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Transcranial magnetic stimulation (TMS) has a wide range of clinical applications, and
there is growing interest in neural oscillations and corticospinal excitability determined
by TMS. Previous studies have shown that corticospinal excitability is influenced by
fluctuations of brain oscillations in the sensorimotor region, but it is unclear whether
brain network activity modulates corticospinal excitability. Here, we addressed this
question by recording electroencephalography (EEG) and TMS measurements in 32
healthy individuals. The resting motor threshold (RMT) and active motor threshold
(AMT) were determined as markers of corticospinal excitability. The least absolute
shrinkage and selection operator (LASSO) was used to identify significant EEG metrics
and then correlation analysis was performed. The analysis revealed that alpha2 power
in the sensorimotor region was inversely correlated with RMT and AMT. Innovatively,
graph theory was used to construct a brain network, and the relationship between
the brain network and corticospinal excitability was explored. It was found that the
global efficiency in the theta band was positively correlated with RMT. Additionally,
the global efficiency in the alpha2 band was negatively correlated with RMT and AMT.
These findings indicated that corticospinal excitability can be modulated by the power
spectrum in sensorimotor regions and the global efficiency of functional networks. EEG
network analysis can provide a useful supplement for studying the association between
EEG oscillations and corticospinal excitability.

Keywords: electroencephalography, transcranial magnetic stimulation, corticospinal excitability, network, power
spectrum

INTRODUCTION

Transcranial Magnetic Stimulation (TMS) induces an electric field through a time-varying
magnetic field, resulting in induced electric currents and changing the action potential of nerve
cells in the cerebral cortex, thus affecting blood circulation, metabolism, and nerve excitability
in the brain (Wanalee et al., 2015). As an effective non-invasive nerve stimulation technology,
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TMS is widely used in clinical practice and can be used to improve
motor function in stroke patients, improve individual cognitive
function, and reduce depression (Myczkowski et al., 2018; Chen
et al., 2019).

Neuron oscillatory activity plays an important role in the
cortical response to TMS. To clarify the interaction between
neural activity and TMS, researchers explored the association
between electroencephalography (EEG) and corticospinal
excitability, defined as the cortical output in response to TMS.
It was found that the fluctuation of EEG oscillations selectively
affects corticospinal excitability (Berger et al., 2014; Bergmann
et al., 2019; Ogata et al., 2019). Although EEG oscillations were
assumed to regulate cortical excitability, the findings in previous
studies were inconsistent. Some studies reported a correlation
between corticospinal excitability and pre-stimulation alpha
oscillation power (Sauseng et al., 2009) as well as beta oscillation
power (Maki and Ilmoniemi, 2010; Hussain et al., 2019b)
while others found no correlations between various EEG
frequencies (Iscan et al., 2016). There are contradictions in
these studies. Sauseng et al. (2009) found that the amplitude of
motor evoked potentials (MEPs) is negatively correlated with
the pre-stimulation alpha oscillation power, while Ogata et al.
(2019) reported the opposite results. These conflicting results
have evoked the need for further investigation of the relationship
between EEG oscillations and corticospinal excitability to obtain
reliable results.

Interestingly, previous studies focused on how EEG
oscillations in sensorimotor regions modulated corticospinal
excitability, while ignoring the effects of brain global network
activity. Early neuroscience research focused on the function
of single brain regions, while modern approaches tend to use
complex network methods to analyze the structure and dynamic
behavior of neural networks. Brain regions such as the frontal
and parietal lobes regulate corticospinal excitability (Cattaneo
and Barchiesi, 2011). A previous study showed that corticospinal
excitability was regulated by the attention network, providing
another perspective for understanding the association between
corticospinal excitability and brain networks (Avenanti et al.,
2018). A recent study indicated that TMS efficacy was modulated
by the functional state of the target brain network (Schiena et al.,
2020), suggesting that researchers should pay more attention to
the impact of brain networks on corticospinal excitability rather
than a single brain region.

In the field of brain networks, techniques for the construction
and analysis of brain networks are still evolving. As a branch of
scientific computing, graph theory involves the construction of a
network by defining a series of nodes and connecting edges. This
model fits the pattern of brain activity, which makes it a great
tool for brain functional segmentation and integration (Sporns,
2018). The global efficiency and the clustering coefficient can
be calculated using graph theory to measure the features of the
brain network. Graph theory analysis of EEG has been gradually
applied to describe neural electrophysiological activity (Rubinov
and Sporns, 2010). A previous study showed that adjusting brain
excitability through transcranial direct current stimulation can
change the small-world propensity in brain networks (Vecchio
et al., 2018), suggesting that graph theory can be a useful approach

to study the interactions between brain networks and neural
regulation technology.

For the purpose of this study, we aimed to explore
the association between corticospinal excitability and EEG
oscillations. The resting motor threshold (RMT) and active motor
threshold (AMT) were identified as markers of corticospinal
excitability according to previous study (Stefanou et al., 2020).
Innovatively, we used graph theory analysis methods to construct
brain networks to explore the relationship between the network
properties and corticospinal excitability. Considering the factors
mentioned above, we assumed that corticospinal excitability
depends not only on the neural activity of the motor region, but
also on the functional activity of the brain network. Clarifying
the mechanism by which oscillating brain activity modulates
corticospinal excitability will help elucidate how TMS works,
which is conducive to enhancing the effect of TMS by stimulating
the brain based on the current neural state.

