
Oncotarget50252www.impactjournals.com/oncotarget

Characterization of potential driver mutations involved in human 
breast cancer by computational approaches

Barani Kumar Rajendran1 and Chu-Xia Deng1

1Cancer Research Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China

Correspondence to: Chu-Xia Deng, email: cxdeng@umac.mo
Keywords: driver mutations, breast cancer, cancer drivers, breast cancer driver genes, genetic mutations
Received: February 08, 2017    Accepted: March 26, 2017    Published: April 19, 2017
Copyright: Rajendran et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 
3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

ABSTRACT

Breast cancer is the second most frequently occurring form of cancer and is also 
the second most lethal cancer in women worldwide. A genetic mutation is one of the key 
factors that alter multiple cellular regulatory pathways and drive breast cancer initiation 
and progression yet nature of these cancer drivers remains elusive. In this article, 
we have reviewed various computational perspectives and algorithms for exploring 
breast cancer driver mutation genes. Using both frequency based and mutational 
exclusivity based approaches, we identified 195 driver genes and shortlisted 63 of 
them as candidate drivers for breast cancer using various computational approaches. 
Finally, we conducted network and pathway analysis to explore their functions in breast 
tumorigenesis including tumor initiation, progression, and metastasis.

INTRODUCTION

Breast cancer affects women life drastically and nearly 
1.7 million new cases worldwide are being identified every 
year since 2012 and it contributes more than 25% of the all 
kinds of newly identified cancer cases (http://www.cancer.
org/) [1, 2]. Apart from a series of extrinsic factors promoting 
the occurrence, many genetic settings (intrinsic factors) 
drive breast cancer initiation and progression significantly. 
The activation of oncogenes and deactivation of tumor 
suppressor genes (TSGs) largely affect the maintenance 
and integrity of cells leading to tumorigenesis [3]. Although 
not all TSGs are vulnerable to mutations yet other genetic 
mechanisms indirectly interrupt their expressions and 
functions resulting in tumorigenesis [4]. In humans, several 
genes such as TP53, BRCA1, BRCA2, PTEN, ATM, p27, 
Skp2, RAD51, etc. are well known TSGs, which are involved 
in DNA repair and cellular mechanisms [5, 6]. TSGs are 
further classified into gatekeepers or caretakers based on 
their functions. Apart from tumor suppressors, a group of 
genes like PUM1, B2M, ACTB, RPL13A, LDHA, NONO, 
etc. are reported as housekeeping genes playing basic 
cellular functions (governing or preventing cell growth) and 
mutations in these genes promote cell proliferation [7]. In 
contrast, caretaker genes are mainly involved in the healthy 
maintenance of cells by encoding products, which stabilize 

the entire genome and protect genes from mutational events. 
Investigation of biological pathways affected by mutations 
of these genes will help us to understand the determinants of 
cancer initiation, progression, and other biological functions 
[8–10]. The advancement in the next generation sequencing 
and their allied computational techniques have paved way to 
identify large numbers of breast cancer gene mutations and 
their impacts [11]. In every cancer type, a set of significant 
gene mutations will strongly associate with tumorigenesis 
by being growth advantageous for the carcinogenic cells and 
those genes are known as driver genes [12]. In many breast 
cancer cases a significant numbers of somatic mutations 
as well as considerable number of germline mutations are 
found which are tumor enhancers and impose the risk of 
breast cancer tumorigenesis. Most of the driver mutations 
occur at somatic level, while a small number of mutations 
are passed on to lineages, which cause for 5 to 10% of all 
familial breast cancers types [13]. The most recurrently 
mutated published driver genes are AKT1, GATA3, PIK3CA, 
MAP3K1 and TP53 [14–17]. Apart from these genes, 
many other genes such as CBFB, RUNX1 are involved in 
somatic mutations in breast cancer. Deletion or translocation 
events in tumor suppressor genes such as AKT3 & MAGI3 
genes lead to functional abnormalities and initiates breast 
tumorigenesis. Recent studies on breast cancer driver genes 
uncovered a list of genes such as CCND1, ERBB2, FGFR1, 
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MYC, PIK3CA, PTEN, GATA3, MAP3K1, and RB1 etc., 
which are responsible for breast cancer [18, 19].

SIGNIFICANT DRIVER GENES 
ARE REAL MARKERS OF BREAST 
CANCER

Genetic mutations are rare and occur due to 
truncation, frame shift, insertions and deletions (indels), 
amplification and splicing abnormalities, etc. leading to 
loss or gain of functions. In breast cancer, over 30626 
significant mutations are reported and many of them 
affect function of single gene or group of genes which 
leads to cancer progression. Its worthwhile to note that 
a specific genetic change cause for adverse effects i.e. 
neoplastic transformation. BRCA1 and BRCA2 genomic 
insertions, deletions or single nucleotide polymorphisms 
are also major founder mutational events and show 
high-risk in many breast cancer cases [20, 21]. While, 
a few gene mutations such as breast cancer gene 1 and 
2 (BRCA1/2) instigate up to 25% breast cancer and 
also responsible for the highest number of mortalities 
[22, 23]. In addition to germline mutations, BRCA1/2, 
PTEN, CDH1, and STK11 gene mutations are associated 
with specific disorders such as Cowden syndrome, 
hereditary diffuse gastric cancer syndrome and Peutz-
Jeghers syndrome (https://seer.cancer.gov/archive/
csr/1975_2012/) [24–26]. The mutated tumor suppressor 
gene, PALB2 largely affects BRCA2, which increase the 
risk of BRCA1/2 based breast cancer [27–30]. Apart from 
aforementioned genes CDH1, STK11, PALB2, CHEK2, 
BRIP1, CDKN2A, CTNNB1, MLH1, MSH2, MSH6, 
NBN, RAD50, RAD51, TP53, etc. are having strong 
association with breast cancer. Frequent gene mutations 
resulting in variations in single nucleotide polymorphism 
(SNP), copy number variations, etc. exhibit significant 
impacts on tumor development, these kind of genes are 
called driver mutation genes (http://www.cancer.org/) 
[8, 31]. Among the known breast cancer genes, ATM 
gene abnormality causes the development of breast 
cancer RAD51C, and TP53 also play a strong role in the 
initiation and progression of breast cancer [32, 33]. The 
BRIP1 gene mutations lead to high risk of both breast 
and ovarian cancer, whereas MRE11A gene abnormality 
is linked to ataxia-telangiectasia along with cancer [34]. 
Mre11, Rad50, and Nbs1 form MRN complex, which 
facilitate DNA repair and also reported that NBN gene 
encoding Nbs1, has the strong association with breast 
cancer [35]. Somatic mutations and their role in breast 
cancer disposition have been revealed in earlier breast 
cancer related studies and it is also found that genes like 
ATM, PTEN, etc. play major role in several germline 
point mutations [36–38]. Along with point mutations, 
insertions, and deletions, a significant number of 
missense mutations occur in various genes, which 
raise the breast cancer susceptibility [39–41]. Among 

