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ABSTRACT

We reanalyze trajectories of hOGG1 repair proteins
diffusing on DNA. A previous analysis of these trajec-
tories with the popular mean-squared-displacement
approach revealed only simple diffusion. Here, a new
optimal estimator of diffusion coefficients reveals
two-state kinetics of the protein. A simple, solvable
model, in which the protein randomly switches be-
tween a loosely bound, highly mobile state and a
tightly bound, less mobile state is the simplest possi-
ble dynamic model consistent with the data. It yields
accurate estimates of hOGG1’s (i) diffusivity in each
state, uncorrupted by experimental errors arising
from shot noise, motion blur and thermal fluctuations
of the DNA; (ii) rates of switching between states and
(iii) rate of detachment from the DNA. The protein
spends roughly equal time in each state. It detaches
only from the loosely bound state, with a rate that de-
pends on pH and the salt concentration in solution,
while its rates for switching between states are insen-
sitive to both. The diffusivity in the loosely bound
state depends primarily on pH and is three to ten
times higher than in the tightly bound state. We pro-
pose and discuss some new experiments that take
full advantage of the new tools of analysis presented
here.

INTRODUCTION

Molecular fluorescent labels and super-resolution mi-
croscopy allow us to track single biomolecules in cells (1).
There, diffusion is ubiquitous, as many cellular processes
rely on diffusion for transport (2). A precise understanding
of such processes requires a precise determination of dif-
fusion constants. Less than that may miss process-specific

details by lumping them into one, simple diffusive process,
we show below.

Recent examples of experimental measurements of dif-
fusion in biological systems include supercoils on DNA
(3), proteins on biopolymers such as DNA (4–9) or micro-
tubules (10), on surfaces (11), in natural (12–14) and ar-
tificial (15) lipid membranes, in films (16) and inside cells
(17,18), all recorded with time-lapse photography.

Diffusion of proteins on DNA captured the attention of
biophysicists nearly half a century ago when it was observed
that the Lac repressor was able to locate its cognate site in
vitro even faster than theoretically predicted for 3D diffu-
sion in bulk (19). That such rates can even be approached
under conditions, where many protein molecules bind DNA
nonspecifically is all the more impressive. Such rapid target-
binding activity is explained by fast 1D sliding along the
DNA in many transcription factor and DNA repair protein
systems. But high-speed transport is not a sufficient expla-
nation since these proteins must probe the DNA to identify
their targets. For some proteins, target-containing DNA is
only subtly different from non-specific DNA, making the
search all the more difficult. This is particularly the case
for human oxoguanine DNA glycosylase 1 (hOGG1) repair
protein (20–22), the subject of the present study. hOGG1
scans DNA to identify oxidized guanine bases and thus
must diffuse fast along nonspecific DNA and also recognize
and bind stably to oxoguanine bases, which may require lo-
cal conformational change.

The apparently dichotomous requirements of rapid
transport on nonspecific DNA and effective probing/stable
target binding through DNA shape-sensing and/or base-
specific interactions (which almost certainly increases free
energy barriers for translocation) is known as the ‘speed-
stability paradox’. Recently, it was shown that while the Lac
repressor recognizes its cognate sites with low probability in
a single pass, the redundancy of 1D diffusional search leads
to a high probability of site recognition in the course of a
single binding event (23).
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One proposed solution to the speed-stability paradox is
the ability of the searching protein to adopt multiple states:
a fast-sliding 1D ‘search’ state that is minimally affected by
the presence of targets interconverting with a slower-sliding
‘recognition’ state that recognizes targets with significant
probability and has sacrificed speed-of-search in favor of the
increased DNA interaction necessary for recognition (24).

It is a major technical challenge to determine the dynam-
ics of search and recognition states quantitatively, as they
are predicted to interconvert rapidly and stochastically to
search DNA effectively. Consequently, the two states are not
resolved, but averaged over, in standard ensemble biochem-
ical assays.

Single-molecule-tracking assays promise to resolve in-
dividual biomolecule dynamics on DNA. Trajectories are
mostly short, however, and position data are contaminated
by multiple sources of experimental error. In particular: lo-
calization errors due to diffraction in microscope optics and
limited numbers of recorded photons; motion blur due to
particle movement during the camera exposure time; and
thermal fluctuations of the DNA on which the particle dif-
fuses. We need to account for these errors or risk severely
biased results (25). The analysis is further complicated by
the fact that we cannot simply average over multiple trajec-
tories to reduce statistical error since we are interested in
resolving individual molecular dynamics (26), and we can
neither see nor model the moving substrate: It is invisible,
and no solvable theory exists for its motion. Thus we face
a sixtuple of challenges that reinforce each other: (i) resolve
individual particle dynamics (ii) from mostly short trajecto-
ries (iii) recorded with considerable localization errors and
motion blur (iv) on a moving substrate (v) that is invisible
and (vi) its motion uncharted by theory.

Here, we show how optimal estimators that treat noise
sources in the single-molecule tracking data rigorously en-
able identification and quantitative characterization of two
distinct states of searching of hOGG1 molecules along
non-specific DNA. We analyze the diffusion of individual
hOGG1 proteins that were tracked in vitro while diffusing
on � DNA stretched in a shear flow over a cover slip (Figure
1A–E).

We characterize the motion of the invisible substrate us-
ing data for the motion of the protein. That motion is
recorded in two dimensions, while the substrate, the DNA,
is one-dimensional and fairly stretched. Using this, we over-
come the absence of a specific theory with a generic yet pre-
cise phenomenology that all realistic theories must share.

Using this phenomenology, we have constructed optimal
estimators of diffusion coefficients of particles diffusing on
a fluctuating substrate, e.g. DNA (25). Applying these esti-
mators here, we find diffusion constants that, together with
the distribution of residence times of hOGG1 on DNA,
point unambiguously to a two-state kinetics of hOGG1 on
DNA.