MATERIALS AND METHODS

Participants
A total of 32 right-handed individuals (mean age: 21.53 ± 1.46;
7 men), all college students, were included in this study. The
participants did not take psychotropic drugs and had no history
of central nervous system diseases or head trauma. Individuals
with contraindications to TMS were excluded (Rossi et al.,
2021). Before the experiment, the participants were required to
get enough sleep to maintain a good mental state during the
experiment. All participants were informed of the purpose and
content of the experiment and signed informed consent forms
before the experiment. This study was approved by the Ethics
Committee of Guangzhou First People’s Hospital.

EEG Acquisition and Processing
EEG Acquisition
Resting-state EEG were recorded before application of TMS. The
EEG data collection was performed in the electrophysiological
laboratory and the room was quiet during EEG recording. The
participants sat in a comfortable chair and their resting EEG was
recorded for 10 min while their eyes were closed. They were
required to remain awake throughout the recording. EEG data
were recorded by using 128-channel HydroCel Geodesic Sensor
Net (Electrical Geodesics, Inc., Eugene, OR, United States),
and the Cz electrodes were used as the online reference. The
impedances of all electrodes were kept below 10 k� by input
impedance amplifiers (Geodesic EEG system 400). The signal was
amplified at a sampling rate of 2,048 Hz and filtered through
a 0.1–100 Hz band-pass filter. Data were processed offline after
continuous EEG acquisition.

EEG Processing
Electroencephalography processing was conducted with Matlab
R2013a (The MathWorks, Natick, MA, United States) and
eeglab12.0.1 After reducing the sampling rate to 1,000 Hz, the

1http://www.sccn.ucsd.edu/eeglab/

Frontiers in Neuroscience | www.frontiersin.org 2 August 2021 | Volume 15 | Article 722231

http://www.sccn.ucsd.edu/eeglab/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-722231 August 17, 2021 Time: 14:55 # 3

Cai et al. EEG Can Predict Corticospinal Excitability

data were filtered through 0.1–40 Hz with a finite impulse
response (FIR) filter. Continuous data were segmented into 2 s
for each epoch. Bad data were defined when the amplitude
exceeded ± 100 µV. Independent components analysis (ICA)
was conducted to eliminate electro-oculograms after removing
bad epochs and interpolating electrodes with high noise.

To obtain spectrum information for the EEG data, Fast
Fourier Transform (FFT) was used to decompose the data. We
calculated the power of the four frequency bands: delta (1–4 Hz),
theta (4–8 Hz), alpha1 (8–10 Hz), alpha2 (10–13 Hz), beta1
(13–20 Hz), and beta2 (20–30 Hz). In accordance with previous
research, data collected from the cluster of EEG electrodes around
C4 were averaged to represent the activity of the sensorimotor
region (Bayram et al., 2015).

As for functional connectivity, the phase lag index (PLI) was
applied to characterize the connections between the electrode
pairs because it can eliminate the volumetric conduction effect.
Band-pass filtering was performed on the electrode signal, and
Hilbert Transform was performed on the filtered electrical signal
to extract the phase at each time point. Afterward, the PLI of each
electrode pair in the six frequency bands was calculated. PLI was
calculated using the following formula (Su et al., 2017).

PLI =
∣∣ 〈sign [sin (4ϕ (tk))]

〉 ∣∣ (1)

The range of the PLI value was 0–1; 0 indicated that the two
signals did not have a linear dependence in this frequency band,
while 1 indicated complete synchronization.

In this study, the GRETNA toolbox2 was used for graph
theoretical network analysis (Wang et al., 2015). The undirected
weighted network was set up using electrical poles as nodes and
the PLI value as the edge weight (de Waal et al., 2014). Based
on previous studies, the clustering coefficient and efficiency,
which are the most commonly used metrics, were selected to
characterize the complex networks (Zomorrodi et al., 2019). Since
there was no definite method for selecting a single threshold,
referring to previous studies, we integrated the metrics over
the entire threshold range to obtain the area under the curve
(AUC) to characterize the brain network (Wang et al., 2015;
Yan et al., 2017).

The clustering coefficient is defined as the ratio of the actual
number of edges between a given node and its neighbors and the
total number of possible edges between these nodes, and is used
to measure the tightness between a node and its neighbor nodes
in a network.

Ci =
2li

ki(ki − 1)
(2)

The clustering coefficient of the whole network is the average
of all nodes in the network.

Cglobal =
1
n

∑
i∈N

Ci (3)

Efficiency refers to the reciprocal of the harmonic average
distance between all nodes in the network. The efficiency of a

2http://www.nitrc.org/projects/gretna/

node is used to measure the information transmission capacity
of the given node in the network.

Ei =

∑
j∈N, j 6=i (dij)

−1

n− 1
(4)

The global efficiency is the average of all nodes in the network.

Eglobal =
1
n

∑
i∈N

Ei (5)

For the formula and interpretation of these metrics, see Rubinov
and Sporns (2010). The clustering coefficient and node efficiency
of the motor cortex are the average values from the electrodes in
the motor region.

TMS Procedure
Resting motor threshold and AMT was recorded immediately
after EEG acquisition. Stimulation was applied using a figure-
eight coil connected to the NS5000 Magnetic Stimulator
(YIRUIDE Medical Co., Wuhan, China) with a maximum
magnetic field intensity of 2.5 T. The participants assumed a
sitting position with the body relaxed. The coil was placed in
the projection of the primary motor cortex on the body surface
of the right hemisphere, tangent to the scalp with the handle
points facing backward and 45◦ away from the midline. This
orientation induced a posterolateral to anteromedial current in
the brain that preferentially activated the cortical-spinal system
through horizontal cortical–cortical connections (Premoli et al.,
2014). A single TMS pulse was applied to the M1 region, and
MEPs from the left first digital interosseous (FDI) muscle were
recorded with surface electromyography. The resting motion
threshold was determined using the relative frequency method,
defined as the minimum intensity that was sufficient for the
MEPs to reach an amplitude > 50 µV in at least five out of ten
of the subsequent stimuli. AMT was determined during muscle
contraction (approximately 20% of maximum muscle strength)
and was defined as the minimum intensity able to elicit MEPs
(peak amplitude > 200 µV) in 50% of the subsequent stimuli.
Furthermore, we used the neuro-navigation system (Visor2, ANT
Neuro, Hengelo, Netherlands) to record the FDI hot spots to
ensure that the coil would not deviate from the stimulus target
throughout the experiment.

