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Brain meta-state transitions demarcate thoughts
across task contexts exposing the mental noise of
trait neuroticism
Julie Tseng 1,2,5 & Jordan Poppenk 1,3,4,5✉

Researchers have observed large-scale neural meta-state transitions that align to narrative

events during movie-viewing. However, group or training-derived priors have been needed to

detect them. Here, we introduce methods to sample transitions without any priors. Transi-

tions detected by our methods predict narrative events, are similar across task and rest, and

are correlated with activation of regions associated with spontaneous thought. Based on the

centrality of semantics to thought, we argue these transitions serve as general, implicit

neurobiological markers of new thoughts, and that their frequency, which is stable across

contexts, approximates participants’ mentation rate. By enabling observation of idiosyncratic

transitions, our approach supports many applications, including phenomenological access to

the black box of resting cognition. To illustrate the utility of this access, we regress resting

fMRI transition rate and movie-viewing transition conformity against trait neuroticism,

thereby providing a first neural confirmation of mental noise theory.
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For a long time, the only window to the mind was through
introspection, which posed a methodological problem due to
the unreliable and disruptive nature of meta-cognition (i.e.,

thinking about one’s own thoughts1,2). However, technological
advances in brain imaging have allowed researchers to uncover
the contents of thought directly from neural signals; researchers
today can readily decode object categories (e.g., faces and houses)
from spatial patterns in participants’ functional magnetic reso-
nance imaging (fMRI) data3, and have even used spatial patterns
in visual areas during sleep to reconstruct dream imagery4.

In addition to what people are thinking about, researchers are
also increasingly interested in how we think. For example: how
does consciousness flow continuously from one thought to the
next (i.e., the flights and perches of thought5,6 or spontaneous
thought7). In spontaneous thought research, a thought is defined
as a mental state or sequence of mental states, and a mental state
is defined as a “transient cognitive or emotional state of the
organism that can be described in terms of its contents and
the relation that the subject bears to the contents (for example,
perceiving, believing, fearing, imagining, or remembering)”7.

As most definitions of a thought concern its contents, we
propose that implicit measurement of changes in semantic con-
tent offers an interesting alternative to meta-cognition. Accord-
ingly, one could infer a new thought has arisen in a participant by
observing a switch from one active category to another. One
important reason this strategy has not been deployed for
demarcating thoughts is the challenge of reliably distinguishing
large numbers of categories, and object categories alone may be
insufficient for representing the complexity of a cognitive state.

What if, rather than tracking the rise and fall of particular
object categories, we found a way to track semantic transitions
more holistically? A growing body of research suggests evidence
for the constructionist model of the mind: complex mental states
emerge from flexible network-level interactions, and changes in
active network configurations (i.e., time-varying functional con-
nectivity) might signal boundaries between cognitive states6–10.
However, current methods either require alignment of states
across a group (e.g., by viewing the same movie stimulus)11,
referencing known states previously visited by an individual
under stimulus control (a tiny subset of the range of possible
states)12,13, or focus on timescales too long to be relevant to
measurement of single thoughts (with windows for representation
of each cognitive state that approach a full minute long)13.
Consequently, researchers investigating spontaneous thought
have been unable to implicitly observe natural thought dynamics
outside of stimulus control (e.g., using resting-state fMRI), where
the timing and content of new thoughts is idiosyncratic. Argu-
ably, implicit observation of this kind is central to any under-
standing of thought dynamics, as disrupting spontaneous thought
for the purposes of explicitly communicating information about
cognitive state itself disrupts the natural progression of states
(analogous to the observer effect in physics).

Thus, we introduce a method to implicitly identify breaks
between stable periods of brain network configuration (i.e., meta-
state13 transitions) at a single-TR timescale and using resting-
state fMRI data from single participants.

Novel to our approach, we leverage similarities between event
segmentation and spontaneous thought to present a preliminary
psychological validation based on the correspondence of these
transitions to known semantic and perceptual features. Neuro-
cinematics studies have shown that well-made movies induce
similar brain activity across participants in widespread low- to
higher-order areas14,15, and that some structures such as the
hippocampus and angular gyrus are specifically tuned to event
boundaries11. Thus, in addition to guiding brain state change-
points, movies also exert control over the contents of cognitive

states, and can be interpreted as a constrained analog to mind-
wandering (where state transitions arise freely7). Separately, stu-
dies of spontaneous thought and event segmentation have also
identified the same neural bases (e.g., hippocampus16,17, angular
gyrus11,18, and precuneus and posterior cingulate19–21). We
propose that a common theme of semantic integration22 under-
lies both spontaneous thought and event segmentation, as both
activities involve integrating new information with existing
representations to shift the semantic focal point and move the
storyline forward. Therefore, if transitions during movie-viewing
reflect high-level semantic features (i.e., event boundaries) rather
than low-level perceptual features, transitions at rest may also
correspond to high-level semantic change (i.e., thoughts).

Upon demonstrating these properties, we generalize this
interpretation by showing transitions to feature various similar
neural properties when identified within unconstrained rs-fMRI
data, as compared to the mv-fMRI data used in the analysis
above. In parallel, we illustrate the continued psychological rele-
vance of transitions identified in the rs-fMRI data by reporting
correlations between trait neuroticism and our transition metrics
in a manner predicted by recent personality science research on
neuroticism, which characterizes one’s proneness to negative
thoughts and emotions. We focused on neuroticism because of
mental noise theory, which proposes that trait neuroticism is
linked to higher susceptibility to distractors and more lapses of
attention; as a result, behavioral studies have found performance
deficits on continuous tracking tasks and more variable reaction
times within-participant across trials23,24. A related opinion in
the realm of spontaneous thought suggests that high neuroticism
is linked to excessive self-generated thoughts, supporting the
theory of mental noise25. Further to supporting our validation of
neural transitions as psychologically relevant during rs-fMRI,
perspectives from public health suggest that a deeper under-
standing of neuroticism is likely to elucidate the mental and
physical disorders linked to it26.

Results
Detecting timepoints of interest. We conducted our analysis on
the 7 T Human Connectome Project dataset, which features
movie-viewing fMRI (mv-fMRI) and resting-state fMRI (rs-
fMRI) data gathered from 184 participants27–29. We converted
each fMRI run into the expression of 15 known brain networks
over time (Supplementary Fig. 1), then reduced its dimensionality
from (15× time) to (2× time) using t-SNE30,31. In this reduced
space, epochs with similar patterns of network activity fall in
proximity. We hypothesized a pattern of spatiotemporal organi-
zation reflecting progression through a series of discrete thoughts,
each centered around its own semantic focal point (e.g., what one
will be having for dinner) serving as an attractor. Unstable net-
work meta-states would yield dispersion in this space, whereas an
attractor would cause points to cluster, yielding a worm-like series
(arising from limited drift as thoughts evolve; Fig. 1a vs 1b).