the aforementioned known breast cancer driver genes, 
a tumor suppressor (TSG), TP53, is the top-mutated 
gene, with nearly 100% risk of breast cancer [42, 43]. 
A germline mutation of TP53 also causes Li-Fraumili 
and Li Fraumeni-like syndromes that claim more than 
40% of familial cancer [44, 45]. In addition, it also 
causes autosomal dominant disorders characterized by 
predisposition of several early inceptions of cancers, 
many of which are conveyed with homozygous mutant 
genotype with cancer relapse, and high probability of 
progressive and secondary cancer [46–48].

POSSIBLE DRIVER GENES 
MUTATIONS IN BREAST CANCER

Identification of cancer drivers is indeed the most 
challenging task in cancer research and many cancer 
drivers are predicted using several computational and 
statistical methods and validated with true expression 
levels in cancer [49]. The genetics home reference 
(https://ghr.nlm.nih.gov) published list of genes such 
as BARD1, BRCA1, BRCA2, CASP8, CHEK2, CTLA4, 
CYP19A1, FGFR2, H19, LSP1, MAP3K1, MRE11A, 
RAD51C, STK11, TERT, TOX3, XRCC2, GATA3, 
PIK3CA, AKT1, CDH1, RB1, TP53, PTEN and XRCC3, 
and suggested that these are the most susceptible 
genes involved in driver mutation and having a strong 
association with breast tumorigenesis [11]. The copy 
number variations (CNVs) and single nucleotide 
variations (SNVs) are major root of driver mutations 
in breast cancer [50]. Stephens et al. (2012) reported 
that the numbers of mutations in protein-coding genes 
are remarkably unique between individuals along with 
list of driver mutations responsible for tumorigenesis. 
Most frequently mutated genes in breast cancer are 
TP53, ERBB2, GATA3, FGFR1, CCND1 and PIK3CA 
[51]. A number of genes which are involved in breast 
tumorigenesis and act as potential drivers are ARID5B, 
CDH1, CTCF, HDAC9, KDM5B, NCOR2, SETD1A, 
SXL2, etc. Some of these genes encode proteins that 
control chromatin structure whereas other driver genes, 
such as ATR, and FANCA are mainly involved in DNA 
repair pathway. The recent whole genome sequencing 
(WGS) of 560 breast cancers samples identified 89 genes 
and 2433 breast cancer sequencing projects identified 
40 breast cancer drivers genes from ER positive and 
ER negative breast cancer subtypes and many of these 
genes such as ARID1A, CTNND1, NUP107, CHD8, 
FANCI, CHD9, CTCF, KEAP1, PCDH18, LAMA2, 
HDAC9, ARFGEF1, MLLT4, FOXO3, CDKN2A, 
MAP3K1, GPS2, CTCF, CDH1, GATA3, AKT1, etc. 
have diversified functional change mutations [17, 52]. 
However, each published data on cancer drivers reported 
a distinct set of driver genes with few overlaps and so 
far, no standard approach is developed to identify and 
validate breast cancer driver genes [53].
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CURRENT TRENDS IN SCREENING 
OF GENES INVOLVED IN BREAST 
CANCER DRIVER MUTATIONS

Driver gene mutations are necessary tool for the 
characterization of cancer phenotype, since they mainly 
affect gene expression followed by miscoding of amino 
acids, which provoke functional changes at protein 
level. However, passenger genes replicate many folds 
during DNA replication events without any extricating 
functional impacts [54, 55]. Voluminous methodologies 
have been employed to predict and identify breast 
cancer driver mutation genes, including computational 
identification, statistical testing, and, so on. Genetic 
mutational screening is one of the most widely used 
methods for the identification of mutations in germ cells 
based on looking at the family history of breast cancer 
[56, 57]. Driver mutation frequency is largely interrelated 
with breast cancer subtypes for example, TP53 mutation 
frequency is many folds higher in basal-like than other 
breast cancer subtypes [11]. Statistical analysis yield 
better results in driver genes identification, it also predicts 
high-frequency cancer driver genes using oncogenic 
tree model construction [58]. Thus, breast cancer driver 
prediction methodologies depend on key factors such 
as, the number of samples used for analysis, mutational 
patterns, frequency and function modifying mutations, 
etc. Several efficient tools exist to predict the mutation 
drivers, though each tool works using its own hypothesis/
algorithms with diverse limitations. Accordingly, each 
driver mutation recognition protocol delivers distinctive 
results from one another. In this paper, we used several 
intensive computational driver gene identification 
approaches, tools, resources, etc. for the identification of 
most impressive driver mutation genes and their role in 
breast tumorigenesis.

