micro-CT–SR-based PCI utilizes
refraction effects besides the conventional absorption effects to
create a phase shift as the X-ray beam propagates through the
materials with different X-ray refractive indexes. The phase shift
can be observed at edges of the structures, and as a result, the
contrast can be enhanced anywhere that the difference in X-ray
absorption is weak (Parsons et al., 2008; Elfarnawany et al., 2017).
PC X-ray refraction can be more than one thousand times
sensitive than the conventional micro-CT absorption contrast
(Zhang and Luo, 2011; Appel et al., 2013). Different imaging
techniques including SR-radiography, PCI, and DEI were
compared at the same energy for imaging of the scaffolds
fabricated from poly (lactide) (PLLA) and chitosan under in
situ conditions of rat muscle tissues. The scaffolds and tissues
were not visible with conventional laboratory–based radiography,
and PCI could faintly show them. However, DEI images
visualized the tissues very clearly, and the scaffolds were
distinguished because X-ray scatter could be rejected in DEI
(Zhu et al., 2011). 2D and 3D images of printed PCL scaffolds
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implanted in pig joints in situ were also visualized using the DEI
technique. Microstructures of the scaffolds were visible, and size
of the strands and pores were measurable (Izadifar et al., 2014).
3D-printed hybrid PCL/alginate constructs were imaged in the
subcutaneous region of a murine model, and PCI could visualize
regeneration of cartilage ECM as well as hydrogel strands in vitro.
Moreover, degradation of the biomaterials and integration with
the host tissues could be evaluated (Olubamiji et al., 2017).
However, hydrogel strands are faintly visualized using these
techniques, and thus their 3D volume-rendering is challenging.

SR-based imaging as well as MRI techniques have shown a
promising ability to visualize low-density structures, and SR-
based imaging has been also utilized for in vivo experiments too
(Bayat et al., 2005; Wang et al., 2020). However, their resolution
still needs to be improved to get images with distinguishable
components in a 2D and 3D manner. Also, current SR-imaging
tools cannot distinguish between different cartilage tissues such as
hyaline and fibrocartilage. This ambitious idea requires
developments in future research to upgrade the tools and
techniques of SR-imaging that would help to scan the animals
in vivo and find out the type and amount of newly formed
cartilages without need for euthanasia of the animals.

How Mechanotransduction Pathways
Regulate Chondrocytes Biochemical
Activities
Mechanical loading is sensed by mechanoreceptors on the surface
of chondrocytes and transduced for intracellular responses
wherein different signaling pathways are initiated, altering
gene expression and synthesis of cartilaginous molecules. The
process of converting mechanical cues to biochemical reactions is
called mechanotransduction. Understanding the underlying
mechanism of mechanotransduction is helpful to avoid
activation of pathways that would lead to expression of
undesired molecules, importantly Col1 for CTE.

Various studies have reported undesirable Col2/Col1 ratios in
the ECM of chondrocytes that were subjected to mechanical
loadings. Therefore, it is important to understand signaling
mechanisms within chondrocytes that increase the expression
of Col1 or decrease Col2 expression. Then, a design could be
justified to deactivate pathways favoring Col1 expression or
activate pathways that stimulate Col2 expression. In this
regard, some CTE studies evaluated the effect of mechanical
forces on Col1 and Col2 expression but did not include research
into how mechanotransduction signaling pathways worked when
the tissue-engineered constructs were loaded (Mauck et al., 2000;
Wang et al., 2009). However, osteoarthritis research has identified
several pathways which are mechanically stimulated in
chondrocytes and affect the composition of cartilage ECM,
and they will be discussed in the following paragraphs.