Statistical Analysis
To confirm the relationship between spontaneous EEG
oscillations and corticospinal excitability, the least absolute
shrinkage and selection operator (LASSO) was used to identify
significant features and correlation analysis was conducted for
these features. The basic idea of LASSO is that it compresses
the coefficient of variables by adding penalty functions to the
model and eliminates variables with a regression coefficient of
0 to facilitate the selection of variables (Li et al., 2017). The R
4.0.5 software3 and glmnet package (Friedman et al., 2010) were
used to perform LASSO. The parameter Lambda (λ) was tuned
by 10-fold cross-validation based on the minimum criteria.

3http://www.R-project.org
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To obtain the best fitting effect, the model with minimum λ

was chosen. Correlations between significant features extracted
by LASSO and corticospinal excitability were then evaluated.
Statistical analysis was conducted using SPSS 25.0 (SPSS Inc.,
Chicago, IL, United States). The Shapiro-Wilk normality test was
performed on all variables, and Pearson correlation analysis was
used for variables with normal distribution; otherwise, Spearman
correlation analysis was applied. p < 0.05 was considered
statistically significant.

RESULTS

Descriptive Results
The range of RMT was from 21 to 73% MSO and the mean
value was 46.25% MSO [standard deviation (SD) = 13.579]. AMT
ranged from 12 to 57% MSO and the mean value was 32.31%
MSO (SD = 11.183). The descriptive results for other variables
are shown in Table 1.

Extraction of Features
Least absolute shrinkage and selection operator was used to
construct the regression model for EEG parameters to predict
RMT, and the regression model with the minimum λ value was
selected because it had the best prediction. The minimum λ was
1.548, and eight potential predictors were identified, including
alpha2 and beta1 oscillations power in the sensorimotor region,
nodal efficiency in the alpha1 and alpha2 bands, global efficiency
in the delta, theta, and alpha2 bands, and global clustering
coefficient in the theta band. In the model used to predict AMT,
the minimum λ was 1.844. Alpha2 oscillations power in the
sensorimotor region, nodal efficiency in the theta and alpha1
bands, global efficiency in the theta and alpha2 bands, and
global clustering coefficient in the beta2 band were selected as
predictors. All significant factors were included in the subsequent
correlation analysis. See Figure 1.

Correlation Analysis
Correlation analysis showed that the power of alpha2 oscillations
in the sensorimotor region was negatively correlated with
RMT (ρ = −0.376, p = 0.034). Similarly, alpha2 power in the
sensorimotor region showed an inverse correlation with AMT
(ρ = −0.432, p = 0.014). The strength of the correlation between
beta1 and RMT did not reach a statistically significant level

(ρ = −0.328, p = 0.066), similar to that between beta1 and AMT
(ρ =−0. 314, p = 0.080). See Figure 2.

When exploring the relationship between the nodal metrics
and RMT, we found that RMT was negatively correlated with
nodal efficiency in the alpha2 band, but the correlation did
not reach statistical significance (r = −0.347, p = 0.051). Nodal
efficiency in the theta band had no correlation with RMT
(r = 0.023, p = 0.900) and AMT (r = 0.336, p = 0.060) and there
was no correlation between nodal efficiency in the alpha1 band
and RMT (r =−0.247, p = 0.173) or AMT (r =−0.210, p = 0.249).
See Figure 3.

As for global metrics, we found that the global efficiency in
the theta band was positively correlated with RMT (r = 0.374,
p = 0.035), while the global efficiency in the alpha2 band
was negatively correlated with RMT (ρ = −0.363, p = 0.041),
showing the opposite trend. Similarly, the global efficiency
in the alpha2 band was negatively correlated with the AMT
(ρ = −0.427, p = 0.015) and the correlation strength between
the global efficiency in the theta band and AMT did not reach
the statistically significant level (r = 0.291, p = 0.106). There
was no correlation between global efficiency in the delta band
and RMT (r = 0.074, p = 0.688) as well as AMT (r = −0.281,
p = 0.119). Further, the global clustering coefficient in the theta
and beta2 band had no significant correlation with RMT or AMT.
See Figures 4, 5.

DISCUSSION

In this study, we explored the relationship between EEG
oscillations and corticospinal excitability. Analysis revealed
that the alpha2 power in the sensorimotor region showed
an inverse correlation with RMT and AMT. Innovatively,
we explored the relationship between brain activity and
corticospinal excitability from the perspective of the
functional network and found that the global efficiency
in the theta band was positively correlated with RMT.
Additionally, the global efficiency in the alpha2 band was
negatively correlated with RMT and AMT. These findings
indicated that the power spectrum in sensorimotor regions
and the global efficiency of functional networks modulate
corticospinal excitability, which provides an important basis
for understanding the interactions between neural electrical
activity and TMS.

TABLE 1 | Descriptive results of electroencephalography (EEG) metrics.