COMPUTATIONAL APPROACHES FOR 
DISTINGUISHING BREAST CANCER 
DRIVER GENES MUTATION

Predicting breast cancer driver gene is a 
cumbersome task, as it generates a lot of false positive 
data and corroborating those results are most challenging. 
In this study, we used a dozen of computational driver 
gene identification approaches including online resources, 
offline and online tools to explore most potential breast 
cancer driver genes to avoid limitations of each approach. 
These include, the cBioportal (www:cbioportal.org/), 
The Cancer Genome Atlas (TCGA), International Cancer 
Genome Consortium (ICGC), 1000 Genomes, Catalogue 
of Somatic Mutations in Cancer (COSMIC), Human 
Cancer Database (http://db.cngb.org/cancer/), National 
Cancer Database (https://www.facs.org/quality-programs/
cancer/ncdb), OASIS (http://oasis-genomics.org/) and 
many other useful cancer resources (Table 1). Apart 

from above-mentioned resources, Pan-Cancer (https://
www.synapse.org/) developed by TCGA database is very 
efficient resource which provides analyzed cancer data, 
including mutation profiles, copy number variations, gene 
expression information, microRNA, etc. [59–62]. Included 
in Table 1 also several other methods that have been 
recently designed to find potential breast cancer driver 
genes by computational and statistical techniques, such as 
IntOGen, Driver DBV2, MutSigCV, etc.

Mutation modeling and evaluating number of 
deleterious mutations in breast cancer are also employed 
to predict potential driver genes and massive statistical 
testing is carried out to predict the prompt driver genes and 
their functional domains [84]. Computational modeling, 
gene pathway and network analysis are other feasible 
techniques proposed to identify most probable driver 
genes [49]. DrGaP is a tool that predicts driver genes and 
their signaling pathway using statistical analysis [76]. 
Apart from aforesaid tools, many viable techniques, tools, 
and databases provide significant driver gene mutations, 
and mutational significance of genes involved in single/
multiple cellular pathways, etc. The OASIS web portal 
is also one of comprehensive resource providing tons of 
information about somatic mutation, gene expression, 
copy number alteration, etc. from normal, tumor cases, 
and cell lines (http://oasis-genomics.org/) [77]. This web 
portal, fetch primary genetic and metabolic pathway 
analyses data from Pan-Cancer project, COSMIC, 
BIOCARTA (http://www.biocarta.com), KEGG (http://
www.genome.jp/kegg/pathway.html), etc. [78].

Apart from abovementioned resources for driver 
gene identification, we have also validated the genetic 
interactions through various approaches. To test the 
capability of identifying the driver genes in genetic 
interaction level, we constructed FunCoup (functional 
Coupling) database to explore the functional relationship 
between genes and their functions [79]. Genetic network 
is most significant method to derive genetic as well as 
functionally associated genes using Genemania web 
server and it predicts gene functions by integrating 
several functionally associated networks [81]. The 
consequent level of network analysis is performed 
using MUFFINN (MUtations For Functional Impact on 
Network Neighbors). MUFFINN is one of the efficient 
programs for identifying most common driver genes by 
mutation frequency and most linked pathway neighbors 
[82, 83]. MUFFINN uses a pathway-centric approach and 
it also identifies the top 1000, 500, 100 interacting gene 
clusters along with network constructed using HumanNet 
and String (Search Tool for the Retrieval of Interacting 
Genes/Proteins) Database [85, 86]. To further validate 
the identified driver genes and their genetic interaction 
network construction we used FunRich (Functional 
Enrichment) program. FunRich analyzes genes and their 
interacting partners based on comprehensive information 
obtained from various renowned databases with strong 
annotations [87]. SIFT algorithm is used for functional 
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Table 1: List of driver identification methods used to incorporates the prediction of breast cancer driver genes, their 
working principle and supporting references

Driver Identification 
Method Driver Gene Identification Principle Citations

IntOGen

Identifies alterations at transcriptomics level, CN gain and losses in tumor sample. 
It also integrates OncodriveFM for the identification of accumulation mutations, 
background mutation rate and OncodriveCLUST for mutation cluster identifications. 
Further, SIFT, Polyphen and Mutation Assessor are used to predict the impact of 
mutations.

[62–65]

SIFT
Amino acids substitutions and their deleterious impacts prediction. It find the 
homologous sequences using PSI-BLAST followed by picking sequences with 
specific diversity and calculating the SIFT scores.

[66]

PolyPhen-2
Analyzes non-synonymous SNP using multiple sequence alignment and structure 
information followed by predicting the probabilistic damaging variants with 
confidence prediction and at last interpret the results with mutational impact.

[67]

Mutation Assessor Predicts mutational impact by calculating functional impact score derived from 
addition of conservation score and specificity score. [68]

Driver DBv2 Uses large exome and RNAseq datasets to predict the driver genes using several 
incorporated tools. [69]

Active Driver

It identifies significant mutations of cancer genes in active sites of proteins such as 
mutations in signaling proteins or domains or regulatory elements. It uses gene-
centric logistic regression model including multiple factors to estimate mutation 
significance.

[70]

Dendrix This algorithm discovers driver genes with high coverage and high specificity using 
mutation data. [71, 72]

MDPFinder It combines mutation and expression data to validate the driver genes and their 
mutated pathways. [73]

Simon It identifies functional mutation impact on proteins, variations in background 
mutation frequency and genetic code redundancy among tumors. [74]

NetBox It identifies the driver genes by comparing genes and performing network analysis 
on human interaction Network (HIN) data. [75]

MutSigCV
It uses overall mutation rates and distribution patterns and analyzes background 
mutation rates with patient specific as well as gene specific mutation rates. Finally it 
includes expression levels and replication periods.