We propose an analytically solvable model for the kinet-
ics of hOGG1: a protein binds to DNA in a loosely bound
state and switches stochastically between this state and an-
other more tightly bound state, until it detaches again from
the DNA, from the loosely bound state. We provide accu-
rate estimates of the kinetic parameters of our model, show-
ing that the loosely bound state has much higher diffusivity
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Figure 1. Experimental measurements of diffusion coefficients of hOGG1
proteins on flow-stretched � DNA. (A) Workflow for estimation of dif-
fusion coefficients from experimental tracking data of diffusing particles
on DNA. (B) Experimental setup (not to scale): Proteins (green) on flow-
stretched DNA (black) attached to cover slip at one end and fluctuating
in a shear flow. (C) Image of several fluorescent hOGG1 molecules bound
to and diffusing on a DNA molecule at higher density than during data
acquisition for illustration (27). Scale-bar = 1 �m. (D) Transverse coordi-
nates y of the trajectories of three hOGG1 proteins diffusing on DNA and
recorded with time-lapse �t = 11 ms. The mean residence time of proteins
on DNA ranges from 50 to 500 ms, depending on solution conditions. (E)
Longitudinal coordinates x of the same three proteins. (F) Periodogram
P̂y of the transverse coordinate of a protein diffusing on DNA. The trans-
verse fluctuations fit a Lorentzian plus a constant. The corner frequency
(3 dB frequency) fc of the Lorentzian is 6.7 Hz. (G) Periodogram P̂�x of
longitudinal displacements of the same protein. The periodogram of dis-
placements �x is used, because diffusion is an unbounded process, making
the periodogram of x a bad statistics. The expected value of P̂�x, the power
spectrum P�x, is the sum of a diffusion term, a white-noise term, and a sin-
gle Lorentzian term describing longitudinal DNA fluctuations. The corner
frequency of these fluctuations is fc, x = 2fc, in agreement with our assump-
tion that DNA fluctuations in the y- and z-directions contribute equally to
DNA fluctuations in the x-direction. Shown values for data in F, G are
block averages, each over 20 periodogram values, and the grey areas mark
the 68% confidence interval (CI) for the block averages.
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than the tightly bound state. We hypothesize that the loosely
bound and highly mobile state allows the protein to effi-
ciently cover the length of the DNA, i.e. acting as a 1D travel
and ‘search’ state, while the tightly bound and less mobile
state allows it to probe for and recognize oxidative damage
to DNA bases.

The experiment’s pH and salt concentration have been
shown to affect the diffusivity and binding times of hOGG1
on DNA (27,28). Our estimates of the kinetic parameters
of our model show that pH and salt concentration do not
significantly influence the proteins’ transition rates between
the two states and thus do not influence the time it spends
in each state within the range of conditions tested here. In-
stead, pH and salt concentration affect hOGG1’s diffusion
coefficient in the loosely bound state and its rate of detach-
ment from the DNA from this state.

Some of the data analyzed here were previously analyzed
using a standard method, a straight-line fit to an ensemble
of mean squared displacements (MSDs) of trajectories (27).
This previous analysis assumed that substrate motion did
not contribute to observed longitudinal displacements and
that all such displacements were described by a single dif-
fusion coefficient. The present analysis thus demonstrates
the usefulness of optimized statistical methods, such as the
CVE and MLE (25). They make the analysis of individ-
ual trajectories possible and that is crucial to fully exploit
the single-molecule resolution offered by single-molecule
experiments.

MATERIALS AND METHODS

Experimental data

The experimental setup and data acquisition are described
in detail in (27). It produced five different data sets con-
sisting of time-series of (x, y)-coordinates of thousands of
fluorescently marked hOGG1 proteins that diffused on sin-
gle flow-stretched �-phage DNA molecules (48.5 kb = 16
�m long) at a range of different pH-values, 6.6–7.8, and
salt concentrations, 0.01–0.1 M. Each data-set consisted of
hundreds to thousands of time-series recorded at the exper-
imental conditions listed in Table 1. Three of the data-sets
(corresponding to DNA molecules 2–5) were previously an-
alyzed in (27), while two datasets (DNA molecules 1 and 6)
have not been analyzed previously.

In each experiment, a DNA molecule (two in one experi-
ment) was end-biotinylated and fused to a coverslip (Figure
1B). The DNA was stretched to ∼75% of its contour length
by a shear flow (the flow speed at the DNA was 100 �m s−1).
If the free end of the DNA, where it tends to curl up, is ex-
cluded, the remaining DNA is stretched 90% (27). hOGG1
proteins fluorescently marked with Cy3B diffused on the
DNA molecule and were filmed using total internal reflec-
tion microscopy (TIRF) by an EMCCD camera with pixel
width corresponding to 250 nm. The proteins were tracked
in the resulting movie until they detached from the DNA.

Trajectories of protein positions were estimated by fitting
2D Gaussians plus constant backgrounds to the recorded
point-spread functions as described in (27). Trajectories
were previously analyzed by fitting a straight line to the av-
erage over the MSDs of all trajectories in each data-set (27).

Here, we estimated diffusion coefficients, the variance
of localization errors, and parameters characterizing the
DNA’s motion statistically from these same trajectories us-
ing the optimal MLE and CVE methods developed in (25),
as described below and in Supplementary Section S3.

In Supplementary Section S3F we compare the CVE and
MLE to MSD-based methods and to recent Bayesian meth-
ods for inferring multi-state diffusion.

A priori knowledge used to separate the protein’s diffusion
along DNA from DNA motion

For each tracked protein, we know its trajectory measured
in lab coordinates, apart from localization errors and mo-
tion blur. It is its trajectory on the DNA, however, that re-
lates to its diffusion coefficient on the DNA. The difference
between the two trajectories is given by the motion of the in-
visible DNA in the lab. This may seem an impasse because
the DNA’s motion was not observed and we have no com-
plete theory for its motion.

We do, however, have knowledge of general mathemati-
cal properties that any linear model of the DNA’s motion
must satisfy. This leads to a phenomenological model for
the motion of local segments of the DNA, and that is suffi-
cient, since any visiting protein visits only a local segment of
the DNA. This model dictates a protocol for how to analyze
trajectory data in order to separate the motion of a protein
along DNA from the motion of the DNA in the lab and thus
obtain accurate estimates of protein diffusion coefficients.
We sketch this phenomenological model in the present sub-
section and give the protocol in the next subsection. Details
are given in (25).

Worm-like Chain model in free-draining flow. The ultimate
way to do describe the DNA’s motion, is to solve a realis-
tic dynamical model for it. This is impossible, however: The
simplest realistic model would treat the DNA as a massless,
semi-flexible, unstretchable fiber (the Kratky-Porod model,
a.k.a. the Worm-Like Chain model) in a free-draining shear
flow over the coverslip to which one end of the DNA is at-
tached. The result is a non-linear partial differential equa-
tion for the over-damped thermal Brownian motion of the
fiber in the flow. The boundary condition on that motion
imposed by the coverslip adds to the intractability of this
model by exact analytical means.

Spectral theory invoked. The non-linear nature of this sim-
plest realistic model means that general results from mathe-
matics’ spectral theory do not apply directly to it. They may
apply indirectly, however, e.g., if our theory is well approx-
imated by a linearized version of it. We expect this to be
the case since the DNA is stretched taut and its fluctuations
consequently are relatively small.