Next, we identified changes in network activity by taking the
squared Mahalanobis distance32 between successive timepoints in
t-SNE space for each fMRI run, obtaining a measure of meta-state
change that we label a step distance vector. To stabilize the step
distance vector, we repeated the dimensionality reduction and
step distance vector creation process 100 times for each
participant and each functional run. Peaks within the resulting
mean step distance vector represent prominent reconfigurations
of network meta-states, thus we called them network meta-state
transitions (henceforth transitions). For purposes of baseline
comparison, we also identified local minima in the mean step
distance vector, which each represent a relatively stable network
meta-state (henceforth meta-stable) (Fig. 2a).
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Leveraging movie data to determine psychological meaning. To
assess whether these discovered moments of network reorgani-
zation held psychological relevance, we validated our approach
using mv-fMRI data, examining their alignment to the onset of
new semantic or perceptual movie features. As a starting point,
visual inspection of the set of all participant transitions during
movie-viewing revealed substantial alignment in transitions
relative to rest (Fig. 2b, c). To quantify this, we obtained each
participant’s group alignment for each resting state and movie-
viewing run, which describes the correlation between the indivi-
dual’s step distance vector and the corresponding median group
step distance vector (i.e., conformity; see “Methods” section). We
separated conformity values into runs of the same type, resulting
in 723 movie conformity values and 722 rest conformity values.
After feeding each set of values into a group bootstrap analysis,
we found higher conformity for movie runs, mean r= 0.27, 95%
CI: [0.26, 0.27], than for rest, mean r= 0.04, 95% CI: [0.03, 0.04],
r difference= 0.23, 95% CI: [0.22, 0.25]. This finding reflects past
observations of film’s unique ability to induce similar activity
across participants in a wide variety of brain areas11,12,33, and
provides a preliminary link between transitions and naturalistic
cognition.

As an alternate means of evaluating the influence of plot
progression (i.e., progression of meaning) over transitions, we
attempted to predict transition alignment based on the number of

narrative events in each clip. Two expert raters came to a
consensus on boundaries between events34, which we defined as
timepoints where a change in the movie triggers a new semantic
focal point or evolves viewer understanding of the movie
narrative. We correlated the number of these events in each clip
with group alignment within each participant. This yielded 184
correlation coefficients that we entered into a group bootstrap
analysis. Clips with more events per minute had higher group
alignment, mean r= 0.25, 95% CI: [0.21, 0.29].

We also directly examined the temporal correspondence of
transitions with other movie features within-participant. Con-
sensus labels of sub-events (consisting of individual actions) and
cuts were obtained from two expert raters. We also obtained
lower-level feature timeseries for each clip that describe semantic,
visual, and amplitude change, as well as change in head motion
(see “Methods” section for a full description of the feature vector
set). No other features were tested. Some features were correlated;
for example, an event’s end often coincides with a cut between
shots, which in turn coincides with semantic and perceptual
stimulus changes. These correlations could produce a result
wherein transitions appear to reflect lower-level features, but only
because they peak concurrently with the onset of new cuts or
events. To disentangle high- and low-level feature contributions,
we censored epochs of lower-level feature timeseries where
higher-level event boundaries co-occurred (Fig. 3b). We reasoned
that if lower-level features induce transitions, this should remain
the case outside of censored epochs (see “Methods” section for
further detail).

To determine the proportion of feature variance accounted for
by transition versus meta-stable timepoints, we calculated eta-
squared values for both uncensored and censored features after
accounting for lag in the hemodynamic response function.
Briefly, this involved computing the average level of each feature
at each transition and meta-stable point found in the mv-fMRI
data, working backwards in the feature vector based on the
canonical hemodynamic response function (HRF)35. Higher eta-
squared values reflect larger feature values at transitions versus
meta-stable timepoint (i.e., alignment to transitions; see “Meth-
ods” section for full description of this calculation).

Transitions were strongly associated with movie features, with
up to 60.8% of feature variance explained (event feature). The
same alignment was not found when this analysis was applied to a
noise data set consisting of the same participants, but with phase
randomized data36 (this noise generating procedure yields a data
set with matched power spectrum to the original signal, but
removes temporal structure). However, with the exception of sub-
events, eta-squared values for all features decreased markedly
after removing timepoints that could be confounded with event
boundaries. Features corresponding to non-visual perceptual
change, in particular, dropped to near-zero values (Fig. 3a). Thus,
transitions showed a clear, albeit non-exclusive alignment to
features pertaining to plot progression, with the top three
predictors being event, sub-event, and semantic features.

Extending from feature-rich movies to featureless rest. We
interpret this co-occurrence with various movie features as evi-
dence that meta-state transitions correspond with psychologically
meaningful mental events. However, to learn whether this
information could be discovered within fMRI data was not our
end goal, as this has been previously achieved using other
methods (although our methods seem to substantially augment
the fidelity of this mapping; see Supplementary Fig. 4). Instead,
we regarded this as an important validation step needed to
associate psychological meaning with our transition metric, such
that the same metric could subsequently be used to infer similar

a

b

c

Fig. 1 Network space representation. a Continuous, random passage
through the space of possible network configurations generates fragments
in t-SNE space, as opposed to b contiguous, worm-like segments when an
attractor holds network configurations in relative meta-stability. c An
example reduced t-SNE representation involving both segment types, as
observed from one participant’s 15-min rs-fMRI scan. Here, the color
gradient conveys progression through time from 0 to 900 s.
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a b

Fig. 3 Variance in movie features explained using network meta-state transitions. a Data are presented as eta-squared values describing the proportion
of variance in movie features explained by alignment to transition vs. meta-stable timepoints. These values are calculated by: obtaining the mean
transition-meta-stable feature value difference across all available mv-fMRI runs for each participant, using bootstrap procedures to obtain the mean
difference across participants (n= 184), transforming bootstrap ratios and 95% percentile bootstrap confidence intervals into corresponding eta-squared
values. Filled bars denote features that are aligned to transitions, whereas empty bars denote stronger alignment to meta-stability. b Diagram illustrating
censorship of features for greater independence of test statistics. Blue lines describe activity in each feature across time. The cascading gray bars denote
where lower-level features are censored by higher-level features.

a

b

c

Fig. 2 Identifying transition and meta-stable timepoints during movie-viewing and rest. a A participant’s mean step distance vector during one mv-fMRI
run, with 95% percentile bootstrap confidence interval ribbon (largely imperceptible ribbon indicates stability over t-SNE iterations). Transition timepoints
(green triangles) and meta-stable timepoints (black triangles) identified by a peak-finding algorithm. b All participants’ transition timepoints for the same
mv-fMRI run, with many peaks overlapping those of the example participant in a. c All participants’ transitions for one rs-fMRI run. Alignment of peaks
in a but not c reveals stimulus control over transitions.
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psychological meaning in new situations where insight is other-
wise unavailable. As a test case, we targeted rs-fMRI data, which is
very clearly associated with no stimulus, no shared structure
across participants, and no shared structure within-participant.
Because methods for indexing mental events in movies are reliant
on such priors11, whereas methods for indexing cognitive
dynamics in rs-fMRI data13,37 lack grounding in psychological
phenomena, this reflected an initial attempt to evaluate the psy-
chological dynamics of the resting mind.

To assess whether we could index mental events under these
entirely uncontrolled conditions, we first interrogated possible
similarities in the properties of transitions found in mv-fMRI and
rs-fMRI data. First, we explored whether any consistent spatial
pattern differentiated transition and meta-stable timepoints.
Although transitions were defined on the basis of change in
network activation, they captured both activation and deactiva-
tion of each network, so there was no circularity or bias toward
the spatial characteristics of any one network.

We performed a conjunction analysis, searching for voxel
activation clusters that independently distinguished transition
and meta-stable timepoints for both mv-fMRI and rs-fMRI runs.
We found that whether participants were engaged in movie-
viewing or at rest, transitions were associated with very similar
patterns of activation (Fig. 4a–c; Supplementary Table 3). In
particular, transition timepoints were consistently associated with
greater activation in several midline regions than meta-stable
timepoints, including the anterior cingulate, posterior cingulate
and precuneus. The insula is also powerfully and consistently
implicated. By contrast, meta-stable activations were consistently
found in dorsal and lateral frontal and parietal regions. In
addition, mv-fMRI was associated with a variety of idiosyncratic
meta-stable regions, including the temporal poles, ventromedial
prefrontal cortex, both amygdalae, and part of visual association

cortex. This unique profile likely reflects the discrepant nature of
engagement in movie-viewing (in which emotional, semantic, or
visually salient aspects of the stimulus likely help sustain
engagement in a particular state38), as opposed to rest.