[76]

MEMo It identifies the driver genes based on recurrently mutated genes among tumor data 
with consistent mutational specificity. [77]

e-Driver
It manipulates internal distribution of somatic functional missense mutations 
amongst functional domains by relating mutation rates with other regions of same 
protein.

[78]

DawnRank Uses gene expression data to construct gene network and rank them based on impact 
and it analyzes somatic alteration data to identify personalized driver alterations. [79]

DriverNet
Driver genes are identified based on genomic aberration states of various patients, 
genes, gene expression data and it further takes biological pathway data into account 
and builds the network driver genes.

[80]

MSEA It predicts cancer driver genes based on patterns of mutation hotspot. [81]

iPAC Identifies non-random somatic mutations in protein using tertiary protein structure 
information. [82]

CoMDP It uses mutation data to identify driver genes and their pathways. It also predicts 
genes with other multiple co-occurring biologically significant pathways. [83]
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impact and validation of identified driver genes. SIFT 
is one of the most powerful algorithms used to identify 
and evaluate detrimental effects of genetic variations in 
driver genes and their impacts at protein level. PolyPhen2 
is another potential tool, which predicts the probabilities 
of amino acid substitutions and its collective impacts on 
structural and functional tendency [88, 89]. Thus, every 
driver gene prediction approach has some representative 
strength to identify the real cancer driver genes and this 
ends with the major concerns. For example, a frequency-
based approach always needs large number of samples to 
possibly identify the rarely mutated cancer drivers [90].

Nevertheless, through this study, we established that 
driver gene identification is purely based on mutations 
in key genes, which are really driven, by functional 
mutations. Every Driver DB associated algorithms 
are working in a distinctive way and it yields various 
outputs. For example, algorithms such as Active Driver 
focus on phosphorylation and kinase domain site. 
Similarly Dendrix, MDP Finder, Oncodrive-FM and 
MutSigCV predict based on mutational specificity, high 
impact mutational accumulation and patient-specific 
mutations respectively. Hence, Driver DB associated 
tools provide comprehensive ways of predicting drivers 
based on several criteria such as recurring mutations, 
accumulation of mutation with high functional impact, 
mutual exclusivity and the spectrum of mutation, gene 
expression data, background mutation rate, etc. resulting 
in 956 breast cancer drivers identified from various breast 
cancer subtypes (detailed list of driver genes is given in 
Supplementary Table 1). The driver genes are filtered out 
and further shortlisted based on more than one Driver DB 
associated tools, which report the genes with hotspots of 

mutation, missense mutation, etc. From the initial filtering 
452 genes were obtained and further redundant genes were 
removed leaving 195 driver genes, which are chosen for 
further analysis (Figure 1). The ICGC database (https://
icgc.org/icgc) is used to fetch the detailed mutations data 
including chromosomal location, type of mutation, codon 
alterations, and amino acid variations and cancer subtypes 
of identified driver genes are retrieved, analyzed and 
tabulated in Supplementary Table 2. Similarly, IntOGen 
integrate results with various mutation-calling protocol 
such as OncodriveFM & OncodriveCLUST, and it 
identifies genes responsible for functional mutations and 
mutational impacts at protein level.

In this study, a list of top candidate genes were 
identified through our approaches, by incorporating a 
selective list of efficient driver gene prediction tools and 
resources which were proved earlier with other type of 
cancer gene prediction. We used the TCGA and ICGC 
breast cancer data to identify frequency and type of 
mutations, and we found a number of new genes such as 
FLG, DNAH14, NBPF12, RYR2, ARHGAP35, OBSCN, 
CLTC, etc. are highly mutated in breast cancer, along 
with some well-known driver genes, like TP53, PIK3CA, 
MLL3, PTEN, GATA3, ARID1A. We further categorized the 
identified breast cancer driver genes into four major types 
based on the mutation percentage of each driver used for 
this study (Figure 2A). The analysis further extended to 
find the mutations frequency of breast cancer genes among 
the nine BRCA projects available in cBioPortal (www.
cbioportal.org). We identified driver genes (TP53 gene 
36.11% followed by PIK3CA 27.78%, MLL3 15.78%, TTN, 
FLG, DNAH14, GATA3, ERBB2, RYR2, HRNR, NBPF12, 
RUNX1, NOTCH2, OBSCN) and overall average mutation 

Figure 1: Total number of breast cancer driver genes identified using various computational methods.
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rate is calculated and given in Figure 2B. Investigation 
is further continued to validate candidate driver genes 
and their mutation profiles in breast invasive carcinoma 
samples obtained from TCGA-Pan-Cancer data resource 
(https://www.synapse.org). Genes were chosen for further 
analysis based on the most frequent functional mutations 
such as splice site mutations, missense mutations, frame 
shift insertion and deletions mutations, In-frame insertion 
and deletions, etc. Result of this analysis identified 
61,466 functionally significant gene mutations and all 
genes are further screened for most potential driver genes 
discovery. Moreover, the analysis extended to confirm 
the identified drivers genes and their mutational impact 
at functional level by using PolyPhen-2 programs for 
predicting the high-impact deleterious mutations along 
with high IntOGen variant impact score. To validate the 
most probable breast cancer driver genes, the results of 
IntOGen prediction, COSMIC, CBioPortal breast cancer 
data, OASIS data portal were used. As a result of intensive 
filtering and analysis, 63 driver genes were short-listed. 
The TCGA breast cancer projects were used to calculate 
the average mutations of individual high-confidence driver 
genes by chromosome-wise (Figure 3) and individual 
project wise (Supplementary Figure 1). Nevertheless, a 
significant percentage and type of mutations diversity 
(Missense, truncation, amplification, etc.) are found among 
the breast cancer projects, due to heterogeneity, individual 
gene mutations, and patient specific clinical factors, etc.