So, despite the model’s analytical intractability, qualita-
tive mathematical results exist that may well apply to it.
These results are of such a nature that experimental data
will reveal whether they apply or not. Thus we need not ar-
gue their case theoretically. Right or wrong, our explanation
does not affect the correctness of our ensuing data analysis,
because that analysis relies solely on the phenomenological
spectral theory described here and dictated by experimental
data.
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Table 1. Goodness-of-fit of the one-state and the two-state models. Column 1: Identity of DNA molecule(s). Column 2: pH-value of buffer. Column 3:
Salt concentration of buffer. Column 4: Time lapse and shutter time of movie; the shutter time was set equal to the time lapse to maximize the number
of recorded photons (45). Column 5: Number of time-series. Column 6: P-value (and number of degrees of freedom (dof) fitted) for the one-state model’s
exponential distribution to the distribution of measured residence times and its predicted constant average diffusion coefficient as function of residence
time to measured diffusion coefficients. Column 7: Akaike weight wAIC for the one-state model. Column 8: P-value (and number of degrees of freedom
(dof) fitted) for the two-state model’s double-exponential distribution to measured residence times and its predicted average diffusion coefficient as function
of residence time to experimental data. Column 9: Akaike weight wAIC for the two-state model; a more complex model that allows detachment from the
tightly bound state shows no improvement of the fits, and is thus rejected by the Akaike information criterion (Supplementary Table S3). A low P-value
means that the model can be rejected, while a high P-value means that the data supports the model. P ≥ 0.05 means the model is supported by any
meaningful significance level. Akaike weights measure the relative probability of the models given the experimental data (47)

1 2 3 4 5 6 7 8 9

Data set One-state model Two-state model

DNA no. pH [NaCl] �t n P (dof) wAIC P (dof) wAIC

1 6.6 100 mM 25 ms 228 0.11 (11) 0.002 0.64 (8) 1.00
2 & 3 7.0 10 mM 28.5 ms 254 0.004 (12) 0.10 0.49 (9) 0.90
4 7.0 75 mM 7 ms 55 3 × 10−6 (10) 2 × 10−8 0.15 (7) 1.00
5 7.5 10 mM 11 ms 246 6 × 10−10 (13) 2 × 10−12 0.24 (10) 1.00
6 7.8 50 mM 15 ms 92 8 × 10−8 (12) 6 × 10−12 0.61 (9) 1.00
All − − − 875 <10−16 (58) <10−16 0.38 (43) 1.00

In any linear theory, the fiber’s motion can be written as a
linear superposition of spatial eigen-modes. The amplitudes
multiplying each spatial eigen-mode are time-dependent;
each has its own thermal dynamics equal to that of a mas-
sively overdamped harmonic oscillator at finite tempera-
ture, and each mode’s amplitude has its own characteristic
relaxation time.

It is well known from spectral theory that the spectrum
of eigen-values, here the relaxation rates of eigen-modes, is
bounded from below and discrete when the system is com-
pact in the mathematical sense of that word. DNA of finite
extent is compact. This means that there is a slowest relax-
ation time. Since DNA is also one-dimensional, we expect
the discrete spectral values to be well separated; i.e. we ex-
pect the next-slowest relaxation time to be many times faster
than the slowest one. Thus, with the limited time-resolution
of time-lapse recordings, we may only resolve the motion
of the slowest or a few of the slowest spatial eigen-modes
even if we could see and track the motion of the DNA. All
higher modes show up in our measurements as uncorrelated
(white) noise, and simply add to the localization error that
we observe.

Thus the task of describing the DNA’s invisible motion
is simplified by realizing the manner in which this motion
affects our data. Spectral theory facilitates this realization
and formulates its result.

For illustration of spectral theory, we have analyzed a lin-
ear mean-field model for the DNA’s motion that is analyt-
ically tractable and discuss two other linear, exactly solv-
able models for DNA as well (Supplementary Section S1).
Their solutions show that the DNA’s motion is composed
of a sum of independent, orthogonal modes, each having its
own characteristic relaxation time and its own characteris-
tic mean amplitude. They also confirm that contributions
from higher modes quickly become negligible: our mean-
field model for DNA stretched by a shear flow shows that
both the relaxation time (Supplementary Figure S1I and
Supplementary Eq. (S31)) and the mean amplitude (Sup-
plementary Figure S1J and Supplementary Eq. (S5)) of the
second mode are six times lower than those of the lowest

mode; our two other models, DNA stretched by a plug flow
and by pulling at its ends, have second modes that have re-
laxation times and amplitudes that are 5.3 and 4 times lower
than the respective values for their respective lowest modes
(Supplementary Figures S1A, B, E and F).

Returning to our experiment, the body of a priori knowl-
edge we have invoked here has reduced our task to a point
where we can deduce the DNA’s motion from the informa-
tion we have at hand, when supplemented with yet another
piece of a priori knowledge: two different length-scales oc-
cur in the experiment. The large ratio between them invites
a highly simplifying approximation.

Separation of length scales. A hOGG1 protein diffuses
only for a while (its residence time) on a flow-stretched
DNA molecule (Figure 1B–E). Thus, its diffusion length
while in residence is small (of the order of 1 �m or smaller)
compared to the length of the DNA (16 �m). The DNA
is stretched out in the x-direction and its dominant fluc-
tuations are large-wave-length according to spectral the-
ory. Consequently, the protein’s diffusion on the DNA
changes the protein’s y-coordinate insignificantly compared
to changes in the protein’s y-coordinate due to the DNA’s
motion in the lab. Thus, the y-coordinate of a protein’s tra-
jectory is, effectively, the trajectory of a fixed, physical point
on the DNA, e.g., the mean position, s, of the protein, where
s is distance along the DNA measured from its tethered
end (e.g. in number of base-pairs). The y-coordinate’s pe-
riodogram P̂y, f (Figure 1F) bears this out, as discussed in
the Results section below.

Tethered and unstretchable, the DNA’s unobservable longi-
tudinal motion follows from its observable transversal mo-
tion. Since the DNA is unstretchable, its longitudinal (x-
direction) fluctuations are completely determined by its
upstream fluctuations in the transverse y- and z- direc-
tions through the relation x′ =

√
1 − (y′)2 − (z′)2, where the

prime on a variable denotes the derivative with respect to s.
Since the DNA is taut, this expression may be approximated
by x′ ≈ 1 − (y′)2/2 − (z′)2/2. This shows that longitudinal
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(x-direction) DNA fluctuations are determined by trans-
verse fluctuations through a quadratic dependence. This im-
plies that the power spectrum of x(s) is a Lorentzian with a
corner frequency that is twice that of the power spectrum of
y(s), fc, x = 2fc. Here we have assumed that the statistics of
DNA motion is the same in the two transverse directions, y
and z (Supplementary Sections S1 and S2).

We cannot observe z(s), which is why we make this as-
sumption, so we cannot verify the assumption directly. It
is a reasonable assumption if the presence of the cover slip
mainly affects the average value of z(s) with little effect on
fluctuations in z(s) about this shifted average. Our mean-
field model for the DNA’s motion indicates that this is the
case (Supplementary Section S1C), and data are consistent
with this assumption (Figure 1G). Our protocol for data
analysis exploits this to increase the precision of our sta-
tistical description of longitudinal DNA fluctuations based
on the observed transverse motion.

Statistical independence of the three contributions to changes
in the protein’s x-coordinate. Finally, x-displacements of
the protein, �xn, as measured in lab coordinates, are a sum
of three statistically independent contributions: one from
the protein’s actual diffusion along the DNA, another from
localization errors, and a third from motion of the DNA
in the x-direction. Localization errors are by nature statisti-
cally independent of the two actual, physical displacements.
The latter two are independent of each other because the
separation of length scales makes the observed diffusion of
the protein on the DNA independent of the DNA’s motion
and vice versa.