Delta Theta Alpha1 Alpha2 Beta1 Beta2

Power spectrum 2.062 ± 1.030 1.247 ± 0.493 1.412 ± 0.672 1.359 ± 0.697 0.736 ± 0.338 0.497 ± 0.193

Global metric

CC 0.163 ± 0.016 0.160 ± 0.017 0.140 ± 0.023 0.143 ± 0.026 0.156 ± 0.028 0.136 ± 0.028

Efficiency 0.089 ± 0.003 0.079 ± 0.002 0.077 ± 0.008 0.076 ± 0.012 0.053 ± 0.004 0.045 ± 0.003

Nodal metric

CC 0.165 ± 0.030 0.161 ± 0.026 0.130 ± 0.050 0.133 ± 0.056 0.170 ± 0.043 0.143 ± 0.037

Efficiency 0.084 ± 0.007 0.080 ± 0.007 0.072 ± 0.024 0.070 ± 0.022 0.053 ± 0.007 0.048 ± 0.006

Data are presented as mean ± standard deviation. CC, clustering coefficient.
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FIGURE 1 | Features selection using the least absolute shrinkage and selection operator (LASSO) regression model for resting motor threshold (RMT) (A) and active
motor threshold (AMT) (B). The horizontal axis plotted value of log λ and the vertical axis plotted mean squared error. The dotted vertical line was plotted at the
optimal λ values based on minimum criteria.

FIGURE 2 | Topographic maps and scatter diagrams. Topographic maps showed the power of alpha2 oscillations and beta1 oscillations. The color bar represents
the value of power (A,D). Scatter diagrams showed the correlation between electroencephalography (EEG) oscillations and motor threshold (B,C,E,F). There were
significant negative correlations between alpha2 and RMT as well as AMT.

The Correlation Between Power
Spectrum in Sensorimotor Regions and
Corticospinal Excitability
The spontaneous oscillation of EEG reflects the rhythmic changes
in the membrane potential of neurons and thus reflects the
current excitatory–inhibitory balance of underlying neuronal
cell assemblies (Klimesch et al., 2007; Jensen and Mazaheri, 2010;

Schulz et al., 2014). Each EEG band is associated with
different cognitive and behavioral functions. Low-frequency EEG
oscillations are associated with responsible motivation, emotion,
and reward processing, while high-frequency EEG oscillations
may reflect cognitive processes such as attention control, memory
encoding, and recognition (MacLean et al., 2012; Sandler et al.,
2016; De Pascalis et al., 2020). Alpha oscillations are the
most significant phenomenon in human EEG recordings, and
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FIGURE 3 | Violin diagrams and scatter diagrams. Violin diagrams showed the distribution of nodal efficiency in theta, alpha1, and alpha2 band (A,D,G). Scatter
diagrams showed the correlation between nodal efficiency and motor threshold (B,C,E,F,H,I).

their occurrence and function are some of the basic research
topics in neuroscience. At first, researchers believed that the
alpha activity reflected the idle state of the brain, but the
current leading interpretation of alpha oscillations is that alpha
oscillations causally determine excitability and modulate signal
processing instead of passively respond to stimulus. Converging
evidence suggests that alpha oscillations are related to the cyclic
regulation of neuronal excitability and can affect the response of
neurons to sensory stimuli (Palva and Palva, 2011). Currently,
researchers recognize that the alpha oscillations contain at least
two sub-components. The first is lower alpha or alpha1, which
is endogenous and independent of any internal or external
stimuli. The second is upper alpha or alpha2, mainly exists in
the sensorimotor cortex, and is related to the function of the
sensorimotor system (Vecchio et al., 2018).

In this study, RMT and AMT decreased when the alpha2
oscillation power increased, indicating an inverse correlation
between alpha2 oscillations and corticospinal excitability.
A number of studies support the view that the alpha rhythm
reflects cortical excitability. Previous studies have shown that
central alpha oscillations (mu rhythms) are associated with

the resting state of the primary sensory and motor cortex
by correlating the rhythm strength with fMRI blood signals
(Ritter et al., 2009). Alpha oscillations in the central region are
suppressed during movement and return to the baseline when
the movement ends (Hao et al., 2019). According to the pulsed
inhibition hypothesis, alpha oscillations are associated with the
underlying localized global suppression of neuronal activity
in cortical circuits, with high alpha power representing the
suppressed state and low alpha power representing the excited
state (Palva and Palva, 2011; Schulz et al., 2014). Since RMT and
AMT are inversely associated with cortical excitability, similar to
alpha oscillations, there should be a positive correlation between
RMT, AMT, and alpha oscillations. However, in this study,
alpha2 oscillations were negatively correlated with corticospinal
excitability, which seems controversial. A recent study explored
the relationship between pre-stimulus EEG oscillations and
MEPs, and the results showed that high alpha and low beta power
before stimulation could lead to high MEP amplitudes (Ogata
et al., 2019). In a real-time TMS-EEG study, researchers explored
the relationship between the phase of the alpha oscillations in
the sensory motor area and MEPs. They found that the MEP
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FIGURE 4 | Violin diagrams and scatter diagrams. Violin diagrams showed the distribution of clustering coefficient in theta and beta2 band (A,D). Scatter diagrams
showed the correlation between clustering coefficient and motor threshold (B,C,E,F).

amplitude increased during the high alpha power, indicating that
the alpha oscillations could promote corticospinal excitability
(Bergmann et al., 2019). These results were consistent with
our findings. The discrepancies between studies may be caused
by different experimental designs. Previous studies proved the
negative correlation between alpha oscillations and cortical
excitability mainly by exploring the changes of alpha rhythm
during motor tasks, such as voluntary movement and motor
imagery, whereas our study recorded EEG and motor threshold
at rest and the task state would contribute to the relationship
between EEG oscillations and corticospinal excitability. Our
results suggested that alpha oscillations can modulate the cortical
response to TMS.