FUNCTIONAL EFFECTS OF BREAST 
CANCER DRIVERS IN TUMORIGENESIS

Several driver gene prediction tools exist to evaluate 
potential driver genes based on their functional mutations 
and impact and also use transcriptomics data to reveal 
potential driver genes at the protein level [91]. Although 
numerous computational techniques identify and classify 
the driver genes based on the mutations and functional 
impact, yet in vitro and in vivo assays are necessary for 
further validation. In breast cancer, many known genes 
are considered to be an effective driver genes including 
BRCA1/2, TP53, PIK3CA, GATA3, etc., which govern 
the most cancer pathways. Besides identified and known 
driver genes, many novel genetic elements are actively 
involved in breast cancer metabolic pathway. In this study, 
we have identified and propose numerous novel breast 
cancer driver genes, which are validated using various 
computational techniques. From the list of identified driver 
genes, titin (TTN) gene is one of the important genes with 
an average of 15.78% mutation rate in breast cancer while 
earlier studies also revealed that TTN is highly mutated 
in other cancers [92, 93]. Similarly, filaggrin (FLG) gene 
is a highly mutated driver gene, which had an average 
mutation of 14.89%. FLG gene mutations are found in 
several other cancer types such as non-melanoma skin 
cancer, head and neck cancer, lung cancer, colorectal 

Figure 2: (A) Identified driver genes classified based on their Mutation percentage; (B) High percentage of mutations (>10%) are observed 
in the identified 63 breast cancer driver genes through the analysis of 9 breast cancer patients data analysis using cBioPortal.
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cancer, uterine cancer, prostate cancer, etc. [94]. Hence, 
the FLG gene may also have a strong association with 
multiple carcinomas. The obscurin (OBSCN) gene is 
identified as one of most frequent driver genes in all our 
analysis, and an average mutation rate is 11.44%. OBSCN 
gene is vastly mutated in various cancer types and this 
gene mutation leads to giant obscurins protein loss 
followed by high susceptibility of breast epithelial cells to 
DNA damaging elements [92, 95]. Earlier studies revealed 
that OBSCN gene stimulated survival of breast epithelial 
cell and prevented cell apoptosis [96]. Hence, OBSCN 
gene is one of the potential breast cancer drivers and also 
has a strong association with other cancer types.

In addition to aforementioned genes, few driver 
genes may act as tumor suppressor, oncogenes, 
gatekeepers, and caretakers, etc. AT-Rich Interaction 
Domain 2 (ARID2) as a tumor suppressor gene is 
frequently mutated driver gene identified in all our analysis 
(Mutation average is 7.7%). ARID2, as a variant gene 
of SWI/SNF complex, mutation has strong associations 
with huge number of cancers especially in hepatocellular 
carcinoma, gastric cancers and breast cancer [97–99]. 
Rho-Associated Coiled-Coil Containing Protein Kinase 2 
(ROCK2) is another important driver gene identified in 
this analysis, although its overall mutation frequencies 
are comparatively low (3.32%). Previous research on 
ROCK2 gene and its relevance to breast cancer are proven 
and a critical amino acid mutation (T431N) is identified 
as the high-risk factor in breast cancer metastasis. In 
addition to the above-mentioned functions of identified 
high-confidence driver genes (excluding published driver 
genes), we performed an intensive literature search 
to corroborate and strengthen our approach. The data 
including genes involved in various cancers, functions, 
and pathways along with supporting citations are tabulated 
(Table 2).

Through the OASIS web portal, METABRIC, and 
BRCA-TCGA data were used for the identification and 
analysis of mutation profiles of 63 top driver genes. The 
details of mutational profiles with gene classifications of 
63 top candidate breast cancer genes are given in Table 3. 
Among these drivers, we found 13 tumor suppressor genes 
(TSGs), ten oncogenes (OG), six gatekeepers and one gene 
had both OG and TSG features. More copy number loss 
mutations are observed in (>7%) genes such as CDH1, 
CBFB, CTCF, BCL6B, MAP2K4, TP53, NCOR1, PGR, 
RB1, and BRCA2 genes. The large proportion of driver 
mutations occurred in protein coding exonic as well as in 
intergenic regions and these regions are considered as most 
significant genetic fragments and the actual insights of those 
regions are functionally significant. Subsequently most of 
the intergenic nucleotide bases are the regulator of adjacent 
genes and still many intergenic regions and functional 
roles remain uncertain. Thus, intergenic regions might be 
responsible for genetic variations that cause tumorigenesis 

and further insight on those intergenic regions of sequences 
may enlighten driver genes transforming mutations with 
a good understanding of tumorigenesis process [162]. 
In breast cancer, driver mutations also emphasize the 
functional impact at the protein level. Many somatic driver 
mutations observed in breast cancers are tumor dependent 
and may vary from tumor to tumor. In order to increase 
the reliability of prediction, six different approaches 
such as Cancer Genome Consortium prediction, MuSiC, 
OncodriveFM, OncodriveCLUST, Active Driver, MutSig 
were used to ensure the confidence level of potential breast 
cancer drivers.