Consequently, the covariance 〈�xm�xn〉 of the measured
displacements of a protein’s x-coordinate is the sum of three
contributions, one from each of those three statistically in-
dependent terms: the first, proportional to the protein’s dif-
fusion coefficient D, which we want to determine, another
parameterized by the variance of localization errors, �2,
which we will have to determine simultaneously with D if
it is not known otherwise, and a third, the autocovariance
of DNA fluctuations, C�x, which we know, up to a prefac-
tor, from substrate motion in the y-direction. Supplemen-
tary Equations (S39)–(S41) express this mathematically.

Supplementary Equations (S39)–(S40) show that the
displacements of a protein’s experimentally measured x-
coordinate directly give estimates for D and �2 as solutions
to two coupled linear equations: The necessary input is the
covariance 〈�xm�xn〉 of the measured displacements and
the covariances C�x, which also are determined from exper-
imental data.

Protocol for data analysis

In actual practice, we determine the values of D, �2, and the
parameters of C�x simultaneously, using Maximum Likeli-
hood Estimation (MLE) applied simultaneously to the pe-
riodogram P̂�x, f of the measured displacements along the
x-coordinate, and the periodogram P̂y, f of the y-coordinate
of the recorded position (Supplementary Eqs. (S44) and
(S45)).

This section walks through our protocol, motivating each
step, while pointing to relevant sections of the Supplemen-

tary Information for details. Points 1–5 below describe our
procedure for analyzing individual trajectories. Points 6–
9 describe our procedure for investigating the results of
this analysis and for comparing it to theoretical models for
hOGG1’s dynamics on DNA.

1. We discarded time-series that displayed anomalies or
were too short to be tested reliably for anomalies (Sup-
plementary Section S3A).
Motivation: To ensure that the time-series we analyzed
correspond to mobile DNA-bound proteins that experi-
enced constant conditions along the DNA.

2. For each time-series longer than N = 25, we used MLE
to estimate the protein’s diffusion coefficient D, the vari-
ance �2 of localization errors, and the parameters φ =
( fc, Kx, Ky) characterizing DNA fluctuations locally in 1
�m long patches along the DNA with the phenomeno-
logical model of substrate motion developed in (25) and
sketched above (Supplementary Section S3C).
Motivation: For long time-series, MLE is unbiased and
hence can reliably estimate D and substrate motion simul-
taneously. So we do that for the relatively few long time-
series we have in order to characterize the motion of the
DNA locally, where each long time-series visited. We have
enough long time-series to characterize the local motion
of the entire stretch of DNA visited by the short time-
series we analyse below. With the motion of the DNA
thus described, we can correct the CVE for DNA motion
below.

3. For time-series shorter than N = 25, we used the CVE
corrected for substrate motion, using weighted averages
of the parameters φ that had been estimated using MLE
for the several long time-series in the same patch (Supple-
mentary Section S3D).
Motivation: For time-series shorter than N = 25, the
MLE may be significantly biased (Supplementary Figure
S5). Thus, for such short time-series, recorded in a patch
on the substrate that already had been characterized with
the help of several long time-series, we used the CVE cor-
rected for substrate motion.

4. For time-series longer than N = 25 in the same patch,
we also estimated diffusion coefficients using the uncor-
rected CVE.
Motivation: We compared these estimates to those ob-
tained with MLE; their difference is an experimental es-
timate of the bias bD of the CVE, which we compare to
our theoretical prediction for this bias given by Equation
(1) below. This step provides a consistency check of our
procedure (Figure 2F and Supplementary Section S3E).

5. Diffusion coefficients for diffusion along the DNA were
obtained by multiplying all estimates with the tortuosity
of the DNA, which was constant, equal to 1.2, across the
segment of the flow-stretched DNA that was used in our
analysis (Supplementary Figure S1J and Supplementary
Sections S2 and S3).
Motivation: Estimated diffusion coefficients describe the
projection on the x-axis of diffusion along the DNA.
Since the DNA is stretched to 90% along the x-axis, diffu-
sion coefficients for the proteins’ motion along the DNA
contour are 1/(0.9)2 ≈ 1.2 times higher than those we
measure for the motion projected along the x-axis.
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Figure 2. Estimated parameter values as functions of the protein’s position
x on DNA. Results for molecule no. 5 (pH 7.5 and [NaCl] = 0.01 M). Aver-
ages are weighted means and error bars are weighted s.e.m., except for esti-
mates of diffusion coefficients; their averages are simple mean values. Data
close to the DNA ends (open gray symbols) are excluded in the following
analysis to avoid bias (see discussion in Supplementary Section S3A). (A)
MLE of the corner frequency fc of transverse (y-direction) DNA motion.
Measured values vary by a factor two between the tethered and the free
end. (The hypothesis that fc is constant is refuted with P = 6 × 10−7.) The
faster dynamics near the tethered end is due to larger tension in the DNA
there. (The corner frequency of the DNA’s longitudinal motion is twice the
corner frequency of its transverse motion.) (B) The diffusivity Kx(s) of lon-
gitudinal DNA fluctuations is constant along the DNA, corresponding to
increasing amplitude in the downstream direction in consequence of de-
creasing tension; Kx = 0.41 ± 0.03 μm/s (P = 0.93). (C) The diffusivity
Ky(s) of transverse DNA fluctuations is also constant along the DNA;
K y = 0.19 ± 0.02 μm2/s (P = 0.19). (D) The CVE overestimates �2, the
variance of localization errors, by almost a factor two because it does not
account for DNA motion. The MLE of �2 increases slightly towards the
free end. The assumption that it is constant has negligible support: P =
0.003. (E) Estimated diffusion coefficients. The uncorrected CVE overes-
timates diffusion coefficients significantly, because it does not account for
DNA motion. The MLE does not, and shows that diffusion coefficients do
not depend on the protein’s position on the DNA (P = 0.10). (F) Experi-
mental estimates of the bias bD of the CVE, calculated as D̂cve − D̂mle, and
theoretical estimates, calculated from Equation (1) using weighted means
of estimates of fc and Kx (Materials and Methods and Supplementary Sec-
tion S3D). The theory generally agrees excellently with experiments. The
bias increases near the DNA’s free end, where DNA fluctuations are larger
and slower.

Note that although this tortuosity factor is a source of
error on estimated values for the diffusion coefficients,
it does not affect their ratios. So it does not affect any
of the conclusions that we draw from our analysis, such
as the statistical support for proposed models. Nor does
it affect the relative importance of bias due to substrate
fluctuations. Optimally, the tortuosity could be measured
directly, e.g. by using optical tweezers to stretch the DNA.

6. We plotted the estimated diffusion coefficients of pro-
teins on DNA against the measured residence time of pro-
teins, as scatter plots (Figure 3A–E) and as binned on the
residence-time axis (Figure 3F–J). Histograms of mea-
sured residence times were also plotted to investigate the
distribution of residence times (Figure 3K–O).
Motivation: These plots were used, with standard statis-
tical testing as described below, to compare experimental
data with theoretical models for the underlying kinetics
(Supplementary Section S4).