TGF-β Signaling
In chondrocytes, transforming growth factor-β (TGF-β) signaling
is commonly activated by mechanical stimulation and is highly
dependent on the composition of surroundingmatrix (Zhao et al.,
2020), and this has been shown in mechanically loaded cartilage

hydrogels (Allen et al., 2012; Bougault et al., 2012). In addition to
TGF-β, the pericellular matrix (PCM) enables participation in
mechanotransduction by growth factors such as fibroblast growth
factor -2 (FGF-2) and bone morphogenetic protein (BMP). This
is accomplished through binding of these growth factors to PCM
proteins such as heparan sulfate-perlecan (HS-perlecan) followed
by release of these growth factors when the PCM deforms due to
mechanical stress (Vincent et al., 2007; Tang et al., 2018; Zhao
et al., 2020). Two studies of TGF-β signaling in chondrocytes
showed that TGF-β signaling upregulates SOX9, an important
activator of Col2 expression, and downregulates RUNX2, an
important activator of Col1 expression (Chen et al., 2012;
Fang et al., 2016). Neither of these studies used mechanical
stress to induce TGF-β activity, but the upregulation of a Col2
activator and downregulation of a Col1 activator provide strong
evidence that TGF-β signaling can favor hyaline cartilage
formation.

TGF-β uses canonical signaling to activate SMAD that both
stimulate SOX9 activity and inhibit RUNX2 activity (Chen et al.,
2012; Fang et al., 2016). Accumulation of SMAD proteins in the
nucleus can lead to induction of HtrA1, a serine protease that
breaks down structural proteins in the PCM (Xu et al., 2014),
reducing their ability to impact binding of growth factors with
their cell surface receptors. Without the PCM acting as a barrier,
the tyrosine kinase receptor DDR2 is then able to bind to Col2 in
the ECM, which may oppose hyaline cartilage formation. DDR2
can also increase IL-1β, an inflammatory molecule, which may
hinder hyaline cartilage formation. In addition, DDR2 is capable
of activating RUNX2, an important inducer of Col1, in
differentiating osteoblasts and maturing chondrocytes (Hirose
et al., 2020). The stimulation of DDR2 as a result of TGF-β
signaling, likely caused by elevated mechanical stress, may
increase the levels of MMP-13 and RUNX2, therefore breaking
down collagen while increasing the synthesis of Col1 and thus
opposing the formation of hyaline cartilage. This would be an
opposite response to normal TGF-β signaling, which favors
hyaline cartilage formation, warranting further research.

In addition, YAP and TAZ are two mechanosensitive proteins
that help SMADs accumulate in the nucleus, potentially
contributing to the increase in TGF-β signaling (Varelas et al.,
2010; Xu et al., 2014); however, this has yet to be observed in
chondrocytes. YAP and TAZ might be more active when high
levels of mechanical stress prevent their inhibition by Hippo
(Zhao et al., 2020). This would mean that the increase in TGF-β
signaling is dependent on the level of mechanical stress the cell is
subjected to. Taken together, the effects of TGF-β signaling are
much more complex than simply favoring the formation of
hyaline cartilage and that overactivity is associated with
osteoarthritis and cartilage degradation (Bottini et al., 2019).

αV Integrin Signaling
Integrins are a large family of transmembrane receptors and are
known for their interactions with extracellular proteins.
Numerous integrins transduce mechanical stress and are
essential for cartilage health (Yanoshita et al., 2018). Two of
these integrins, αVβ3 and αVβ5, are of particular interest due to
their effects on inflammatory molecules in response to high levels
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of mechanical stress. Activation of integrins αVβ3 and αVβ5
upregulated MMP-3 andMMP-13, which break down collagen as
well as the inflammatory markers IL-1β and TNF-α (Guan et al.,
2015). IL-1β has a role in osteoarthritis progression and has also
been shown to cause cartilage degradation via induction of
ADAMTS-4 and MMP-13 (Lee H. P et al., 2017). This finding
is particularly interesting as the study applied slow-stress
relaxation to chondrocytes in a 3D alginate hydrogel, meaning
this molecular mechanism has been directly studied in the
context of CTE and may be affected by the viscoelastic
properties of cartilage tissue (Lee H. P et al., 2017). IL-1β not
only has a role in osteoarthritis progression and cartilage
degradation but also may contribute to fibrocartilage
formation because it can induce Col1 expression through
induction of the long noncoding RNA lncRNA-SAMD14-4 (Du
et al., 2020).