GENE INTERACTION NETWORK 
ANALYSIS: IDENTIFYING DIRECT 
AND INDIRECT INTERACTING 
PARTNERS OF BREAST CANCER 
DRIVERS

The genetic network analysis is performed to explore 
more direct and indirect partners of breast cancer driver 
genes using FunCoup (Functional Coupling) package 
[85]. The FunCoup analysis is used to construct focused 
gene networks for driver genes and indirect genetic 
partners for further validation of hub (driver) genes. We 
constructed gene network using Genemania web server 
and found genetically as well as functionally associated 
genes among the identified driver genes to illustrate the 
close relationship among selected driver genes. Identified 
driver genes and their interaction network is constructed 
in Genemania server by combining several interaction 
network groups (n=572) obtained from various studies 
such as co-expression (180), co-localization (10), genetic 
(199), pathway related (43), physical (75), predicted 
interactions (9), and genes sharing protein domains 
(56), eventually these combined information provide 
more insight on molecular, functional and pathway level 
interaction among genes and it sorted all network groups 
based on Genemania score, false discovery rate (FDR) for 
further construction and validation of gene network (Figure 
4) [85, 86]. The subsequent network analysis is further 
extended to cross-validate resulting driver genes using 
two more methods, MUFFINN and FUNRICH, which 
are commonly used methods to identify common driver 
genes by mutation frequency and most linked pathway 
neighbors in functional networks [66, 67]. We used top 
100 neighbor genes from golden-standard databases 
used in MUFFINN and their mutation occurrences, and 
refine them for further network construction. The 63 driver 
genes are consistently identified through all approaches. 
Thus the data further confirm that these genes are most 
commonly mutated genes and their most damaging 
missense mutations flaunting highly deleterious functional 
impacts.
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DISCUSSION AND FUTURE ASPECTS

In this study, using a combination of various 
methodologies, we have analyzed overall 41,948 
significant mutations: including 26,448 missense 
mutations, 1,935 frameshift mutations (InDels), 832 in 
splice site mutations, as well as 115 and 563 in-frame 

insertion and in-frame deletion mutations, respectively. 
As a result of these analyses, we have top listed 63 driver 
genes, which have a strong correlation with breast cancer 
subtypes: Luminal A (28.06%), Luminal B (22.01%), basal 
(19.86%), Her2 (15.82%) and normal (14.23%) breast 
cancer types. Genes with functionally damaging mutations 
come after their worst impacts are taken as top candidate 

Figure 3: Average breast cancer gene mutations identified using cBioPortal projects (4162 breast cancer samples) 
along with identified top candidate driver genes and their respective chromosomes locations.
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Figure 4: Genetic interaction network of identified top candidate breast cancer driver genes.

Figure 5: Overall comparisons between published and identified BRCA driver genes.
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Table 2: Identified top candidate breast cancer driver genes (other than known driver genes) and their functional 
backgrounds

Identified 
Driver Genes Cancer Type Related pathway Known Functions References

ADCY3 Gastric cancer cAMP/PKA/CREB 
pathway

Increased cell migration, 
invasion, and proliferation, 
which are characteristic of 
cancer.

[100–102]

ARHGAP35
Osteosarcoma, Breast 
cancer,
Pancreatic carcinoma

Regulation of RhoA 
activity and focal adhesion 
and migration

Human glucocorticoid 
receptor DNA binding 
factor

[103–105]

ARID2 Hepatocellular carcinoma/
melanoma Chromatin Remodeling

Activating ligand 
dependent transcription by 
nuclear receptor

[98, 105]

ASB10 Glioblastoma multiform, 
Ovarian Cancer Cytokine signaling

Ubiquitination and 
Ubiquitin protein ligase 
binding

[106]

ASH1L Liver cancer;
Leukemia; breast cancer

Tight junction and lysine 
degradation

Chromatin regulator; Site 
specific lysine methylation 
on histone and other 
proteins

[107–109]

BCL6B Breast cancer;
Gastric cancer

P53, MAPK and cancer 
related pathways

Nucleic acid binding
Tumor suppressor gene in 
gastric cancer

[110, 111]

BIRC6 Breast cancer; Apoptosis and Autophagy miRNA dependent 
apoptosis induction [112]

CACNA1C

Breast cancer, Gastric, 
colorectal, pancreatic, 
leukemia, brain, skin, 
prostate cancer

Circadian entrainment 
and NFAT and Cardiac 
Hypertrophy

High alteration in Ca2+ 
ion it accelerates cell 
proliferation, migration 
and up-regulation in breast 
cancer

[113–115]

COL4A2
Cardiovascular disease and 
intracerebral hemorrhage, 
glaucoma, etc.

Interleukin-3, 5 and 
GM-CSF signaling and 
Pathways in cancer.

Regulation of angiogenesis 
and tumor growth [116, 117]

DDX11 Breast cancer, Fanconi 
Anemia

Golgi and subsequent 
modification and unfolded 
protein response

Genome stability [118]

DNAH12 Prostate cancer

Respiratory electron 
transport, ATP synthesis 
chemiosmotic coupling 
and uncoupling protein for 
heat production

ATP binding and
Regulatory function [119]

DNAH14 Ovarian cancer

Respiratory electron 
transport, ATP synthesis 
chemiosmotic coupling 
and uncoupling protein for 
heat production

ATP binding and
Regulatory function [120]

DSPP
Oral squamous cell 
carcinomas;
Prostate and breast cancer

ECM proteoglycan 
and degradation of the 
extracellular matrix 
organization

Vital factor in 
dentinogenesis; [121, 122]

(Continued )
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Identified 
Driver Genes Cancer Type Related pathway Known Functions References

FLG

Nonmelanoma cancer, 
head and neck, colorectal, 
breast, ovarian, prostate 
cancer

AhR pathways Calcium ion binding [94]

FLNB Breast Cancer; Ovarian 
cancer; Colorectal cancer MMP-9 and ERK pathway RAS induced tumor growth [123, 124]

FRMD4A Gastric cancer;
Rectal cancer - Protein Binding [125, 126]

GOLGA6L2 Breast cancer;
Hapatocellular carcinoma - Protein coding [127]

GPRIN2 Rett Syndrome;
Breast Cancer - Neurite outgrowth [79, 128]

GRIA3 Pancreatic Cancer; Breast 
cancer

glutamate receptor 
signaling pathway

excitatory synaptic 
transmission [129, 130]