7. Maximum likelihood estimates of parameters in the two-
state model presented in Figure 4B–G (Supplementary
Section S4C) were obtained by a combined fit to the
block-averaged estimates of diffusion coefficients (Figure
3F–J) and to the full distribution of residence times (Fig-
ure 3K–O).
Motivation: The two-state model predicts correlated val-
ues for a protein’s residence time and the protein’s
residence-time-averaged diffusion coefficient. Thus, com-
bined simultaneous fitting of model predictions to ex-
perimental residence times as well as experimental diffu-
sion coefficients (which are time-averages, each an aver-
age over one residency) is the logical and statistically op-
timal way to fit to these data.

8. We also fitted the two-state model directly to diffusion
coefficient estimates obtained using the uncorrected CVE
(Supplementary Figure S2 and Table S4).
Motivation: This is another consistency test of our re-
sults: it leads to the same two-state model for hOGG1’s
kinetics, albeit with biased estimates of the diffusivities
(Supplementary Table S4). It confirms that the observed
correlation between diffusion coefficients and residence
times is not a spurious effect induced by a possible bias
in the MLE and the corrected CVE due to finite statistics.

9. The next four sections, two on tests and two on Monte
Carlo simulations, are peripheral parts of our protocol.
Motivation: One can reproduce our results without the
next four sections, but cannot reproduce our confidence
in our results without them. The confidence rests on our
understanding of the steps described above as well as on
the reflections over self-consistency, precision, and accu-
racy that the next four sections describe.

Testing for drift of DNA-attached proteins with surrounding
flow

The estimators for the diffusion coefficient were derived un-
der the assumption of negligible drift. To test for drift of the
proteins along the DNA in response to the drag-force from
the surrounding flow, we calculated their mean displace-
ment per time-lapse (Supplementary Section S3A). There
was no discernible drift, neither locally on the DNA (Sup-
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Figure 3. Estimated diffusion coefficients and residence times for proteins on DNA. Each row shows results for the experimental conditions listed in the
top of the left panels. (A–E) Estimated diffusion coefficients D̂ versus residence times for proteins on DNA. (F–J) Block averages of diffusion coefficient
estimates in A–E binned on the time axis. (A, F, K) DNA molecule no. 1 (pH 6.6 and [NaCl] = 0.1 M); (B, G, L) DNA molecules nos. 2 and 3 (pH 7.0 and
[NaCl] = 0.01 M); (C, H, M) DNA molecule no. 4 (pH 7.0 and [NaCl] = 0.075 M); (D, I, N) DNA molecule no. 5 (pH 7.5 and [NaCl] = 0.01 M); (E, J, O)
DNA molecule no. 6 (pH 7.8 and [NaCl] = 0.05 M). A clear dependence on the residence time is seen in the measured diffusion coefficients, quite contrary
to what one finds for a simple diffusion process. (K–O) Distribution of protein residence times on DNA. The distributions are not simple exponentials,
so the rate of detachment of protein from DNA is not constant but decreases with the time bound. Dashed blue lines and full black lines in F–O mark
combined ML fits of the one- and two-state models, respectively, to data in the second and third columns (P-values are given in legends and in Table 1,
and estimated parameter values are given in Table 2).
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Figure 4. Two-state model for hOGG1’s diffusion on DNA. (A) Schematic
free energy landscape for the two-state model for diffusion on DNA. Max-
imum likelihood fits of this two-state model to data shown in Figure 3 give
P-values which support the two-state model and Akaike weights which
overwhelmingly favor the two-state model over the one-state model (Ta-
ble 1). (B–G) Maximum likelihood estimates of parameters in the model
as a function of pH-value (B, D, F) and salt concentration (C, E, G). (B,
C) Diffusion coefficients in the loosely bound state, D1, and in the tightly
bound state, D2. *The low value of D1 found for [NaCl] = 0.1 M is ex-
plained by the low value of the pH (pH 6.6) for this DNA molecule. (D,
E) Rates of transitions, b from the loosely to the tightly bound state and r
for returning. These rates for changing between states do not show signifi-
cant dependence on pH (D) or salt concentration (E). (F, G) Detachment
rate d1 from the loosely bound state. **Salt concentration is varied 8-fold
between the two measurements at pH 7.0, which explains the difference in
detachment rates.

plementary Figure S4D) nor on average (Supplementary
Table S5).

Statistical testing

Theoretical models of the distribution of residence times
were tested against experimental data using Pearson’s chi-

square goodness-of-fit test with each bin containing at least
five observed counts, and the number of bins n ≥ 7. For
other tests we used a chi-squared test for variance to test
whether averages of estimated parameters agreed with the
expected values. Estimates were divided into m bins, and
averages were calculated for each bin. The number of es-
timates in each bin was on average eleven or more to assure
that averages were approximately Gaussian distributed. The
one- and two-state models for hOGG1 on DNA predict
both a distribution of protein residence times and a mean
diffusion coefficient for a given residence time. They were
fitted to both types of data in a combined fit. Consequently,
the goodness-of-fit of each model was determined from a
corresponding total chi-squared value: the sum of a Pear-
son’s chi-squared value for its agreement with the distribu-
tion of residence times, and a variance-based chi-squared
value for its agreement with measured diffusion coefficients
as function of residence time. The total degrees of freedom
is n + m − p − 1 for each model, where p is the number of
parameters fitted.

Monte Carlo simulations of diffusion on a crowded DNA
strand

In (27), experimental conditions were chosen that result in
a low average density of proteins on the DNA (fewer than
three hOGG1 molecules at a time). However, even if the
TIRF setup limits bleaching of proteins before they bind
to DNA, bleached or unlabeled proteins could also bind to
DNA, so the number of proteins bound to DNA might have
been higher than what we observed. Thus a protein may oc-
casionally have prevented another protein from diffusing in
a given direction. We therefore Monte Carlo simulated dif-
fusing proteins at concentrations up to twenty times larger
than in experiments. At these concentrations, estimated dif-
fusion coefficients differ only negligibly from their values at
zero concentration and can account neither for the observed
dispersion in diffusion coefficients nor the correlation be-
tween residence times and diffusion coefficients that we see
in experiments (Supplementary Table S6 and Supplemen-
tary Section S4A). It is easy to see why: Protein encounters
are rare, and the rest of the time diffusion goes on as at zero
concentration. This is in agreement with a recent study of
the effects of crowding on single-file diffusion (29). Those
authors introduced the order parameter � p = c2D�t, where
c is the concentration of diffusers on the DNA. They con-
cluded that for � p 	 1, the effect of crowding is negligible;
for our experimental conditions we find � p ∼ 10−5.