We also evaluated whether an individual’s transition rate
generalized across task and rest. Before doing so, however,
we wished to learn whether it was stable within task. To this end,
we tested the internal stability of transition rate across the four rs-
fMRI runs. Based on six pairwise correlations across the four
resting-state runs, transition rate was highly consistent across
runs, ICC(2,k)= 0.79, 95% CI: [0.74, 0.83], F(183,549)= 4.8, p <
0.001, revealing it to be a trait-like characteristic that can be
adequately sampled using 15min of rs-fMRI data. We then
averaged participant-wise transition rates across rs-fMRI runs to
stabilize the trait measurement, and regressed them against the
average participant-wise transition rates computed from mv-
fMRI runs. Transition rate at rest was correlated to transition rate
during movie-viewing, r= 0.60, 95% CI: [0.51, 0.70] (Fig. 5),
thereby further linking its properties across stimulus-driven and
resting cognition.

Link between trait neuroticism and transitions. So far, the link
we have drawn between transitions in rs-fMRI data and psy-
chological meaning has been indirect, relying on the similarity of
neural signals in rs-fMRI to those associated with stimulus fea-
tures in mv-fMRI. To solidify this link, we aimed to link transi-
tion dynamics in rs-fMRI to psychological features. To do so,
however, it was necessary to first establish whether transitions,
like personality, featured trait-like characteristics that persisted
over time. Fortunately, runs were sampled at four different
timepoints, with runs 1 and 2 occurring in different scanner
sessions in the same day, and runs 3 and 4 on another day. As a
first step, we calculated the stability of transition rate within each
day (i.e., pairwise correlations between runs that took place on the
same day), and found that transition rate was highly consistent
(day 1: ICC(2,k)= 0.79, 95% CI: [0.74, 0.83], F(183,549)=
4.6, p < 0.001; day 2: ICC(2,k)= 0.80, 95% CI: [0.75, 0.84],
F(183,549)= 5.2, p < 0.001). Next, we calculated the average
transition rate on each day 1 and day 2, and found that transition
rate was still consistent, even across days, r= 0.64, p < 0.001, 95%
CI: [0.54, 0.73]. Finally, we examined overall reliability across all 8
runs. We again found transition rate to be highly consistent, ICC
(2,k)= 0.86, 95% CI: [0.84, 0.89], F(183,1288)= 7.6, p < 0.001.
Together, these findings indicate that transition rate is stable
across not only tasks, but across days, and may therefore be

a

c

b

Fig. 4 Spontaneous thought and attention regions distinguish transitions
from meta-stability. BOLD activity differences are quantified by the
bootstrap ratio (BSR) statistic. The red scale represents transitions > meta-
stability, whereas the blue scale represents meta-stability > transitions.
a During movie-viewing fMRI, greater BOLD activity was observed during
transitions than meta-stable timepoints, in several midline regions,
including anterior cingulate cortex, posterior cingulate cortex, and visual
association cortex. b During resting-state fMRI, greater BOLD activity was
observed during transitions than meta-stable timepoints in similar midline
regions. c Substantiating the subjective similarity of a and b, conjunction
analysis revealed substantial voxel-wise overlap for regions activated
during transitions (see Supplementary Tables 1–3 for voxel cluster details).

Fig. 5 Transition structure generalizes from stimulus-driven to resting
cognition. Participants’ movie-viewing transition rates correlated with their
resting transition rates using a bootstrap correlation approach. Transition
rate is calculated by taking the total number of transitions and dividing it by
the time in minutes.
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regarded as at least a somewhat trait-like attribute that persists
regardless of fluctuations in mood, fatigue, and other factors that
fluctuate on a shorter timescale.

We next proceeded to link our data to neuroticism. Because
our analyses above suggest that a large number of transitions
correspond to a large number of thoughts, we interpreted
transition rate as analogous to mentation rate and predicted that
transition rate would be higher among individuals with high
neuroticism. Consistent with this prediction, higher levels of trait
neuroticism were associated with higher resting transition rates,
r= 0.15, p= 0.027 (one-tailed), 95% CI: [0.00, 0.32], a result we
confirmed in the larger 3 T data set, r(970)= 0.09, p= 0.006, 95%
CI: [0.02, 0.15] (Supplementary Fig. 5). As a further test, we
hypothesized that susceptibility to distraction would correspond
to more idiosyncratic transitions during movie-viewing among
high-neuroticism participants, yielding transition timing that
conformed less to that of other participants (i.e., less alignment
between an individual’s stream of transitions and the group).
Consistent with our hypothesis, higher trait neuroticism was
associated with lower conformity during movie-viewing, r=
−0.18, p= 0.008 (one-tailed), 95% CI: [−0.33, −0.06].

Discussion
To summarize, our method characterizes a neurocognitive land-
mark based on transitions between brain network meta-states.
Our approach is distinctive for its ability to observe fine-grained
thought dynamics, and applicability to single individuals being
scanned in any task context, with or without prior knowledge
about the complexity of brain data under interrogation or the
meta-states to be visited. As validation, we found transitions to be
responsive to events in movie stimuli, and found features of
transitions to be both trait-like and generalizable across task-
based and task-free imaging contexts. Finally, we established
construct validity of transitions by showing the frequency of their
occurrence within resting-state fMRI data and lack of alignment
to the group within movie-viewing fMRI data to predict higher
trait neuroticism. Previous studies of neuroticism have measured
mentation behaviorally and assessed neural bases by the size or
hyperactivation of specific structures or overall functional con-
nectivity between structures and/or networks; here, we provide
neural measures of mental dynamics that bridge the gap between
mentation and neural activity. Taking these observations toge-
ther, we argue that neural meta-state transitions can serve as an
implicit biological marker of new thoughts.

A thought is grounded in its contents. Therefore, our findings
that meta-state transitions during movie-viewing best predicted
event boundaries and onset of new semantic information support
the interpretation that meta-state transitions align with the
changes in semantic content across one’s thoughts. These results
complement those of Baldassano and colleagues11, who used a
Hidden Markov Model (HMM) approach on specific neural
structures to find shifts in movie-viewing brain activity which co-
occurred with event boundaries. Importantly, our method differs
by its grounding in a specific and observable neural phenomenon
(whole-brain network transitions), its applicability on an indivi-
dual basis, and its capacity to detect transitions in uncharacter-
ized task environments. This, in turn, makes our method widely
applicable, being useful in situations where no priors or structure
of any kind is available, including even resting cognition, as we
have illustrated here.

We found that patterns of activation associated with transitions
were mostly consistent across task contexts. We also found that
the regions implicated have largely been previously associated
with spontaneous thought. In particular, anterior cingulate and
insular cortices are considered members of a salience network

that shifts attention to novel external and internal events39, and
the posterior cingulate cortex is a key node in the default mode
network that is more active during task-unrelated than task-
related thought21,40. By contrast, the only region consistently
activated with meta-stability, angular gyrus, has been associated
with sustained attention41, a function that should be expected to
operate in opposition to spontaneous switching to new thoughts.
Beyond the angular gyrus, the profile of meta-stability diverged
based on the nature of what participants were doing: in mv-fMRI,
meta-stability was associated with activation in a variety of
regions plausibly associated with the most engaging parts a movie
stimulus (e.g., visual cortex, auditory cortex, fusiform face area,
and amygdala, likely reflecting processing of visual and auditory
sensations, faces, and emotions42,43). By contrast, in rs-fMRI,
meta-stability was associated with regions plausibly associated
with mentation in prefrontal cortex44. This overall pattern is
consistent with the interpretation that whereas there are general
neural mechanisms for transitioning to and locking onto a new
state, brain activity during stable periods can be expected to
reflect idiosyncratic thought contents.