Calcium Signaling
One of the most essential mechanisms by which cells respond to
mechanical stress is through changes in intracellular calcium
concentrations, mediated by various mechanically activated
channels (Zhao et al., 2020). Transient receptor potential
cation channel subfamily V member 4 (TRPV4) is a calcium
channel that responds to moderate levels of stress, becoming
activated at approximately 3–8% cyclic tensile strain (CTS).
Activation of this channel in chondrocytes by mechanical
strain caused a moderate level of calcium influx (O’Conor
et al., 2014). TRPV4 function can upregulate Col2 and GAG
expression, while downregulating the expression of catabolic
proteins, such as nitric oxide synthase 2 (NOS2) and a
disintegrin and metalloproteinase with thrombospondin motifs
5 (ADAMTS-5), the latter of which functions similarly to matrix
metalloproteinases (MMPs) (Wei et al., 2018). This effect on gene
expression by TRPV4 favors the formation of hyaline cartilage.

The role of TRPV4 in hyaline cartilage maintenance is further
supported by the fact that its dysfunction is associated with
osteoarthritic characteristics (Agarwal et al., 2021). PIEZO is
another calcium channel that responds to mechanical stress
but displays properties that differ greatly from those of
TRPV4. PIEZO channels respond to excessive mechanical
stress, becoming activated at 13% CTS or greater and causing
greater calcium influx than TRPV4 channels (O’Conor et al.,
2014). Large calcium influx has the potential to become toxic and
cause apoptosis and cartilage degeneration (Zhao et al., 2020).
This difference between TRPV4 and PIEZO draws parallels to the
difference between moderate and overactive TGF-β signaling,
where some signaling seems beneficial to the formation of hyaline
cartilage but detrimental when it is overactive. A study of TRPV5
in chondrocytes performed by Wei, et al. provided some insight
into what mechanisms TRPV5 and PIEZOmay exert their effects
through (Loeser, 2014). Calcium influx through TRPV5 activates
CAMKII, which then subsequently activates AKT, ERK, JNK, and
p38 (Loeser, 2014), providing further evidence that calcium
signaling through mechanically activated channels such as
TRPV4 and PIEZO may affect Col1 and Col2 expression as
the TGF-β and αV integrin signaling mechanisms do.
Discussed signaling pathways are schematically shown in
Figure 2 to illustrate how these pathways are acting in
response to mechanical forces.

Although previous osteoarthritis literature provided
preliminary evidence of which pathways may be involved in
the expression of collagen, future studies of cell signaling in CTE
should use 3D culture to determine whether the signaling
mechanisms of interest are involved in mechanotransduction
and analyze the effects of the pathways on Col1 and Col2
expression. This would provide the field of CTE with potential
solutions to the problem of fibrocartilage formation in
mechanically stimulated, chondrocyte-impregnated hydrogels.

FIGURE 2 | Schematics (A) and (B) show transforming growth factor-β (TGF-β) and αV integrin signaling pathways, respectively, activated by mechanical
stimulation. Schematics (C) and (D) represent the activity of calcium channels by normal and excessive mechanical stress in chondrocytes.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org January 2022 | Volume 9 | Article 78753811

Alizadeh Sardroud et al. Hyaline vs Fibrocartilage in Loaded Hydrogels

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Such solutions could include drugs targeting receptors on the
chondrocyte surface, transgenic approaches to silence certain
genes, and alternate designs which shield chondrocytes from
the applied forces, thereby preventing the overactivity of
cellular processes such as calcium, integrin, and TGF-β
signaling pathways. Finally, the viscoelastic effects of the stress
relaxation rate on cell signaling should be investigated due to the
aforementioned ability of the stress relaxation rate to affect IL-1β
mechanotransduction. Hydrogel constructs can be designed to
have certain viscoelastic properties (Lee et al., 2020), potentially
offering another avenue to produce ideal engineered hyaline
cartilage.