Monte Carlo simulations of random walkers in a quenched
potential landscape

DNA is not a perfectly homogeneous medium since AT
and CG base-pairs differ physically. To investigate whether
this could cause our observed nontrivial distributions of
residence times and diffusion coefficients, we Monte Carlo
simulated the model proposed in (24), which assumes that
proteins perform random walks in a quenched energy-
landscape with uncorrelated and Gaussian distributed
binding energies (Supplementary Figure S6A and Supple-
mentary Section S4B). The time-lapse of our experimental
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measurements is much longer than the molecular time-scale
set by the mean time between consecutive steps in the ran-
dom walk of a protein. Consequently, a protein diffusing on
DNA effectively averages over the DNA’s quenched energy-
landscape during a single time-lapse. Thus, the Monte Carlo
simulation shows no correlations between diffusion coef-
ficients and residence times (Supplementary Figure S6C),
and its distribution of residence times is a simple exponen-
tial (Supplementary Figure S6B), which means that detach-
ment is a simple Poisson process with a constant rate of
detachment. In summary, the model proposed in (24) pre-
dicts that the simple one-state model should explain obser-
vations. Since it does not, we have eliminated the model pro-
posed in (24) as an explanation.

RESULTS

Crucial experimental result for the DNA’s motion

The y-coordinate’s periodogram P̂y, f (30) (Figure 1F) fits a
Lorentzian plus a constant (25). (This Lorentzian is aliased
and low-pass filtered due to limited time-resolution and mo-
tion blur, respectively (25), Supplementary Eq. (S44).) This
fit means that the y-motion of the tracked point on the DNA
is that of a massively over-damped harmonic oscillator at
finite temperature (31,32) tracked with a white-noise local-
ization error. The only physical explanation of this obser-
vation is that locally on the DNA, at the segment whose y-
coordinate was tracked, only a single mode contributes dis-
cernibly to the DNA’s recorded motion, in agreement with
spectral theory (Materials and Methods).

This is an extremely useful result. The DNA has very
many degrees of freedom, but now we found phenomeno-
logically that we can describe the DNA’s motion locally with
a single degree of freedom which, to boot, displays the sim-
plest possible dynamics.

The mode with the slowest relaxation time is the domi-
nant contributor to the motion of the DNA at most posi-
tions along the DNA. The other modes contribute, but with
corner frequencies (= 3 dB frequencies) that increase and
amplitudes that decrease so rapidly with mode-number that
already the second mode is indistinguishable from white
noise in our data: The Nyquist frequency fNyq = 1/(2�t),
where �t is the time-lapse between measurements, is the
maximal frequency that we can resolve in our time-lapse
recorded data. It is 45 Hz in Figure 1F. Our mean field ap-
proximation makes the relaxation time of the second mode
six times shorter than the relaxation time of the first mode
(Supplementary Figure S1I). In Figure 1F, that factor six
places the corner frequency of the second mode at 40 Hz,
which is so close to the Nyquist frequency that our limited
statistics cannot distinguish it from white noise, and hence
also cannot distinguish higher modes. This, we believe, is
why we see only the Lorentzian of a single mode, the first
mode, in Figure 1F. The corner frequency of this Lorentzian
is fc(s) = 6.7 Hz in Figure 1F, which is much smaller than
the Nyquist frequency.

We consequently use this lowest mode to characterize
the DNA’s local transverse fluctuations. We know how the
DNA’s longitudinal motion follows from the transverse mo-
tion that we now have characterized (Materials and Meth-

ods and Supplementary Section S2). Thus, we now can sep-
arate the DNA’s longitudinal fluctuations from the observed
longitudinal motion of the protein, as described in the Ma-
terials and Methods section.

Characterizing the diffusion of hOGG1 on DNA

The key steps in our data analysis are outlined in Figure 1A
and in the Materials and Methods section. The experimen-
tal setup and data samples are shown in Figure 1B–E. Power
spectral analysis of the trajectories reveals that the correla-
tion time � of transverse DNA fluctuations is longer than
the time-lapse between frames �t (Figure 1F, G and Figure
2A)––compare � = 1/(2�fc) = 25–50 ms to �t = 11 ms. Dif-
fusion coefficients (Figure 2E), localization error (Figure
2D), and DNA motion parameters (Figure 2A–C) are Max-
imum Likelihood estimated from time-series longer than N
= 25 (Materials and Methods and Supplementary Section
S3C). For time-series shorter than N = 25, estimates of pa-
rameters of DNA motion from long time-series are used to
calculate and correct the bias of the covariance-based esti-
mator (CVE) to obtain unbiased estimates of diffusion co-
efficients (Materials and Methods and Supplementary Sec-
tion S3D).

Comparison between diffusion coefficients estimated
with MLE and the uncorrected CVE shows that DNA mo-
tion causes a bias of up to 0.4 �m2 s−1 (Figure 2E–F, and
Materials and Methods and Supplementary Table S1), de-
pending on the protein’s position on the DNA and the time-
lapse according to

bD (s) =
(

1 − e−4π fc(s)�t

4π fc(s)�t

)3

Kx(s), (1)

where Kx(s) parametrizes the amplitude of longitudinal
fluctuations of the point s on the DNA (25). Equation (1)
shows that the bias caused by substrate fluctuations de-
pends linearly on Kx, with a proportionality coefficient that
is at most equal to unity (with equality when the relax-
ation time of longitudinal substrate fluctuations, 1/(4�fc),
is much smaller than �t) and decreases with fc�t as 1
− 6�fc�t when fc�t is small and as (4�fc�t)−3 when
fc�t is large. (For the trajectory analyzed in Figure 1F,
G, the estimated bias is b̂D(s) ≈ 0.3 Kx(s) ≈ 0.2 μm2s−1,
as compared to an estimated diffusion coefficient of D̂ =
0.06 μm2s−1.) We measure diffusion coefficients in the range
0.01–0.5 �m2 s−1 (Figure 3F–J and D in Table 2), so the bias
could, in the worst case, be many times larger than the ac-
tual value of the diffusion coefficient.

The bias of the uncorrected CVE does not depend on the
proteins’ residence time on DNA (Supplementary Figure S2
and (25)), and (unbiased) estimated diffusion coefficients do
not depend on the proteins’ position on the DNA (Figure
2E). However, the proteins’ estimated diffusion coefficients
show a much higher spread around their mean than what
would be expected from pure statistical error, i.e. they are
not consistent with the proteins having a single unique dif-
fusion coefficient (Supplementary Table S2). The diffusion
coefficients furthermore depend on the proteins’ residence
time on DNA (Figure 3A–J). This result invites close inspec-
tion of the residence times themselves. They are appealingly
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Table 2. Estimated parameter values of the two-state model. Column 1: Identity of DNA molecule(s). Column 2: pH-value of buffer. Column 3: Salt
concentration of buffer, [NaCl]. Column 4: Dissociation rate from the loosely bound state, d1. Column 5: Rate for switching from the loosely to the tightly
bound state, b. Column 6: Rate for switching from the tightly to the loosely bound state, r. Column 7: Diffusion coefficient in the loosely bound state, D1.
Column 8: Diffusion coefficient in the tightly bound state, D2. Column 9: Mean fraction of time proteins spend in the loosely bound state, f1. Column
10: Effective mean dissociation rate from DNA, koff . Column 11: Mean observed diffusivity D. Measured values of D for DNA molecules 2, 3, 4, and 5
are smaller than those reported for corresponding samples in (27). The exclusion of trajectories shorter than Nmin = 12 points that show higher average
diffusivity, compared to Nmin = 5 in (27), as well as correction for substrate fluctuations, account for this difference.