HECTD4
Esophageal, non-small-cell 
lung and head and neck 
cancer

Protein modification and 
Ubiquitination

Ubiquitin-protein 
transferase activity [131]

LAMA1 Breast cancer
; Colon cancer

Cancer and Integrin 
pathway Receptor binding [56, 132]

MAST1 Breast Cancer - Ion/ATP/protein binding [133]

MCF2L Breast cancer
Rho/Rac signaling and p75 
NTR-receptor-mediated 
signaling pathways

Rho-guanyl-nucleotide 
exchange factor activity [134]

MEF2A Breast cancer P38 MAPK signaling Neuronal differentiation 
and survival [135, 136]

NBPF12
Neuroblastoma; small cell 
lung cancer neurogenetic 
diseases

- CHEA Transcription factor 
binding site [137, 138]

NID1 Gastrointestinal cancer

Non-integrin membrane-
ECM interactions and 
Degradation of the 
extracellular matrix

Act as cross-linker with 
other extracellular matrix [139–141]

NRK Breast cancer TNF-alpha-induced 
signaling pathway

Receptor signaling protein 
serine/threonine kinase 
activity and ATP binding

[142]

OBSCN
Highly mutated in various 
cancers including breast 
cancer

RhoA signaling Structural and regulatory 
functions [95, 96, 143]

PCBP2

Hepatocellular cancer; 
Familial breast cancer; 
lymphocytic leukemia, 
colorectal cancer

RIG-I/MDA5 mediated 
induction of IFN-alpha/
beta pathway and mRNA 
splicing pathways

Transcriptional role [144]

PCDH11X
Esophageal carcinoma, 
breast cancer, Prostate 
cancer

- Cell adhesion [145, 146]

PGR Breast and Ovarian cancer oestrogen-mediated 
pathways

Tumor repressing 
mechanism [147, 148]

(Continued )
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Identified 
Driver Genes Cancer Type Related pathway Known Functions References

PIK3CB

Oral-squamous cell 
carcinoma, breast cancer 
and other wide range of 
cancer

Involved in AKT, PTEN 
and PIK3CA pathways

Cell cycle growth 
regulation [149]

PIK3CD Breast, Ovarian and colon 
cancers PIK signaling Transcription binding 

factor [150–152]

ROCK2 Breast, lung, ovarian, 
intestinal cancer RhoA signaling

Actin cytoskeleton 
organization, Adhesion, 
migration, Proliferation 
and apoptosis.

[153–155]

RYR2 Breast Cancer, Lung 
Cancer, Bladder cancer

cAMP-dependent PKA 
activation

Calcium ion binding, 
Calcium/calmodulin 
binding

[156, 157]

SCAF11 Lung adenocarcinoma, 
various cancers Apoptosis Protein/zinc ion/poly(A)

RNA binding [158]

SDK2 Non-small cell lung cancer - Adhesion, Promotes 
synaptic connectivity [159–161]

STAT6 Breast cancer, Lung cancer
Integrin, Interleukin-3,5 
and GM-CSF signaling 
pathway

IL-4 mediate cell growth 
regulator, inhibit
IL-4 induced cell death

[125, 182, 183]

TTN
Colorectal, testis, gastric, 
breast, ovarian, renal 
cancers

Platelet activation, 
Signaling and aggregation 
pathway

Chromosome condensation 
and segregation [54, 76]

(63genes) driver genes. Our data indicate that 24 genes 
overlap with previously published well-known breast 
cancer driver genes, whereas the remaining 39 genes 
that are either not previously highlighted or reported as 
potential breast cancer drivers (Figure 5). Although recent 
studies on driver gene identification have developed a vast 
array of algorithms and resources, yet individual groups 
follow their own protocols with specific limitations.

Hence, identifying the most potential driver genes 
are still challenging and also requires the integration 
of all the results from various tools for comprehensive 
evaluation. Most of the prior studies on driver gene 
identification mainly focused to find the driver gene by 
integrating several computational approaches for filtering 
out driver genes and their pathways related information 
relevant to breast cancer. Nevertheless, they failed to 
validate the identified driver genes with mutation analysis 
and their impact at transcriptome level. In addition, use of 
breast cancer patient mutation, mRNAseq expression, and 
methylation data for the further validation is also lacking 
in previous studies. In order to provide comprehensive 
information on breast cancer driver genes we used TCGA-
Pan-Cancer breast cancer normal and patient clinical 
samples, COSMIC mutation data, and methylation as well 
mRNAseq expression data in the combination with other 

methodologies (Table 1). This comprehensive information 
helped us to avoid false positive genes come up during 
analysis.

For some well-known genes, many functional 
studies have been carried out. For example, others and we 
have extensively performed functional studies for p53 and 
BRCA1 [30, 163–166]. However the final evidence for the 
majority of other genes, especially for the 39 genes that 
have not been heighted before as cancer driver requires 
functional study at various levels, both in vitro and in vivo, 
such as gene knockout, knockin, gene overexpression, 
protein-protein interaction, protein modification, 
activation and inactivation, and etc. The validation of the 
mutations affecting regulatory network can be especially 
changeling. In this case, gene knockout or overexpression 
may be followed by RNA-sequencing, proteomics and/
or epigenetic modifications to uncover alternations of 
downstream signaling pathways. These studies are vital to 
perceive the underlying mechanism related to functions of 
these genes and they will also allow researchers to better 
understand the tumor heterogeneity, cancer signaling 
pathway, genetic and epigenetic modifications.