3D-Bioprinted Hybrid Constructs Can
Shield Cells From Applied Forces
Hydrogels are soft hydrated networks, and studies have shown
that Col1 production and formation of a fibrocartilage-like tissue
is the outcome when chondrocyte-impregnated hydrogels are
compressed in vitro or implanted in a mechanical environment.
Thus, mechanical forces are detrimental for chondrocytes in
terms of hyaline cartilage formation. Besides, hydrogels
generally have low mechanical properties to withstand high
compressive forces after implantation in joint defects.

A hybrid construct composed of a cell-impregnated hydrogel
loaded within a solid scaffold that is fabricated from a synthetic
polymer is an alternative to enhance the mechanical properties of
the constructs and reduce the magnitude of applied force on
chondrocytes within the hydrogels. Various types of hybrid
constructs have been developed and tested in vitro for
articular cartilage regeneration; however, few of them studied
the effects of loading forces on the production of Col1 vs. Col2
(Lee et al., 2005; Grad et al., 2006; Li et al., 2010). Polyurethane
scaffolds filled with chondrocyte-impregnated fibrinogen
hydrogels were compressed with a joint-kinematic–mimicking
regime that was a combination of various compression
movements. The gene expression data showed a significant
decrease in Col1a2 expression in the loaded samples compared
to unloaded samples. However, Col1 was still present as a thick
layer at the upper regions of the loaded samples, whereas it was
observed as a thin layer on the upper surface when the constructs
did not experience any loading (Wu Y et al., 2017). In another
study, an increase in Col1a2 gene expression happened in loaded
fibrin–polyurethane constructs, compared to that in unloaded
constructs. Levels of GAGs and Col2a1 expression in the loaded
samples were similar to those in control constructs (Lee et al.,
2005). Composite constructs do not prevent production of Col1
from cells when the constructs are subjected to mechanical forces.
The reason is that the applied force on a hybrid hydrogel-loaded
construct is not shielded from the hydrogel and impregnated
chondrocytes, but it is yet shared between the hydrogel and
scaffold portions of the construct. Therefore, the cells still
sense a high magnitude of the applied forces. Hence, the
architecture of a hybrid construct is crucial to provide a load-
shielding structure instead of a load-sharing one.

Novel methods of scaffold fabrications can help to shield the
applied force using new tools, such as 3D-bioprinters, which can

fabricate hybrid constructs in a layer-by-layer manner with
alternating strands of hydrogel and a synthetic polymer. 3D-
bioprinted hybrid alginate–PCL constructs were fabricated with
embryonic chondrocytes impregnated within the alginate strands
(Izadifar et al., 2016a). These constructs supported cartilage
differentiation of the impregnated cells both in vitro and in
vivo (Izadifar et al., 2016a; Olubamiji et al., 2017). In a 3D-
bioprinted hybrid construct, the size of the alginate and PCL
strands can be adjusted to have smaller alginate strands than PCL
and that helps cells in the alginate strands to be shielded from
applied forces. The structure of a 3D-bioprinted hybrid construct
is depicted in Figure 3 a1-a3, demonstrating how the smaller
alginate strands can be protected against the applied forces by the
larger PCL strands. Any force-shielding effect only applies to the
range of strains when PCL strands do not deform so much that
they are the same size as the alginate strands. However, in a 3D-
bioprinted hydrogel-only construct, the force is applied on the
cell-impregnated hydrogel strands without any shielding effect
(Figure 3 b1-b3), thus the cells sensing the total applied force.
Figure 3 c1-c3 also represents a hybrid hydrogel-loaded scaffold
in which the pores of the scaffold are filled with a cell-
impregnated hydrogel. This load-sharing design does not help
shield cells because when a force is applied, the force is
simultaneously transmitted to the hydrogel and synthetic
scaffold because there is not any space separating the hydrogel
material from the synthetic scaffold.