Transition rate was correlated within runs of the same type,
revealing it to be a trait-like characteristic that can be adequately
sampled using 15 min of rs-fMRI data. This result builds on
recent findings of trait-like properties of low-frequency chron-
nectome characteristics37,45 by showing that higher-frequency
network reconfigurations relevant to rapid, thought-like fluctua-
tions in cognitive states are also trait-like. Furthermore, the
average transition rate during movie-viewing was strongly related
to average transition rate at rest. This relationship may be
explained by the finding that participants segment commercial
films and naturalistic clips with similar fractal structure46, sug-
gesting commonality between mentation during movie-viewing
and real experiences. Film theorists lend further support to this
finding, positing that narrative films and the techniques asso-
ciated to creating them are not an attempt to reproduce reality,
but are optimized based on real perception to control viewer’s
attention and mental state47.

Our method yielded a neural measurement of mentation rate
that we used to investigate how neuroticism relates to thought
dynamics. In particular, the mental noise hypothesis proposes
that individuals with high neuroticism are more susceptible to
intrusive thoughts and distraction by irrelevant information23–25,
presumably yielding more frequent and less predictable changes
in cognitive state. Consistent with this proposal, we found trait
neuroticism to predict higher transition rates (i.e., mentation rate)
during rest, as well as lower conformity of transition temporal
structure to that of the group during movie-viewing. We interpret
these two observations as reflecting increased mental noise in
individuals with high trait neuroticism, which in turn supports
the construct validity of transitions as a measurement of thought
dynamics in both rs- and mv-fMRI. It also serves as a first neural
confirmation that neuroticism indeed entails a noisier mind.

The current results invite comparison against related approa-
ches, such as the application of HMM to movie data. Although
the current approach outperforms HMM in detection of movie
features (Supplementary Fig. 4), it is more informative to focus on
their qualitative differences. In particular, we suggest that HMM
is a better choice for testing hypotheses where relevant states can
be learned from other data. For example, group movie-viewing
fMRI data can be used to identify states that individuals watching
the movie are likely to visit, and then measure whether each
individual visits them11. Similarly, an individual’s encoding run
can be used to test whether states participant visited are later
reinstated during free recall12, and the tendency of an individual
to visit specific, pre-defined states while at rest can be measured12.
By contrast, the current approach is agnostic to which specific
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states are visited. However, it is sensitive to displacement within
the full space of possible states. Its main output is the times at
which state transitions of any kind occur, whether or not we have
any idea what the states may look like. This means the technique
can be applied effectively to a first pilot participant’s very first
fMRI run. It is therefore ideal for finding temporal structure in
uncharacterized task environments, such as resting cognition,
where participants engaged in free thought are likely to navigate a
vast space of possible states, mostly unpredictably.

By lending a level of validity and reliability to measuring
thought dynamics that were unavailable using past introspective
approaches, our approach also creates opportunities to under-
stand cognition. Although our analysis has focused on movie and
resting fMRI data from healthy adults, our methods are applicable
to a wide range of tasks and populations, as well as even case
studies, as no group data are required. To illustrate some unique
affordances, one can ask other individual-difference questions
such as: does transition rate influence a person’s ability to remain
engaged in sustained attention task? Or, using a more task-based
approach: while it is known that novel stimuli are initially
attention-grabbing, are their differences in the thought dynamics
associated with watching a favorite movie for the first time,
relative to the fifth time? Regarding special populations, can
measures of thought dynamics serve a clinical function by
offering early detection of disordered thought in schizophrenia,
or rapid thought in ADHD or mania?

In closing, it is interesting to consider one further example
application that can be addressed with the information already at
hand: how many thoughts do we experience each waking day?
Extrapolating from our observed median transition rate across
movie-viewing and rest of about 6.5 transitions/min, and a
recommended sleep time of 8 h, one could estimate over six
thousand daily thoughts for healthy adults of a young-adult
demographic similar to the one used in our analysis. Although
further interrogation of meta-state transitions would be needed to
employ such a measure with confidence, availability of a tentative
answer further highlights how the current approach may be
fruitful in advancing how we think about thought.

Methods
Human Connectome Project dataset. Neuroanatomical and functional data were
collected by the WU-Minn Human Connectome Project (HCP) consortium28. In a
prior analysis, a 3 T resting-state fMRI (rs-fMRI) data set of 1003 participants (age
M= 28.7 years, SD= 3.7 years; 534 female) was used by the HCP group to gen-
erate spatial maps of typical brain networks that may be found in rs-fMRI parti-
cipants through a process involving group-PCA and group-ICA48,49 Our analyses
involved applying these maps to the 7 T HCP data set that contained both mv-
fMRI and rs-fMRI scans, and that was the subject of all of our own analyses.
Although this 7 T data set is described elsewhere27–29,50, briefly, it consists of fMRI
scans from 184 participants (age M= 29.4 years, SD= 3.4 years; 112 female). Each
participant underwent four 15-min mv-fMRI and four 15-min rs-fMRI runs;
functional images were acquired using a multiband gradient echo-planar imaging
(EPI) pulse sequence (TR 1000 ms, TE 22.2 ms, flip angle 45°, multiband factor
5, whole-brain coverage 85 slices of 1.6 mm thickness, in-plane resolution 1.6 ×
1.6 mm2, FOV 208 × 208 mm2)51–54. During each movie run, participants watched
three or four movie clips interspersed with 20-s rest periods as well as an 84-s
validation clip repeated at the end of each run (due to its repetition, we did not
include this clip in our analyses).

In addition, high-resolution T1-weighted and T2-weighted scans were gathered
(TR 2400 ms and 3200 ms, TE 2.14 ms and 565 ms, flip angle 8° and variable,
0.7 mm thickness, in-plane resolution 0.7 × 0.7 mm2, FOV 224 × 224 mm2) for
purposes of group anatomical alignment. Data collection was approved by the
Washington University institutional review board27, and performed by the HCP
consortium, which also gathered informed consent from all participants at the time
of data acquisition. Access to these data sets was granted by the HCP consortium,
and acknowledged by the Health Sciences Research Ethics Board at Queen’s
University. No participants were excluded from analysis.

Transforming functional data to 15-network representation. We mapped the
15 spatial maps resulting from the 3 T resting-state group-ICA decomposition onto
each 7 T participant’s resting state and movie-viewing data using FSL’s dual

regression function48,49, a method in which known spatial configurations are
regressed against new data to transform 4D functional data into a set of timeseries
(one per spatial map, Supplementary Fig. 1a).

Although larger network set sizes were available from the HCP group (ranging
from 15- to 300-brain-network solutions), we observed that set size had little
material impact on trajectory estimates, and therefore selected the simplest
available (15-network) solution. To increase signal-to-noise ratio and to dampen
short timescale network fluctuations, we temporally smoothed each resulting
timeseries with a moving average filter (span= 5 s). This procedure yielded a
smoothed timeseries for each brain network reflecting that network’s activation
over time. We combined these timeseries to create separate (time × network)
matrices for all four mv-fMRI and all four rs-fMRI runs for each participant
(Supplementary Fig. 1b).