The relationship between beta oscillations and cortical
excitability has been studied using different modalities. Generally,
beta oscillations in the motor cortex decrease in amplitude
during movement and increase in amplitude when movement
stops (Darch et al., 2020). Hussain et al. (2019a) found that
the beta rhythm power before TMS stimulation can be used to
predict the amplitude of MEPs. The stronger the beta rhythm
power is, the larger the MEP amplitude will be, indicating
that the beta rhythm is positively correlated with corticospinal
excitability. These findings may be because beta activity reflects
the activity of the II/III interlayer neurons, which could regulate
the excitability of the spinal cord by activating descending
corticospinal neurons (Hussain et al., 2019b). In this study,
beta1 oscillation was a significant feature in the regression
model, and correlation analysis showed no significant correlation
between beta oscillations and corticospinal excitability. This may
be due to the small sample size. Nevertheless, the results of
this study are valuable, because previous studies focused on

how alpha oscillations regulate corticospinal excitability and
beta oscillations were used to be ignored. Future studies can
further explore the relationship between beta oscillations and
corticospinal excitability.

The Correlation Between Efficiency of
Network and Corticospinal Excitability
With the advancement of neuroscience, the network connection
pattern formed by the cooperation of multiple brain regions has
been identified as the physiological foundation for information
processing in the brain. The small-world network is the most
commonly studied complex network which has both a large
clustering coefficient and a small path length (Bassett and
Bullmore, 2006). It examines the brain’s functional connectivity
architecture, focusing on the brain’s ability to integrate and
transmit information between different regions. Efficiency is an
important metric to measure the ability of network information
exchange, and its contribution to cortical excitability has
attracted the attention of researchers. Blain-Moraes et al.
(2017) investigated the neural activity of subjects under general
anesthesia and found that while the subjects were unconscious,
the alpha network efficiency decreased and the alpha network
clustering coefficient increased significantly. This showed that
the efficiency of the alpha network is positively correlated
with cortical excitability. Previous studies have shown that the
efficiency of the alpha network increased during exercise, possibly
due to increased metabolism and cortical arousal during exercise
(Tamburro et al., 2020). High global efficiency corresponds to
fast information transmission. Our study showed that RMT
decreased with the elevation of alpha network efficiency,
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FIGURE 5 | Violin diagrams and scatter diagrams. Violin diagrams showed the distribution of global efficiency in delta, theta, and alpha2 band (A,D,G). Scatter
diagrams showed the correlation between global efficiency and motor threshold (B,C,E,F,H,I). There was significant positive correlation between global efficiency in
theta and RMT. And there were significant negative correlations between global efficiency in alpha2 and RMT as well as AMT.

indicating that brain activity increased with the enhancement
of the alpha network information processing capacity, making it
easier to respond to TMS.

Theta oscillations are often considered to be related to
cognitive functions such as memory and emotion (Wang et al.,
2018), and a few studies show that the theta rhythm contributes
to the movement process. Popovych et al. (2016) reported that
a significant phase-locking effect in the delta-theta frequency
band could be observed in the M1 area when individuals
completed an exercise task, suggesting that the theta oscillations
were related to movement and indirectly showing that the theta
rhythm contributes to the excitability of the motor cortex. Storti
et al. (2016) used graph theory to analyze the brain network
characteristics of individuals during movement and found that
the betweenness in the theta band of the motor cortex increased
significantly, providing a new perspective for exploring the theta
network and the excitability of the motor cortex. Interestingly,
in this study, the modulating effects of the global efficiency of

the theta band and alpha band on RMT were in the opposite
direction, which may indicate that different rhythm networks
regulate cortical excitability in different directions and coordinate
with each other to regulate brain activities.

In this study, the LASSO regression showed that the clustering
coefficient in the theta and beta2 bands was the predictor
of the motion threshold, but the correlation analysis results
indicated that there was no correlation. This may result from
the differences of statistical methods. Correlation analysis is
univariate analysis, while LASSO is a multivariate analysis
method and the results would be affected by the interaction
between variables. The combination of clustering coefficients and
other parameters can provide more comprehensive information
about corticospinal excitability.

Strengths and Limitations
The strength of this study is that it explored the relationship
between TMS and neural oscillation from a network perspective
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using graph theory analysis. In the application of graph theory,
a network is constructed by defining a series of nodes and
connecting edges and the model can fit the pattern of brain
activity, which makes it a great tool for brain functional
segmentation and integration. In this study, graph theory was
used to construct a brain network, and the relationship between
neural oscillatory activities and TMS was explained from the
perspective of the global network, which can help to explore the
electrophysiological mechanism of TMS.

There are some limitations to this study. Firstly, we studied
the association between EEG oscillation and TMS in non-
dominant hemisphere, and the generalizability of the results to
dominant hemisphere can be explored in future study. Besides,
EEG were recorded before application of TMS in this study.
Future study can record them simultaneously to provide stronger
evidences. We chose the EEG spectrum and graph theory to
analyze the relationship between EEG oscillation and cortical
excitability because these are the classic metrics used to describe
the characteristics of EEG. In future studies, other metrics such as
entropy and complexity which quantifies the non-linear dynamic
characteristics of EEG and reflect cortical functional state can be
selected to explore the relationship between EEG oscillation and
corticospinal excitability comprehensively.