CONCLUSION AND FUTURE
PERSPECTIVES

Mechanical forces, such as compression loading, can be sensed by
chondrocytes within hydrogel constructs, thus affecting the cells’
fates and cartilage regeneration. A major problem in current
studies of chondrocyte-impregnated hydrogel constructs that
were subjected to compressive force is that the formation of
fibrocartilage was not analyzed, but Col1 expression and
fibrocartilage-like tissue often can result from such mechanical
loading.

Over the past decades, studies employing bioreactors to
simulate compression forces in joints illustrated that static
compression had limited effects on cartilage regeneration,
which has urged researchers to switch to dynamic
compression studies. Many in vitro dynamic compression
experiments did not do specific assessments for Col1 and Col2
together to distinguish the type of newly formed cartilage.
However, multiple studies reported upregulation in Col2a1
gene expression or Col2 deposition in ECM, which would be a
good sign for hyaline cartilage formation as long as Col1
expression was not too high also. Loading studies that did
assess Col1 production were not in favor of hyaline cartilage
regeneration since they showed upregulation of Col1 in response
to the loading forces. These results confirmed that high
magnitudes of compression forces promoted cells within
hydrogels to produce more Col1 thus forming a fibrocartilage-
like tissue. In vivo implantation of hydrogel constructs also
generally reported Col2 production in hydrogel-treated defects
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of animals. A few of these studies assessed Col1 within the treated
defects and reported a high level of Col1 and formation of a
fibrocartilage-like tissue.

In conclusion, chondrocyte-impregnated hydrogels
subjected to mechanical compression in vitro or implanted in
vivo in joints appear to form a Col1-positive fibrocartilage-like
tissue. A possible solution could be to fabricate a chondrocyte-
impregnated construct that shields cells from applied forces to
avoid Col1 production. 3D-bioprinting and hybrid constructs
are appropriate for this purpose, and their application for CTE
was demonstrated in recent studies (Izadifar et al., 2016a). In
vitro compression experiments should investigate the effects of
load-shielding in 3D-bioprinted hybrid constructs, looking to
exclude Col1 production. Additionally, in vivo implantation of
hybrid constructs will also help to investigate cartilage
formation in response to the various mechanical forces
existing in joints.

Cell signaling studies suggest that various signaling pathways
may be involved in the expression of collagens within
chondrocytes that are activated by normal or excessive
mechanical force. More studies of cell signaling pathways in
the field of CTE should be performed with fabricated
constructs to determine whether the signaling mechanisms of
interest are involved in mechanotransduction and to analyze the
effects of those pathways on Col1 and Col2 expression. In order to
prevent Col1 deposition frommechanically loaded chondrocytes,
in vitro loading experiments on hydrogels should reveal how to
block pathways that direct Col1 expression within the loaded
constructs, resulting in more hyaline-like cartilage formation. In
in vivo studies, SR-based imaging techniques have shown the
ability to visualize materials with low attenuation coefficients,

such as hydrogels and soft tissues–like cartilage. Also, SR-based
imaging tools should be developed not only for enabling
quantitative analysis of implanted constructs and newly
formed cartilage but also to distinguish between hyaline
cartilage and fibrocartilage within a treated defect.
Longitudinal SR-based imaging strategies of in vivo animal
models have begun, so their application to humans is only a
matter of time.
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FIGURE 3 | (A1–A3) shows a model of a 3D-bioprinted hybrid alginate/PCL construct. Red and blue colors represent synthetic and cell-impregnated hydrogel
strands, respectively. White arrows in (A3) point to the smaller hydrogel strands that are shielded by the PCL strands when loading is applied. (B1–B3) represents a 3D-
bioprinted hydrogel construct, and the cells are impregnated within hydrogel strands without any shielding. (C1–C3) is a schematic for a hybrid hydrogel-loaded scaffold
that cells are within the hydrogel part, and the applied load is shared between the hydrogel and synthetic part of the construct.
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