From network representation to network meta-states. In preparation for using
the Mahalanobis distance metric on the data, we applied the t-distributed stochastic
neighbor embedding (t-SNE) algorithm to reduce the dimensionality of each
matrix from 15 dimensions to 2 dimensions at the default perplexity setting of 3030

(Fig. 1c; Supplementary Fig. 1c). We found the perplexity setting had little impact
on our analysis, and therefore selected what is regarded as a moderate (and default)
value. We define the reduced space as the meta-state space as each two-
dimensional timepoint is a higher-order (i.e., meta) representation of a 15-network
activity configuration, as in the method by Miller and colleagues13.

Notably, in Miller and colleagues’ approach13, they created a low-dimensional
(higher-order) representation by first defining the space of possible meta-states as a
discrete 5-dimensional state space, with each dimension representing a distinct
group temporal ICA component derived from participants’ functional data (i.e.,
connectivity patterns). Whole-brain activity was expressed as a weighted
combination of these components over time. To map each timepoint onto their
meta-state space, they then discretized each weight at each timepoint according to
its signed quartile. In contrast, our approach relies on dimensionality reduction
algorithms to discover changes in meta-state directly from the continuous-valued
15-brain-network representation. We selected this approach because it affords
flexibility in the designation of each meta-state by mapping each one onto a
continuous two-dimensional space instead of a discrete 5-dimensional state space.
Just as the Greek philosopher Heraclitus noted, “No man ever steps in the same
river twice, for it’s not the same river and he’s not the same man”, our approach is
aligned to the very likely possibility that meta-states are continually evolving. Our
approach also differs by drawing on published reference networks derived from a
static group of 1003 participants (i.e., the 3 T data set described above28,48,49),
rather than a set of networks derived from the specific data set under interrogation.

Detecting network meta-state transitions. To derive from our t-SNE repre-
sentation a global measure sensitive to changes in network meta-state, we com-
puted the Mahalanobis distance in position within this low-dimensionality t-SNE
space across subsequent timepoints. Covariance matrices were empirical (i.e.,
calculated based on the input sample). The resulting step distance vector for each
fMRI run of each participant should peak at points in the timeseries where shifts in
network meta-state occur. To address potentially divergent results across repeated
t-SNE algorithm runs, we repeated the dimensionality reduction and step distance
vector creation process 100 times for each participant and each functional run.
Then, we took the mean across the 100 step distance vectors for that run (Fig. 2a).
However, even 95% confidence intervals were tightly constrained.

We applied a peak-finding algorithm on each mean step distance vector to
identify transition timepoints at which the step distance satisfied a minimum peak
prominence threshold of 0.06, the value at which ~80% of all step distance values
fell under the 5th percentile transition-associated step distance value. Setting a
prominence value rather than applying a high pass filter allows the algorithm to
consider step distances in the neighborhood surrounding the peak being evaluated
and results in more robust transition selection. To find meta-stable timepoints, we
inverted the signal and specified a minimum peak width of 10; this parameter
ensured that timepoints would only be identified within persistently meta-stable
periods. One example of a participant’s identified transitions and meta-stable
timepoints are shown in Fig. 2a with green and black triangles, respectively. Under
these parameters, the median step distance value associated with transition
timepoints was 0.48 (5th and 95th percentile: [0.09, 1.79]). The median exceeds
94% of all values, whereas the lower bound exceeds about 80% of all values. By
contrast, the median step distance associated with meta-stable timepoints was 0.02
(5th and 95th percentile: [0.01, 0.03]), falling below about 94% of all values.

Transition characteristics in simulated realistic fMRI data. We used fmrisim
from the BrainIAK55 toolbox to generate a noise data set consisting of phase
randomized participant data for the first movie run. Phase shifts were carried out
voxel-wise for each participant (i.e., random different phase shifts instead of the
same across all voxels). After transforming the fMRI signal into the network
representation through dual regression of the 15-network spatial ICA maps, we
followed the method outlined in our paper (i.e., ran 100 iterations of the t-SNE
algorithm, calculated Mahalanobis distances). The final step distance vector for
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each noise participant consisted of the mean step distance vector across these
100 iterations.

Inspecting the individual t-SNE iterations on the noise data, we notice that
results often consist of a few lengthy contiguous clusters (i.e., few smaller
transitions), in contrast to the several contiguous clusters we see in the t-SNE
projections of real data that result in numerous identified transitions. Furthermore,
comparing a participant’s mean noise step distance vector against their real mean
step distance vector, we notice that the real data yields transitions that are more
consistent across repeated t-SNE algorithm runs (Supplementary Fig. 2). These
results highlight the importance of carrying out the repeated t-SNE algorithms step
to stabilize the transitions that are subsequently identified.

Movie feature vectors. To link our identified neural transitions to participants’
experience, we investigated how transitions mapped onto well-characterized movie
features (events, sub-events, cuts, semantic, visual, and auditory), as well as each
participant’s recorded head motion during the scan. Sub-events describe directly
what an actor or multiple actors are doing or saying (“he is walking down the
stairs”, “they are riding in a car”), or they describe the motion of important objects
(“a meteorite strikes the ground”, “a car drives down the street”). We defined an
event as a meaningful cluster of sub-events that describes a larger, overarching goal
achieved by the sum of its parts (i.e., fine-grained and coarse-grained events34).
Cuts referred to boundaries between two separate camera shots. Two raters used a
video coding tool (Datavyu56) to independently identify boundaries demarcating
events and sub-events, then met to discuss any differences in their ratings and
achieve consensus event boundary timepoints. Using this approach, raters created
consensus event and sub-event boundary segmentations for all four movie runs
(14 clips). Only one rater logged cuts, as the objective nature of camera positions
left little to discussion. Across the 14 clips found during the four movie runs, raters
identified an average of 7.5 events, 37.3 sub-events, and 46.2 cuts per clip. A
binarized timeseries was created for each logged feature, with onsets allocated to
the nearest 1 s time bin (corresponding to the 1000 ms TR during which each fMRI
volume was gathered).

The HCP group supplied two types of feature labels for the movie stimuli:
semantic-category labels that described the high-level semantic features contained
in each 1-s epoch of the film57, and motion-energy labels that described low-level
structural features in the same epochs58. There were 859 semantic features and
2031 motion-energy channels that expressed changes in the semantic content and
motion-energy of each epoch, respectively. By summing across all semantic
features and taking its derivative, we obtained a measure of overall magnitude of
change in semantic content at each epoch. Similarly, we summed across all motion-
energy channels and took its derivative to obtain a measure of overall magnitude of
change in perceptual features at each epoch. We also took the absolute value of the
auditory amplitude vector derivative for each movie run as a measure of magnitude
of change in volume. Finally, to rule out the possibility that transitions are a motion
artifact, we obtained, for each participant, relative root-mean-square (RMS) change
in head position59, corresponding to a vector of head movement over time.

Disentangling event boundaries and movie features. Whereas the feature vec-
tors obtained above were correlated, we derived from them a set of independent
feature vectors by censoring epochs where event and sub-event boundaries, as well
as cuts were present. This was done by dropping values in a 3-s window around
feature boundaries and ensured that apparent effects in lower-level features would
not be explained by correlation to higher-level features. Event boundaries censored
all other vectors; sub-event boundaries censored all vectors other than events; and
cuts censored all vectors other than events and sub-events (Fig. 3b). To prevent
spurious effects related to clip onset within movie runs, we also censored the first
6 s of each clip for both the uncensored and censored feature vectors.

Movie and movement features at transition vs meta-stability. For each tran-
sition and meta-stable point found in the mv-fMRI data, we next computed the
average level of each feature accounting for hemodynamic response function (HRF)
lag (working backwards based on the canonical HRF35, sampling from a feature
window 3–6 s prior to each transition and meta-stable point). We then averaged
across all onsets of the same type for each participant. Thus, each participant
ultimately had two values for each feature vector: one representing the average
feature vector value at a transition timepoint, and an analogous value at a meta-
stable timepoint.