CONCLUSION

In conclusion, we found that the alpha2 power in the
sensorimotor region showed an inverse correlation with RMT
and AMT. And the global efficiency in the theta band
was positively correlated with RMT. Additionally, the global
efficiency in the alpha2 band was negatively correlated with RMT
and AMT. It is crucial to understand the mechanisms of TMS
from the perspective of neurophysiology. The findings of this
study indicate that the effect of TMS on the cortex is dependent
on the activity of local neurons and global network activity, which
provides an important basis for uncovering the regulatory effect
of TMS on neural electrical activity. The network analysis of
EEG can provide a useful supplement for studying the brain
response to TMS.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Ethics Committee of Guangzhou First People’s
Hospital. The patients/participants provided their written
informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

YL, GX, and TY: study design. QD, GC, MW, HCh, and HCa:
data acquisition and processing. TL: statistical analysis. GC
and MW: drafting of the manuscript. QD: critical revision of
the manuscript. YJ and WL: technical assistance. All authors
contributed to the article and approved the submitted version.

FUNDING

This work was supported by the National Science Foundation of
China [Grant Numbers 81772438 (YL), 81974357 (YL), 82072548
(GX), and 81802227 (TL)]; the Guangzhou Municipal Science
and Technology Program [Grant Number 201803010083 (YL)];
the Fundamental Research Funds for the Central University
[Grant Number 2018PY03 (YL)]; National Key R&D Program
of China [Grant Number 2017YFB1303200 (YL)]; Guangdong
Basic and Applied Basic Research Foundation [Grant Number
2020A1515110761 (QD)]; and Guangzhou Postdoctoral Science
Foundation (QD).

ACKNOWLEDGMENTS

We sincerely thank all the subjects for their support and
cooperation in our experiment.

REFERENCES
Avenanti, A., Wright, D. J., Wood, G., Franklin, Z. C., Marshall, B., Riach, M.,

et al. (2018). Directing visual attention during action observation modulates
corticospinal excitability. PLoS One 13:e0190165. doi: 10.1371/journal.pone.
0190165

Bassett, D. S., and Bullmore, E. (2006). Small-world brain networks. Neuroscientist
12, 512–523. doi: 10.1177/1073858406293182

Bayram, M. B., Siemionow, V., and Yue, G. H. (2015). Weakening of
corticomuscular signal coupling during voluntary motor action in aging.
J. Gerontol. 70, 1037–1043. doi: 10.1093/gerona/glv014

Berger, B., Minarik, T., Liuzzi, G., Hummel, F. C., and Sauseng, P. (2014). EEG
oscillatory phase-dependent markers of corticospinal excitability in the resting
brain. Biomed. Res. Int. 2014:936096.

Bergmann, T. O., Lieb, A., Zrenner, C., and Ziemann, U. (2019). Pulsed facilitation
of corticospinal excitability by the sensorimotor mu-alpha rhythm. J. Neurosci.
39, 10034–10043. doi: 10.1523/jneurosci.1730-19.2019

Blain-Moraes, S., Tarnal, V., Vanini, G., Bel-Behar, T., Janke, E., Picton, P.,
et al. (2017). Network efficiency and posterior alpha patterns are markers of
recovery from general anesthesia: a high-density electroencephalography study
in healthy volunteers. Front. Hum. Neurosci. 11:328. doi: 10.3389/fnhum.2017.
00328

Cattaneo, L., and Barchiesi, G. (2011). Transcranial magnetic mapping of the short-
latency modulations of corticospinal activity from the ipsilateral hemisphere
during rest. Front. Neural Circuits 5:14. doi: 10.3389/fncir.2011.00014

Chen, Y.-J., Huang, Y.-Z., Chen, C.-Y., Chen, C.-L., Chen, H.-C., Wu, C.-Y.,
et al. (2019). Intermittent theta burst stimulation enhances upper limb motor
function in patients with chronic stroke: a pilot randomized controlled trial.
BMC Neurol. 19:69. doi: 10.1186/s12883-019-1302-x

Darch, H. T., Cerminara, N. L., Gilchrist, I. D., and Apps, R. (2020). Pre-movement
changes in sensorimotor beta oscillations predict motor adaptation drive. Sci.
Rep. 10:17946.

De Pascalis, V., Vecchio, A., and Cirillo, G. (2020). Resting anxiety increases
EEG delta–beta correlation: relationships with the reinforcement sensitivity

Frontiers in Neuroscience | www.frontiersin.org 9 August 2021 | Volume 15 | Article 722231

https://doi.org/10.1371/journal.pone.0190165
https://doi.org/10.1371/journal.pone.0190165
https://doi.org/10.1177/1073858406293182
https://doi.org/10.1093/gerona/glv014
https://doi.org/10.1523/jneurosci.1730-19.2019
https://doi.org/10.3389/fnhum.2017.00328
https://doi.org/10.3389/fnhum.2017.00328
https://doi.org/10.3389/fncir.2011.00014
https://doi.org/10.1186/s12883-019-1302-x
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-722231 August 17, 2021 Time: 14:55 # 10

Cai et al. EEG Can Predict Corticospinal Excitability

theory personality traits. Pers. Indiv. Differ. 156:109796. doi: 10.1016/j.paid.
2019.109796

de Waal, H., Stam, C. J., Lansbergen, M. M., Wieggers, R. L., Kamphuis, P. J.,
Scheltens, P., et al. (2014). The effect of souvenaid on functional brain network
organisation in patients with mild Alzheimer’s disease: a randomised controlled
study. PLoS One 9:e86558. doi: 10.1371/journal.pone.0086558

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for
generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22.

Hao, J., Feng, W., Zhang, L., and Liao, Y. (2019). The post-movement beta rebound
and motor-related Mu suppression in children. J. Motor Behav. 52, 590–600.
doi: 10.1080/00222895.2019.1662762

Hussain, S. J., Claudino, L., Bonstrup, M., Norato, G., Cruciani, G., Thompson, R.,
et al. (2019a). Sensorimotor oscillatory phase-power interaction gates resting
human corticospinal output. Cereb. Cortex 29, 3766–3777. doi: 10.1093/cercor/
bhy255

Hussain, S. J., Cohen, L. G., and Bonstrup, M. (2019b). Beta rhythm events predict
corticospinal motor output. Sci. Rep. 9:18305.