In addition, all the data we have discussed are 
obtained from sequencing DNA isolated from bulk 
of each cancer. It is known that genetic instability 
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Table 3: Mutation profiles of identified top candidate BRCA driver genes

BRCA 
Drivers

Substitution 
% InDel % Amplification 

%
Copy Gain 

% Copy Loss % Deletion (%)
Expression 

Outliers 
High %

CDH1* 3.2 0.1 - 1.4 16.5 2.9 -

CBFB^ 1.7 - - 1 16.4 1.3 -

CTCF 1.9 - 0.1 1.1 16 2.9

MAP2K4* 2.4 0.4 0.2 0.4 12.2 2.5 -

BCL6B 0.1 - 0.1 0.4 12.2 1.4 -

TP53* 6.8 0.4 - 0.6 12 1.5 -

NCOR1+ 3 0.3 0.2 0.8 11.3 1.5 -

PGR 0.5 - 0.2 2 10.8 2.8 51.4

RB1* 1.3 - - 0.8 9.3 1.8 -

BRCA2* 1.3 - 0.2 1.8 7.4 1.2 66.5

MCF2L 0.5 - 0.4 4 6.7 2.5 -

COL4A2 0.5 - 0.3 4.1 6.5 2 -

GOLGA6L2 0.1 - 0.3 2.2 6.2 1.7 -

ARID1A* 1.4 0.1 0.1 0.3 5.6 0.8 -

SETD2* 1 - - 0.8 5.1 0.5 -

PIK3CD 0.4 - 0.2 0.8 5.1 1.2 1.2

DNAH12 1 0.1 0.1 0.6 4.9 0.5 15.8

FLNB 1.2 0.3 0.1 0.8 4.8 0.6 -

ZFP36L1 0.5 0.1 0.1 1.4 4.7 1 -

LAMA1 1 - 0.1 2.7 4.3 1 -

BRCA1* 1 - 0.2 4.7 4.2 0.1 52.2

MAP3K1 3.5 0.1 - 2.2 4.1 0.8 -

PTEN* 1.7 0.4 - 0.7 3.9 0.9 -

ASB10 0.3 - 0.2 3.9 2.7 0.8 -

NRK+ 0.9 - 0.1 1 2.5 0.3 -

DSPP 1.2 0.3 0.2 1.1 2.3 0.4 -

MEF2A 0.1 - 1.2 3.8 2.3 0.3 -

PCDH11X 0.8 - 0.9 2.2 0.3 -

CACNA1C 1.3 - 0.9 5.1 2.1 0.3 -

GRIA3 1.2 0.1 0.1 1.1 2.1 0.2 -

TTN 13.7 - 0.1 2 2 - -

FOXA1 1.3 - 0.8 4.7 2 0.4 84.2

TBX3 0.9 - - 1.6 1.9 0.2 -

NOTCH2^ 0.8 - 0.8 4 1.8 0.2 -

ARHGAP35^ 0.8 - 0.1 1.9 1.8 0.1 -

(Continued )
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BRCA 
Drivers

Substitution 
% InDel % Amplification 

%
Copy Gain 

% Copy Loss % Deletion (%)
Expression 

Outliers 
High %

HECTD4 1.2 - 0.1 1.6 1.5 0.2 -

MAST1 1 - 0.2 3.4 1.4 0.1 22

RUNX1^ 1.2 0.1 0.2 3.5 1.4 0.1 -

ADCY3+ 0.3 - 0.1 1.9 1.4 0.1 -

ROCK2 0.5 - 0.3 1.9 1.2 0.3 -

PCBP2+ 0.3 - 0.1 2.2 1.1 0.1 -

ARID2* 0.5 - 0.2 2.4 1 0.3 -

SDK2 1 - 1.4 11.6 1 0.4 -

OBSCN* 1.7 - 1.4 32.9 1 0.1 -

SCAF11 0.4 - 0.2 2.4 1 0.2 -

STAT6 0.1 - 0.2 2.3 0.9 - -

GATA3* 0.9 2.4 0.9 7.3 0.8 0.2 81.1

NID1 1 0.1 1.6 33.3 0.8 0.2 -

ERBB3^ 1.3 - 0.1 2.4 0.8 0.1 -

DDX11+ 0.4 - 0.8 4.4 0.8 0.3 -

FRMD4A* 0.5 - 0.8 6.5 0.8 0.1 -

PIK3CB 0.6 - 0.3 4.8 0.8 - -

BIRC6 1.3 - 0.1 2.4 0.7 0.1 -

EGFR^ 0.6 - 0.8 4.5 0.7 0.3 -

RYR2 3.9 - 3.5 33.1 0.6 0.3 5.9

DNAH14 0.5 0.1 1.3 33.7 0.4 0.1 79.8

TBL1XR1 0.5 - 0.7 8.2 0.4 - -

PIK3CA^ 32.1 0.6 0.9 8 0.3 - 0.1

GPRIN2 0.1 0.3 6.4 2.9 0.3 - -

NBPF12 0.3 - 4.5 45 0.2 0.1 -

ASH1L 1 0.1 1.4 31.2 0.1 - -

MLL3* 0.8 - 0.8 4 1.8 0.2 -

FLG 4.4 - 2 30.9 - 0.1 -

Identified driver genes are categorized with Tumor suppressor (* with bold caption); Oncogene (^ with bold caption); 
Gatekeeper (+ with bold caption).

within individual cancer could generate intratumoral 
heterogeneity, and that epigenetic modifications may 
further increase the heterogeneity. These events could 
significantly affect many aspects of tumorigenesis, 
including clonal expansion, metastasis, recurrence, drug 
resistance, and switch off cancer driver during the course 
of cancer progression. Thus, the use of bulk DNA for 
sequencing could certainly overshadow the intratumoral 

heterogeneity. This weakness can be overcome by 
sequencing DNA isolated from single cancer cells as 
illustrated by some recent studies [167–170]. Our future 
efforts will be delivered to analyze the data obtained 
from the sequencing of single cells, hence, facilitating 
the discovery of additional therapeutic druggable targets 
at single cell level for cancer therapies at a personalized 
fashion.
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