We ran a t-test comparing these two values across participants for each feature,
and used each resulting t-statistic to compute the proportion of variance that was
explained in the feature vector (i.e., eta-squared) by the presence of a transition.
Next, we used a non-parametric bootstrapping analysis to obtain a 95% CI for each
feature60. Using participants’ transition-baseline feature value difference as input
data, this approach constructs a sampling distribution of the mean by resampling
1000 times with replacement across participants. Then, the t-statistics
corresponding to the upper and lower bounds of each CI were converted to eta-
squared values (Fig. 3a).

Comparison of real versus simulated data. We also used the phase randomized
noise data set described previously to conduct a secondary analysis investigating

the association between noise transitions and movie features. These results provide
a baseline comparison to the real eta-squared values we obtained, which describe
the alignment of transitions to features. We found no significant association
between transitions and movie features.

Performance of alternative embedding approaches. Having identified strong
prediction of various features, we next sought to determine how crucial our specific
embedding approach (i.e., t-SNE) was to identifying transitions that mapped
strongly onto movie features. To this end, we derived five additional sets of
transition and meta-stable timepoints: one using the unreduced (time × network)
representations of each participant’s mv-fMRI data (Fig. 1b), a second and third set
using a 2-dimensional representation of their mv-fMRI data obtained through
principal components analysis (PCA) and independent components analysis
(FastICA), a fourth using the method described by Miller and colleagues13, and a
fifth using the Hidden Markov Model (HMM) approach described by Baldassano
and colleagues16.

For Miller and colleagues’ method, we began by regressing the spatial ICA maps
corresponding to the 50-network decomposition into the functional data to obtain
a 50-network representation of brain activity over time and match the
dimensionality of their initial input data. Then, we calculated the pairwise
correlations between 44 s time-window of activity in each network. This process
was repeated for the entire timeseries by sliding the time-window in increments of
1 s. As a result, a given participant’s brain activity at a time-window was expressed
as the set of pairwise correlations between each of the networks (i.e., a connectivity
pattern). Then, we applied FastICA to obtain a 5-dimensional representation of
activity over time, with each of the 5 components representing a particular
connectivity pattern. After discretizing the weights of each component at each
time-window according to its signed quartile, the resulting 5-dimensional
representations were used to derive corresponding step distance vectors, as well as
transition and meta-stable timepoints.

Specifically, for each embedding (15-dimensional for the unreduced timeseries,
2-dimensional for the PCA and ICA approaches, and 5-dimensional for Miller and
colleagues’ method), we calculated the Mahalanobis distance across subsequent
timepoints and applied the peak-finding algorithm to identify transition
timepoints; the minimum peak prominence threshold selection strategy and peak-
finding parameters for meta-stable timepoints remained unchanged.

For the HMM approach, we fit the HMM to the 15-network representation of
brain activity, which segments the data into the number of events expected from
human-rater event segmentations of the movie stimuli. This step produces a
probability matrix with a row for each timepoint and a column for each event. The
entries of this matrix reflect the probability of a certain timepoint belonging to that
event. To pinpoint the transition between event k− 1 and k, we identified the
cross-over timepoint at which the probability of event k surpasses the probability of
event k− 1. By contrast, we deemed the timepoint at which the maximum
probability value was observed within event k (i.e., the maximum within its
corresponding column) to be meta-stable.

As above, we used these five additional sets of transition and meta-stable
timepoints to obtain the proportion of variance that was explained in the
uncensored feature vectors by the presence of a transition for each embedding
approach (Fig. 3b). Transitions derived directly from the 15-dimensional (time ×
network) representations predicted a moderate proportion of variance in events,
but not for lower-level event-based features such as sub-events or cuts. PCA, ICA,
Miller’s method, and HMM-based transitions performed worse than t-SNE
transitions for all feature categories. We interpret the strong performance of t-SNE
in predicting features (especially semantic features) as reflecting its unique ability
to distill important local and global structure from the data.

Consistent with this idea, as dimensionality increases, distance metrics are
understood to lose their usefulness as the distances to the nearest and furthest
point from any reference point approach equality61. Zimek and colleagues62

further showed that if the dimensions are correlated rather than independent
and identically distributed, then considering subsets of dimensions can improve
the performance of distance metrics such as Euclidean distance. This likely
explains the poor unreduced feature prediction in our analysis, and supports the
usage of a dimensionality reduction algorithm, as the spatial networks in the
15-dimensional (time × network) representations that we submitted to analysis
were not independent from each other. Substituting Mahalanobis for Euclidean
distance can additionally account for residual correlations between reduced
dimensions32.

In spite of this, in our analysis, poor PCA and ICA performance signaled that
the kind of dimensionality reduction approach also matters. PCA and ICA are
linear methods that seek to preserve global structure, whereas t-SNE can balance a
trade-off between local and global structure. Upon exploring the variable loadings
for PCA results, we observed that the two principal components were weighted
heavily toward visual networks that likely explained substantial global variance, but
at the cost of sensitivity to changes in networks related to higher-level conceptual
processing. As a result, PCA-based transitions performed comparably to unreduced
transitions in the visual category and correlated categories (e.g., auditory), but
worse in semantic categories. The increased restrictiveness that results from the
additional requirement of statistical independence imposed for ICA components
may explain why it performs even worse than PCA.
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Transitions derived from Miller and colleagues’ method were not associated
with feature changes. As we are looking for moment-to-moment changes in
network reconfiguration, one possible explanation is that the size of the time-
window used to correlate across the 50 networks (44 s) was too long to be sensitive
to feature-related changes at a certain timepoint. Thus, we tested the smallest time-
window that could be evaluated (3 s), but still found that no features were
associated with transition relative to meta-stable timepoints (all ps > 0.28). A 2 s
time-window is impossible to evaluate as the pairwise correlation values are −1 or
+1, reflecting the linear relationship between two points. Furthermore, reducing
dimensionality by distilling the 50-network pairwise correlations to 5 connectivity
patterns may not provide enough flexibility to capture the different mental states
linked to movie-viewing.

Of the embedding methods we tested, HMM-based transitions were second
only to our t-SNE-based approach at aligning to feature changes and predicted a
moderate proportion of variance across all but auditory features. In addition, an
important limitation, particular to this method, was that the number of transitions
to be placed with each fMRI run had to be pre-defined. This can be accomplished
in two ways: on the one hand, one can use information about the stimulus to define
the expected number of events (as we have done), although this arguably
constitutes a form of peeking in analyses such as the current one where the goal is
to recover stimulus features. Furthermore, this strategy is also impossible where no
stimulus-based guidance exists (e.g., during resting-state fMRI). Another way of
pre-defining the number of transitions is to perform an optimization at the group-
level. However, this approach assumes that the pre-defined number of events is
present in each participant’s data, whereas there may be individual differences in
the number of event boundaries. Outside of constrained situations where
participants are all viewing the same stimulus, there may little shared structure in
the type or timing of states across participants (also as in rs-fMRI). These
considerations limit the application of HMM-based methods to situations where
priors exist (such as a known stimulus, shared group structure, or prior exposure).
By contrast, our goal was to only initially validate our technique in an environment
where the stimulus could be well-characterized, with the intention of subsequently
applying it largely in situations where no priors are available.