Iscan, Z., Nazarova, M., Fedele, T., Blagovechtchenski, E., and Nikulin, V. V.
(2016). Pre-stimulus alpha oscillations and inter-subject variability of motor
evoked potentials in single- and paired-pulse TMS paradigms. Front. Hum.
Neurosci. 10:504. doi: 10.3389/fnhum.2016.00504

Jensen, O., and Mazaheri, A. (2010). Shaping functional architecture by oscillatory
alpha activity: gating by inhibition. Front. Hum. Neurosci. 4:186. doi: 10.3389/
fnhum.2010.00186

Klimesch, W., Sauseng, P., and Hanslmayr, S. (2007). EEG alpha oscillations:
the inhibition-timing hypothesis. Brain Res. Rev. 53, 63–88. doi: 10.1016/j.
brainresrev.2006.06.003

Li, J., Wang, J., Chen, Y., Yang, L., and Chen, S. (2017). A prognostic 4-gene
expression signature for squamous cell lung carcinoma. J. Cell Physiol. 232,
3702–3713. doi: 10.1002/jcp.25846

MacLean, M. H., Arnell, K. M., and Cote, K. A. (2012). Resting EEG in alpha and
beta bands predicts individual differences in attentional blink magnitude. Brain
Cogn. 78, 218–229.

Maki, H., and Ilmoniemi, R. J. (2010). EEG oscillations and magnetically evoked
motor potentials reflect motor system excitability in overlapping neuronal
populations. Clin. Neurophysiol. 121, 492–501. doi: 10.1016/j.clinph.2009.11.
078

Myczkowski, M. L., Fernandes, A., Moreno, M., Valiengo, L., Lafer, B., Moreno,
R. A., et al. (2018). Cognitive outcomes of TMS treatment in bipolar depression:
Safety data from a randomized controlled trial. J. Affect. Disord. 235, 20–26.

Ogata, K., Nakazono, H., Uehara, T., and Tobimatsu, S. (2019). Prestimulus cortical
EEG oscillations can predict the excitability of the primary motor cortex. Brain
Stimul. 12, 1508–1516. doi: 10.1016/j.brs.2019.06.013

Palva, S., and Palva, J. M. (2011). Functional roles of alpha-band phase
synchronization in local and large-scale cortical networks. Front. Psychol. 2:204.
doi: 10.3389/fpsyg.2011.00204

Popovych, S., Rosjat, N., Toth, T. I., Wang, B. A., Liu, L., Abdollahi, R. O., et al.
(2016). Movement-related phase locking in the delta-theta frequency band.
Neuroimage 139, 439–449. doi: 10.1016/j.neuroimage.2016.06.052

Premoli, I., Castellanos, N., Rivolta, D., Belardinelli, P., Bajo, R., Zipser, C., et al.
(2014). TMS-EEG signatures of GABAergic neurotransmission in the human
cortex. J. Neurosci. 34, 5603–5612. doi: 10.1523/jneurosci.5089-13.2014

Ritter, P., Moosmann, M., and Villringer, A. (2009). Rolandic alpha and beta
EEG rhythms’ strengths are inversely related to fMRI-BOLD signal in primary
somatosensory and motor cortex. Hum. Brain Mapp. 30, 1168–1187. doi:
10.1002/hbm.20585

Rossi, S., Antal, A., Bestmann, S., Bikson, M., Brewer, C., Brockmoller, J., et al.
(2021). Safety and recommendations for TMS use in healthy subjects and
patient populations, with updates on training, ethical and regulatory issues:
expert guidelines. Clin. Neurophysiol. 132, 269–306. doi: 10.1016/j.clinph.2020.
10.003

Rubinov, M., and Sporns, O. (2010). Complex network measures of brain
connectivity: uses and interpretations. Neuroimage 52, 1059–1069. doi: 10.
1016/j.neuroimage.2009.10.003

Sandler, H., Tamm, S., Fendel, U., Rose, M., Klapp, B. F., and Bosel, R. (2016).
Positive emotional experience: induced by vibroacoustic stimulation using a
body monochord in patients with psychosomatic disorders: is associated with

an increase in EEG-theta and a decrease in EEG-alpha power. Brain Topogr. 29,
524–538. doi: 10.1007/s10548-016-0480-8

Sauseng, P., Klimesch, W., Gerloff, C., and Hummel, F. C. (2009). Spontaneous
locally restricted EEG alpha activity determines cortical excitability in the motor
cortex. Neuropsychologia 47, 284–288. doi: 10.1016/j.neuropsychologia.2008.
07.021

Schiena, G., Maggioni, E., Pozzoli, S., and Brambilla, P. (2020). Transcranial
magnetic stimulation in major depressive disorder: response modulation and
state dependency. J. Affect. Disord. 266, 793–801. doi: 10.1016/j.jad.2020.
02.006

Schulz, H., Ubelacker, T., Keil, J., Muller, N., and Weisz, N. (2014). Now I am
ready-now i am not: the influence of pre-TMS oscillations and corticomuscular
coherence on motor-evoked potentials. Cereb. Cortex 24, 1708–1719. doi: 10.
1093/cercor/bht024

Sporns, O. (2018). Graph theory methods: applications in brain networks. Dial.
Clin. Neurosci. 20, 111–121. doi: 10.31887/dcns.2018.20.2/osporns

Stefanou, M. I., Galevska, D., Zrenner, C., Ziemann, U., and Nieminen, J. O.
(2020). Interhemispheric symmetry of micro-rhythm phase-dependency of
corticospinal excitability. Sci. Rep. 10:7853.