1 2 3 4 5 6 7 8 9 10 11

DNA no. pH [NaCl] d1 b r D1 D2 f1 koff D
(mM) (Hz) (Hz) (Hz) (�m2 s−1) (�m2 s−1) (Hz) (�m2 s−1)

1 6.6 100 3 ± 3 1.3 ± 1.6 1.7 ± 0.5 0.02 ± 0.01 0.001 ± 0.004 0.47 ± 0.23 2 ± 2 0.009 ± 0.002
2 & 3 7.0 10 13 ± 6 0.6 ± 0.5 2.2 ± 0.2 0.23 ± 0.04 0.07 ± 0.02 0.73 ± 0.17 10 ± 5 0.11 ± 0.01
4 7.0 75 33 ± 10 1.4 ± 0.6 3.3 ± 0.8 0.46 ± 0.11 0.01 ± 0.04 0.65 ± 0.11 23 ± 7 0.09 ± 0.04
5 7.5 10 5 ± 1 2.1 ± 0.9 2.2 ± 0.4 0.44 ± 0.06 0.07 ± 0.04 0.42 ± 0.09 2 ± 1 0.22 ± 0.05
6 7.8 50 15 ± 5 1.0 ± 0.4 2.3 ± 0.4 0.44 ± 0.07 0.05 ± 0.03 0.64 ± 0.09 11 ± 2 0.16 ± 0.05

simple data, as each residence time is just measured with
a clock. Nevertheless, the distributions of the protein res-
idence times are non-trivial: they do not fit the simple ex-
ponential distributions that would result from a fixed rate
of detachment (Figure 3K–O). hOGG1 proteins on DNA
must have more than one state of attachment according to
this distribution of residence times.

The absence of drift in experiments (Materials and Meth-
ods and Supplementary Table S5) implies that the non-
trivial distribution of hOGG1 residence times and their cor-
relation with measured diffusion coefficients cannot be ex-
plained by intermittent excursions of hOGG1 into bulk, so-
called ‘hopping’ (33) (Supplementary Section S4D). Monte
Carlo simulations of diffusion on ‘crowded’ DNA indicate
that the non-trivial dynamics of hOGG1 cannot be ex-
plained by crowding either (Materials and Methods and
Supplementary Section S4A). Monte Carlo simulations of
diffusion of a one-state protein on DNA with a random po-
tential landscape indicate that such a landscape also cannot
explain this non-trivial behavior (Materials and Methods
and Supplementary Section S4B).

Two-state model for hOGG1’s kinetics when bound to DNA

In order to explain the non-trivial distribution of residence
times and their correlation with measured diffusion coeffi-
cients, we propose a minimal two-state model for hOGG1
on DNA: proteins bind to DNA in a loosely bound state
(State 1); they switch stochastically to a more tightly bound
state (State 2) with rate b and return to the loosely bound
state with rate r; proteins detach from the loosely bound
state with rate d1; and proteins have diffusion coefficient
D1 and D2 in the loosely and tightly bound state, respec-
tively (Figure 4A). We derive analytical expressions for the
distribution of protein residence times on DNA and for
the mean value of a protein’s diffusion coefficient on DNA
as a function of its residence time (Supplementary Section
S4C). This allows us to directly fit parameters of the two-
state model to experimental data using maximum likelihood
estimation (estimated parameter values are listed in Table
2). The model shows excellent agreement with experimen-
tal data (Figure 3F–O and Table 1). Proteins diffuse much
faster in the loosely bound state than in the tightly bound
state, and diffusion coefficients in the loosely bound state

depend highly on pH (Figure 4B), while diffusivity does not
depend on salt concentration (Figure 4C). Taken with the
observation that the diffusivity of the H270A hOGG1 mu-
tant protein is pH-insensitive, this suggests that hOGG1’s
His270 residue is important for diffusion in the loosely
bound state (27). Proteins spend slightly more time loosely
bound than tightly bound (Figure 4D, E and Table 2), and
they make only few transitions between states during typi-
cal residence times on DNA (compare b and r in Figure 4D,
E to d1 in Figure 4F, G).

DISCUSSION

At the resolution available experimentally, the thermal mo-
tion of a stretched DNA molecule is accurately described
locally as a single thermally driven overdamped harmonic
oscillator. This simple theory works because higher order
modes of the DNA’s motion are too fast and too small in
amplitude to be resolved. Using this theory, we character-
ized the fluctuations of the DNA strands from the longer
time-series of proteins diffusing on them. This allowed us to
predict the bias caused by DNA fluctuations in covariance-
based estimates of diffusion coefficients. With this bias re-
moved, we estimated diffusion coefficients with accuracy
and optimal precision for single hOGG1 repair proteins dif-
fusing on � DNA even from short time-series. Our increased
precision revealed a two-state kinetics in hOGG1’s diffu-
sion on DNA, which was missed by the cruder but common
method based on the ensemble-averaged mean squared dis-
placement, and allowed us to accurately estimate the pro-
teins’ diffusivity in each state as well as the rates of switching
between states.

A two-state kinetics was earlier proposed to explain the
motion of Proliferating Cell Nuclear Antigen (PCNA) on
DNA (8). This study, however, relied on (i) PCNA under-
going rotation-coupled sliding in one state and rotation-
uncoupled linear diffusion in another state, where the pro-
tein topologically entraps the substrate, (ii) elaborate experi-
ments using labels of different sizes, and (iii) inference of the
existence of the two states of motion from indirect evidence.
Another recent study found evidence of two-state kinetics in
TALE proteins’ diffusion along DNA (9). The study relied
on subjective visual identification of periods of low diffu-
sivity from the recorded time-series: a method which (i) can
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only be applied when switching between states is so slow
that such periods are long enough to be identified visually
in a noisy time-series and (ii) provides no rigorous statisti-
cal evidence for the inferred model. Importantly, the above
approaches did not allow quantitative estimation of the dif-
fusivity in the two states.

Using optimal estimation of individual diffusion coeffi-
cients, we have shown the existence of two-state kinetics
in the diffusion of hOGG1 on DNA directly from single-
molecule tracking data from a single experiment. We have
derived analytical expressions for the distribution of the
proteins’ residence times on DNA and their expected diffu-
sion coefficient as function of their residence time, enabling
rigorous statistical testing and model selection, even when
state changes are too short to be detected visually, and we
have provided accurate estimates of all of the kinetic param-
eters of the two-state model. A plausible physical mecha-
nism for this two-state kinetics is that hOGG1 undergoes
conformal change between a highly mobile state, where it is
loosely bound to the DNA, and a more tightly bound, less
mobile state that allows greater engagement with the DNA
bases to detect oxidative damage. Our analysis showed that
salt concentration in solution solely affected hOGG1’s de-
tachment rate from its loosely bound state and not rates
for switching between states for the range of conditions
tested. This indicates that electrostatic screening due to free
ions does not affect hOGG1 dynamics in the tightly bound
state. Furthermore, pH affected hOGG1’s diffusivity in the
loosely bound state only. This suggests that the pH-sensitive
His270 residue, which was previously shown to play a role
in hOGG1’s diffusion along DNA (27), is sensitive to so-
lution pH and/or affects sliding in the loosely bound state
only, while it is not involved in facilitating changes in the
protein’s state of binding.