These points made, as a further validation step it was helpful to consider that, to
the extent our t-SNE based and the previously-validated HMM-based approach are
both successful at identifying cognitively meaningful event boundaries, the
transitions we identify using the t-SNE approach should have some alignment to
HMM-based transitions. To that end, we calculated the proportion of HMM-based
transitions that were found within a 3-s window of a t-SNE-based transitions for
each participant and movie run. On average, 40% of HMM-based transitions were
found in t-SNE-based transitions, confirming that although we were not able to
achieve the same level of feature-detection performance with HMM, it nonetheless
indexed a similar neurocognitive construct. The lower percentage may result from
forcing the placement of transitions in the HMM-based approach, thereby
identifying transition timepoints that may not correspond with actual mental state
change.

Mapping between network node activity and movie features. We regressed
each movie feature timeseries on each participant’s 15-network node timeseries to
investigate the predictive power of individual networks. This yielded 184 adjusted
R-squared values for each of the 6 movie features. The highest mean adjusted R-
squared value was for the semantic feature (mean R2= 0.0033), signaling that
individual networks were not meaningful predictors of any feature.

Mapping between network node activity and transitions. We imported the
transitions and meta-stable timepoints identified at rest and relative head motion
from the rest runs. Next, we used the same strategy as with the movie feature
analysis. In particular, we reasoned that if participants’ head motion causes tran-
sitions, then the average value of relative head motion at a transition timepoint
should be significantly larger than the average value at a meta-stable timepoint. We
obtained the value representing this transition-meta-stable head motion difference
for each participant, then fed these values into a bootstrap analysis comparing
against the null hypothesis of zero. We found no significant association between
transitions and head motion at rest, mean transition-meta-stable step distance
difference=−0.00, BSR=−1.10, p= 0.273, 95% CI: [−0.00, 0.00].

Event structure influence on transition group alignment. Visual inspection
revealed considerable structure in transitions across participants during movie-
viewing (Fig. 2b), complementing prior findings of local coordination of brain
activity as participants watch well-made films. To formalize this observation, we
tested for higher group alignment in movie runs than rest runs. For each parti-
cipant and each run, we took the Fisher transformation of the correlation between
the log of their step distance vector and the log of the median group signal
(excluding the step distance vector of the participant in question). To avoid
potential effects resulting from the onset and offset of the run, we excluded the first
and last five epochs of the step distance vectors. Then, we compared all group
alignment values from the four mv-fMRI runs against zero. The same boot-
strapping analysis was carried out for all group alignment values for the four rs-
fMRI runs.

To provide an alternate way of testing the influence of narrative events over
transitions, we correlated the number of events in each movie clip with the degree
of group alignment of transitions for that clip. For each clip, we divided the
number of events in that clip by its duration in minutes. For each participant, we
obtained their clip conformity by taking the Fisher transformation of the
correlation between the log of their step distance vector and the log of the median
group signal (excluding the step distance vector of the participant in question).
This was repeated for each clip within a movie run rather than the movie run in its
entirety; thus, each participant had a vector describing their clip conformity,
wherein each element corresponded to a conformity value for a particular clip. We
calculated the Pearson correlation between the events per minute and conformity
vector within each participant, resulting in a distribution of 184 correlation
coefficients. We fed this distribution into a bootstrapping analysis (as described
previously when we used this strategy to obtain 95% confidence intervals) with
1000 samples to test whether the correlation between events per minute and group
alignment was significantly different from 0.

Effects of peak threshold and temporal smoothing parameters. To evaluate the
importance of these parameter settings, we tested the effects of varying minimum
peak prominence (MPP) values and temporal smoothing spans on the movie
feature analysis. We derived sets of transition and meta-stable timepoints from 11
MPP values: [0.01, 0.02, …, 0.11]. These timepoints were fed into the movie feature
analysis. Results are shown in Supplementary Fig. 3a, with results of the original,
moderate MPP value (0.06) represented by the middle bar in each 11-bar cluster.
As we aimed to identify neural transitions that corresponded with a new thought,
which we proposed are analogous to event boundaries and semantic content
changes in movies, we are reassured that the alignment between transitions and
events remained stable across MPP values. Furthermore, in the semantic feature,
alignment strength increases as values approach the actual MPP value (0.06), but
then remain stable for values greater than the actual MPP value.

Smoothing occurs on the 15-network activity configuration, just before this
representation is used as input into the dimensionality reduction algorithm. We
originally used a 5-s span, as this is close to the time-to-peak in the hemodynamic
response function. However, to probe this parameter, we derived meta-state space
representations for data smoothed with the following spans: [1 s, 3 s, 5 s, 7 s, 9 s].
From these five sets of data, we derived five sets of transition and meta-stable
timepoints. As above, these timepoints were fed into the movie feature analysis.
Results are shown in Supplementary Fig. 3b, with results of the original span
(span= 5 s) represented by the middle bar in each 5-bar cluster.

We also determined transition rate for each of these five spans. A one-way
ANOVA revealed that there was a significant difference in mean transition rate
between the spans. Our chosen span was also often (but not always) optimal from a
signal detection perspective. However, follow-up pairwise t-tests between our
chosen span (5 s) and each of the other spans revealed no significant differences (all
ps > 0.27).

In conclusion, an exploration of the parameter space confirmed that our
selection of this smoothing window was desirable in terms of the alignment of our
measures to features, yet did not elicit a reliable difference on the analysis outcome
relative to no temporal smoothing (i.e., span= 1 s).

Spatial correlates of transitions vs meta-stable timepoints. Using the transition
and baseline onsets, we next performed a voxel-wise conjunction analysis in which
we sought to identify stable spatial correlates of network meta-state transitions that
could be found across rest and movie runs. Through this analysis, we wished to
learn whether any set of transition predictors could link brain activity for which we
have insight into psychological relevance (mv-fMRI) with brain activity for which
we do not (rs-fMRI). To this end, we sampled the average fMRI image at transition
and baseline onsets for each participant in the same manner as with feature vectors
above, but without correcting for HRF lag (as the predictor and dependent vari-
ables were affected by the same delay). In this case, however, we created
participant-wise transition and meta-stable timepoint averages not only for mv-
fMRI runs, but also (separately) for rs-fMRI runs. We also spatially smoothed each
image using a 6 mm FWHM Gaussian kernel (at the lower bound of optimal
parameters for overcoming inter-subject variability63).

Correlation between personality and mental dynamics measures. The HCP
administered the Neuroticism/Extroversion/Openness Five Factory Inventory
(NEO-FFI64). We used participantsʼ scores for each facet of human personality
(neuroticism, extroversion/introversion, agreeableness, openness, and con-
scientiousness) as correlates to average rs-fMRI transition rate and conformity
(specific to mv-fMRI). Although we had a directional hypothesis for the rela-
tionship between neuroticism and our two measures of mental dynamics, corre-
lations between other traits and measures of mental dynamics were considered
exploratory. We used a bootstrap correlation approach with 1000 samples to assess
correlation between neuroticism, transition rate, and conformity.

Head motion and transitions at rest. Previously, we showed that there was no
association between head motion and transitions during movie-viewing. To ensure
that this was also the case in our resting-state data, given that motion can be higher
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during resting-state scans65, we repeated the same feature analysis strategy for
head motion and transitions at rest and found no difference between average
head motion during a transition versus at rest, BSR=−1.10, p= 0.273, 95%
CI: [−0.00, 0.00].

Correlations of other personality traits to transition rate. For clarity and
completeness, we report results describing the relationship between transition rate
and each of the personality traits (Supplementary Fig. 6). To maximize statistical
power, we conducted this analysis using the large 3 T data set. To address potential
interrelations among the traits, we isolated each trait by controlling for all other
traits in the descriptive analysis. In so doing, we observed that openness was
negatively associated with transition rate, possibly reflecting the relationship that
has been demonstrated between this trait and transliminality66, defined as a
“tendency for psychological material to cross thresholds into or out of con-
sciousness”67. Based on our definition of a thought as containing transient cog-
nitive state, more material crossing into consciousness should correspond to a
higher volume of thoughts. Based on the ideas presented here, this, in turn, should
lead to a higher transition rate. We should caution, however, that our interpreta-
tion is speculative and post hoc. We therefore suggest this observation is best
regarded as evidence to support hypothesis generation for future research.