Storti, S. F., Formaggio, E., Manganotti, P., and Menegaz, G. (2016). Brain network
connectivity and topological analysis during voluntary arm movements. Clin.
EEG Neurosci. 47, 276–290. doi: 10.1177/1550059415598905

Su, S., Yu, D., Cheng, J., Chen, Y., Zhang, X., Guan, Y., et al. (2017). Decreased
global network efficiency in young male smoker: an EEG study during the
resting state. Front. Psychol. 8:1605. doi: 10.3389/fpsyg.2017.01605

Tamburro, G., Di Fronso, S., Robazza, C., Bertollo, M., and Comani, S. (2020).
Modulation of brain functional connectivity and efficiency during an endurance
cycling task: a source-level EEG and graph theory approach. Front. Hum.
Neurosci. 14:243. doi: 10.3389/fnhum.2020.00243

Vecchio, F., Di Iorio, R., Miraglia, F., Granata, G., Romanello, R., Bramanti, P., et al.
(2018). Transcranial direct current stimulation generates a transient increase of
small-world in brain connectivity: an EEG graph theoretical analysis. Exp. Brain
Res. 236, 1117–1127. doi: 10.1007/s00221-018-5200-z

Wanalee, K., Rose, K., and Alexandra, L. V. (2015). Basic principles of transcranial
magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann. Phys. Rehabil.
Med. 58, 208–213. doi: 10.1016/j.rehab.2015.05.005

Wang, B., Li, P., Li, D., Niu, Y., Yan, T., Li, T., et al. (2018). Increased functional
brain network efficiency during audiovisual temporal asynchrony integration
task in aging. Front. Aging Neurosci. 10:316. doi: 10.3389/fnagi.2018.00316

Wang, J., Wang, X., Xia, M., Liao, X., Evans, A., and He, Y. (2015). GRETNA: a
graph theoretical network analysis toolbox for imaging connectomics. Front.
Hum. Neurosci. 9:386. doi: 10.3389/fnhum.2015.00386

Yan, T., Wang, W., Liu, T., Chen, D., Wang, C., Li, Y., et al. (2017). Increased
local connectivity of brain functional networks during facial processing in
schizophrenia: evidence from EEG data. Oncotarget 8, 107312–107322. doi:
10.18632/oncotarget.20598

Zomorrodi, R., Loheswaran, G., Pushparaj, A., and Lim, L. (2019). Pulsed
near infrared transcranial and intranasal photobiomodulation significantly
modulates neural oscillations: a pilot exploratory study. Sci. Rep. 9:6309.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Cai, Wu, Ding, Lin, Li, Jing, Chen, Cai, Yuan, Xu and Lan.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 10 August 2021 | Volume 15 | Article 722231

https://doi.org/10.1016/j.paid.2019.109796
https://doi.org/10.1016/j.paid.2019.109796
https://doi.org/10.1371/journal.pone.0086558
https://doi.org/10.1080/00222895.2019.1662762
https://doi.org/10.1093/cercor/bhy255
https://doi.org/10.1093/cercor/bhy255
https://doi.org/10.3389/fnhum.2016.00504
https://doi.org/10.3389/fnhum.2010.00186
https://doi.org/10.3389/fnhum.2010.00186
https://doi.org/10.1016/j.brainresrev.2006.06.003
https://doi.org/10.1016/j.brainresrev.2006.06.003
https://doi.org/10.1002/jcp.25846
https://doi.org/10.1016/j.clinph.2009.11.078
https://doi.org/10.1016/j.clinph.2009.11.078
https://doi.org/10.1016/j.brs.2019.06.013
https://doi.org/10.3389/fpsyg.2011.00204
https://doi.org/10.1016/j.neuroimage.2016.06.052
https://doi.org/10.1523/jneurosci.5089-13.2014
https://doi.org/10.1002/hbm.20585
https://doi.org/10.1002/hbm.20585
https://doi.org/10.1016/j.clinph.2020.10.003
https://doi.org/10.1016/j.clinph.2020.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1007/s10548-016-0480-8
https://doi.org/10.1016/j.neuropsychologia.2008.07.021
https://doi.org/10.1016/j.neuropsychologia.2008.07.021
https://doi.org/10.1016/j.jad.2020.02.006
https://doi.org/10.1016/j.jad.2020.02.006
https://doi.org/10.1093/cercor/bht024
https://doi.org/10.1093/cercor/bht024
https://doi.org/10.31887/dcns.2018.20.2/osporns
https://doi.org/10.1177/1550059415598905
https://doi.org/10.3389/fpsyg.2017.01605
https://doi.org/10.3389/fnhum.2020.00243
https://doi.org/10.1007/s00221-018-5200-z
https://doi.org/10.1016/j.rehab.2015.05.005
https://doi.org/10.3389/fnagi.2018.00316
https://doi.org/10.3389/fnhum.2015.00386
https://doi.org/10.18632/oncotarget.20598
https://doi.org/10.18632/oncotarget.20598
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	The Corticospinal Excitability Can Be Predicted by Spontaneous Electroencephalography Oscillations
	Introduction
	Materials and Methods
	Participants
	EEG Acquisition and Processing
	EEG Acquisition
	EEG Processing

	TMS Procedure
	Statistical Analysis

	Results
	Descriptive Results
	Extraction of Features
	Correlation Analysis

	Discussion
	The Correlation Between Power Spectrum in Sensorimotor Regions and Corticospinal Excitability
	The Correlation Between Efficiency of Network and Corticospinal Excitability
	Strengths and Limitations

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