Here, we demonstrated the ability to identify and
characterize multiple dynamic states of searching protein
molecules from single-molecule tracking data, which will
enable refinement of theoretical models explaining how
the speed-stability paradox is overcome by hOGG1. The
speed-stability paradox is a general physical problem in
protein-DNA interaction, and we predict that many pro-
teins may use conformationally and dynamically distinct
binding modes to solve the paradox. Resolving dynamic
states of DNA-bound proteins from single-molecule diffu-
sion data could be broadly useful as an approach for gener-
ating targets for structural studies of each bound state and
functional studies characterizing the role of each state in
search and/or target binding.

Our results point to sliding as the dominant contributor
to hOGG1’s 1D motion and search for target sites along
DNA on the mesoscopic scale, in agreement with other
single-molecule studies (7,27), but here shown to consist of
two distinct sliding modes. Conversely, ensemble studies in-
dicate much shorter mean sliding lengths, of the order of
several to tens of base-pairs; much shorter binding times, on
the micro to millisecond timescale (34–38); and a relatively
greater contribution of hopping (34,35,37). Much of these
differences can be attributed to differences between salt con-
centrations used in ensemble studies (typically high, com-
parable to intracellular levels) and single-molecule studies
(typically 5- to 20-fold lower). The archetypical sensitivity

of nucleic acid proteins’ sequence-nonspecific DNA binding
to salt concentration results in a strong shift of the binding
equilibrium toward the unbound state and an increased rate
of unbinding from the DNA with rising salt concentrations.

Numerical simulations of the Lac repressor’s target
search have shown that if the protein follows a helical path
along the DNA, e.g., the phosphate backbone or the major
or minor groove, short-range hopping does not contribute
significantly to target search in vivo due to geometrical con-
straints on rebinding (33). This picture agrees with our con-
clusion that hopping does not contribute to hOGG1’s mo-
tion along stretched DNA in vitro based on drift analysis
((27) and here), largely salt concentration independent dif-
fusion constants ((27) and here), and strong rotation cou-
pling (7), suggesting persistant sliding on DNA along a he-
lical path for hOGG1. ‘Molecular clock’ ensemble measure-
ments, however, indicate that hOGG1 can overcome obsta-
cles on the DNA phosphate backbone and transfer between
strands without dissociating to bulk (34). Groove-focused
sliding in the loosely bound state may explain hOGG1’s
rotation-coupled sliding together with an ability to transfer
between strands and negotiate backbone-bound obstacles
without fully escaping from DNA.

Dynamic NMR spectroscopy measurements have re-
vealed that non-specifically bound human uracil DNA gly-
cosylase (hUNG) undergoes conformational dynamics in
the millisecond range (39). Others have suggested that the
millisecond timescale of hUNG’s conformational dynamics
are tuned to the timescale of DNA breathing (i.e. bubble for-
mation and coalescence) (39,40). This is two orders of mag-
nitude faster than the rates for hOGG1’s switching between
the sliding states measured here. It would be interesting
to perform spectroscopy measurements to see whether the
rates of protein conformational changes of non-specifically
bound hOGG1 correspond to the rates of switching be-
tween states observed here.

We finally conclude that more single-molecule tracking
measurements should be done, with hOGG1 on DNA and
with other diffusers. New experimental protocols ease large-
scale single-molecule data collection (41), and optimized
tools of analysis are now available and promise novel in-
sights, as demonstrated here with old, suboptimal data. The
increased resolution and much higher throughput will en-
able rigorous exploration of a larger range of pH and salt
concentrations and may help integrate results from single-
molecule and ensemble experiments.

Our results indicate that one may increase the precision
of estimates many times by using an experimental setup that
applies constant tension along the entire substrate; ∼1 pN
would be preferred. One configuration capable of this is a
dual optical trap setup (42). Dual optical traps give pre-
cise control of the extension of the substrate and can mea-
sure DNA fluctuations directly via fluctuations of the two
trapped beads holding the DNA. Moreover, modeling of
the DNA’s motion is simple in this case; a linear model ap-
plies and is fully solvable. This has the very practical conse-
quence that recordings of the motions of the two beads and
transverse motion of the DNA measured at various points
along the DNA all can be combined to determine the few
parameters of the linear model that describes the DNA’s
motion, as done in (43) for a similar, less simple setup. The
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model will thus be over-determined and hence can be fal-
sified, and it enables direct and rigorous analysis of time-
series that describe diffusion over length scales that are of
the order of the DNA’s extent. Also, the local tortuosity
(or, equivalently, the degree of stretching) of the DNA can
be calculated from the fitted model (43), so absolute values
of diffusion constants can be measured with accuracy and
precision. With dual traps one can furthermore investigate
rigorously how stretching of the substrate affects kinetic pa-
rameters, providing an experimental means to verify numer-
ical predictions for the influence of DNA dynamics on slid-
ing (44) and to link single-molecule measurements made on
stretched DNA to ensemble measurements made on DNA
in free configuration.

Flow-stretch assays like the one studied here and in (41)
trade the precision of optical tweezers for a simpler experi-
mental setup and the possibility to record on multiple DNA
molecules in parallel, providing much more data. Here we
recommend to use a strong flow to stretch the DNA strands
in order to drive their fluctuations as fast as possible rela-
tive to the time-lapse of recordings, while assuring that this
does not lead to drift of the attached proteins. Fast fluctu-
ations will ensure that the phenomenological single-mode
theory for the DNA’s motion is valid and increases the pre-
cision of estimated diffusion coefficients (25). This is all the
more important when one wants to choose the time-lapse as
small as possible in order optimize the number of recorded
positions (45). If the fluctuations are fast enough, they may
even be absorbed in the localization error term and do not
need to be explicitly accounted for, leading to a simple, and
more precise, estimation procedure––this should be checked
by plotting the periodograms of the recorded time-series.

Finally, tracking with MINFLUX promises to increase
the acquisition rate of recordings substantially without sac-
rificing localization precision (46). This would facilitate the
separation of DNA fluctuations from diffusive motion and
improve the precision of inferred model parameters, and
would make it possible to probe faster dynamics of single
proteins sliding on DNA.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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Skjøt,M., Jørgensen,C.I., Svendsen,A., De Schryver,F.C., Hofkens,J.
and Uji-i,H. (2009) Linking phospholipase mobility to activity by
single-molecule wide-field microscopy. Chemphyschem, 10, 151–161.
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