Impact of sex differences in neuroticism on transition rate. Because it is well
established that across cultural contexts, neuroticism tends to be higher in females
than males68, we organized the 7 T data set by sex, and evaluated the difference in
the slope of the correlations established for males versus females (no participants
were marked as “other”). We found that neuroticism was associated with higher
transition rate in females than in males, rdiff= 0.28, 95% CI: [0.00, 0.57]. However,
this pattern did not survive translation to the 3 T data set, rdiff= 0.08, 95%
CI: [−0.05, −0.21], providing mixed evidence for the sex specificity of our findings.

Effects of clip emotionality on mental dynamics measures. Perception is biased
toward arousing stimuli38. An emotionally arousing film stimulus should, there-
fore, increase the amount of control exerted by the stimulus over participants’
perceptions and, in so doing, decrease the rate of spontaneous, stimulus-
independent cognitions. We operationalized this hypothesis as follows: clips with
higher arousal ratings will be associated with lower transition rates and greater
alignment of transitions across participants.

To establish arousal ratings for the film clips, we gathered responses from 12 first
year psychology students who watched, in a random sequence, the 14 movie clips that
were presented during the mv-fMRI runs. After viewing each film clip, participants
evaluated the arousal of the clip. We used these ratings to establish an average arousal
rating for each film clip. This resulted in a vector of 14 average arousal scores.

Returning to the brain data, we constructed a parallel 14-clip transition rate
vector for each mv-fMRI participant. We then calculated the correlation between
the arousal vector and each participant’s transition rate vector. This resulted in a
correlation coefficient for each participant that described the relationship between
the level of arousal associated with each clip, and the participants’ resulting
transition rate. Inputting this distribution of coefficients into a bootstrap analysis,
we observed that higher arousal was reliably associated with fewer transitions,
mean r=−0.16, BSR=−8.83, p < 0.001.

We also obtained a 14-clip conformity vector describing the degree of similarity
between the participant’s step distance vector and the group for each clip. We
calculated the correlation between the arousal vector and each participant’s
conformity vector. The distribution of correlation values describing the
relationship between arousal and conformity was fed into a bootstrap analysis. We
found that higher arousal was associated with more conformity, mean r= 0.10,
BSR= 4.73, p < 0.001.

Taken together, our analysis confirmed our hypothesis that more emotional
stimuli would better capture and maintain the viewer’s attention, resulting in fewer
overall transitions (i.e., lower transition rate) and higher similarity to the group (i.e.,
conformity). Intriguingly, this interpretation is also consistent with our observation
that the amygdala is associated with meta-stability during movie-viewing.

Bootstrapped confidence intervals. We used a bootstrapping approach to
determine confidence intervals, descriptive statistics, and for statistical evaluations
throughout the analysis.

We used a bootstrap approach to determine the stability of the step distance
vectors across multiple t-SNE algorithm runs and to find 95% confidence intervals
for eta-squared values in the psychological relevance analysis.

For the step distance vectors, we fed the step distance vectors resulting from all
100 iterations into a bootstrapping analysis. Then, for each timepoint, the 100
values from each iteration were resampled with replacement and the mean of that
sample recorded. This resampling process was repeated 1000 times to build a
sampling distribution of the mean for each timepoint. Confidence intervals around
each element of the participant’s mean step distance vector are derived from the
5th and 95th percentile values of the corresponding sampling distribution.

For the eta-squared values, we first obtained a vector for each feature describing
the difference between average transition and meta-stable timepoint feature values

within-participant (i.e., 184 elements representing the difference for each
participant). The transition-meta-stable difference vectors for each feature were fed
into the bootstrap analysis to obtain 95% confidence intervals around the mean
difference. Then, these bounds replaced the mean in the eta-squared calculations to
obtain corresponding eta-squared values at the bounds of the confidence interval.

Bootstrapped descriptive statistics. We followed a similar procedure as
described above to bootstrap the mean values for conformity during movie-view-
ing, conformity at rest, the mean correlation between events per minute and
conformity (within-participant). Specifically, the input data (e.g., conformity values
across participants’ movie runs) was resampled with replacement 1000 times. The
mean of each sample was recorded to build a sampling distribution of the mean,
from which we could obtain the bootstrapped mean value as well as confidence
intervals.

Bootstrapped correlations. We used a bootstrap approach to determine corre-
lations between transition rate during movie-viewing and at rest, as well as between
transition rate, conformity, and neuroticism. Similar to above, this entailed
resampling with replacement pairs of values (e.g., movie and rest transition rates)
across participants. The correlation between variables for each sample was recorded
to build a sampling distribution of correlation, from which we could obtain the
bootstrapped correlation value, confidence intervals, and p-values. Outliers are
identified as values surpassing three median standard deviations and are removed
from the analysis69.

Conjunction analysis methodology. To assess regions evoked at transition versus
meta-stable timepoints in both task and rest, we first subtracted meta-stable from
transition images independently for movie and rest, such that a movie difference
image and rest difference image was available for each participant. We masked
these images using a gray matter mask, performing comparisons only on those
voxels with at least a 50% probability of being gray matter based on an MNI
anatomical atlas in the same space70. Again, we used a non-parametric boot-
strapping analysis, but this time obtained a bootstrap ratio (BSR) image for each of
the movie and rest difference images (see e.g., ref. 71). As the bootstrap ratio
approximates a z-distribution72, we used a cumulative distribution function to
convert it into a map of voxel-wise p-statistics. For each of movie and rest, we
thresholded the resulting map at P < 0.001, and suppressed supra-threshold voxels
within the respective p-maps that did not satisfy a minimum cluster extent
threshold of 250 voxels (1024 mm3).

To perform conjunction analysis, we thresholded both the movie and rest
p-maps at p < 0.05, setting all voxels above this value to infinity, and computed
the product of the p-maps. The resulting conjunction p-map represented the
probability of obtaining a supra-threshold result not only in map A, but also in
map B. Because of the initial thresholding step, it had an implied p-value
threshold of 0.0025. As with the single-task analyses, we then further suppressed
supra-threshold voxels within the conjunction p-map that did not satisfy a
minimum cluster extent threshold of 250 voxels (1024 mm3). We selected these
voxel-wise and extent thresholds to achieve a balance between type I and type II
error rate73.

Statistics and reproducibility. Most analyses used data from the 7 T Human
Connectome Project Young Adult dataset, which involved a large sample and
uniquely contained both rest and movie data. Thus, most analyses could not be
repeated. Analyses examining the relationship between transition rate and rest and
neuroticism were repeated in a second (3 T) data set, as reported in the Results
section.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data are available from the Human Connectome Project at humanconnectome.org.
Movie-related variables (e.g., event boundaries segmented for this study) are available
upon request. A reporting summary for this Article is available as a Supplementary
Information File.

Code availability
Our analysis relied upon algorithms implemented in MATLAB (v.2017a), FreeSurfer
(v.5.3), Datavyu (v.1.3.7), FSL (v.5.0.10), R (v.3.6.2), and the Brain Imaging Analysis Kit
(RRID: SCR_014824). Custom code used to identify transitions and meta-stable
timepoints from the network representation step onwards can be found at https://github.
com/j-tseng/neural-transitions.
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