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Abstract: The study was aimed at comparing lower-limb strength and respiratory parameters
between male and female athletes and their interaction with performance in a 107 km mountain
ultramarathon. Forty seven runners (29 males and 18 females; mean ± SD age: 41 ± 5 years) were
enrolled. Lower-limb strength assessment comprised a squat jump test, an ankle rebound test,
and an isometric strength test. Respiratory assessment included pulmonary function testing and
the measurement of maximal inspiratory pressure. Male athletes performed largely better in the
squat jump (26 ± 4 vs. 21 ± 3 cm; p < 0.001; d = 1.48), while no sex differences were found in the
other two lower-limb tests. Concerning the respiratory parameters, male athletes showed largely
greater values in pulmonary expiratory variables: forced vital capacity (5.19 ± 0.68 vs. 3.65 ± 0.52 L;
p < 0.001; d = 2.53), forced expiratory volume in 1 s (4.24 ± 0.54 vs. 2.97 ± 0.39 L; p < 0.001; d = 2.69),
peak expiratory flow (9.9 ± 1.56 vs. 5.89 ± 1.39 L/min; p < 0.001; d = 2.77) and maximum voluntary
ventilation in 12 s (171 ± 39 vs. 108 ± 23 L/min; p < 0.001; d = 1.93); while no sex differences
were identified in maximal inspiratory pressure. Race time was associated with ankle rebound test
performance (r = −0.390; p = 0.027), isometric strength test performance (r = −0.349; p = 0.049) and
maximal inspiratory pressure (r = −0.544; p < 0.001). Consequently, it seems that athletes competing
in mountain ultramarathons may benefit from improving lower-limb isometric strength, ankle reactive
strength and inspiratory muscle strength. Nevertheless, further interventional studies are required to
confirm these exploratory results. In addition, the fact that the magnitude of the sex difference for
isometric strength was minor, as compared with the other strength tests, could represent one of the
factors explaining why the performance gap between males and females is reduced in ultramarathons.

Keywords: isometric strength; ankle reactive strength; pulmonary function; ventilatory
efficiency; ultraendurance

1. Introduction

Lower-limb strength is significantly reduced following a mountain ultramarathon (MUM) [1–5].
Indeed, it seems that premature fatigue of lower-limb muscles might be one of the primary reasons
why in MUMs, unlike in road marathons, heart rate generally decreases in the second half of the race
and speed decay is more pronounced [6,7]. A possible relationship between muscular strength and
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MUM performance is therefore expected, as has been described in most endurance-based sports [8].
Lazzer et al. [9] found that lower-limb maximal power during a countermovement jump (CMJ) was
correlated with a pre-to-post race increase in energy cost of running following a 43 km uphill MUM.
However, Balducci et al. [5] found no relationship between CMJ height and performance in a 75 km
MUM. Instead, these authors showed that race time was associated with knee extensor isometric force.
As well as this controversy, no studies regarding a possible relationship between strength-related
capacities and MUM performance have been conducted so far on female athletes.

Similarly, previous research has showed that MUMs provoke a significant respiratory function
decline [10,11]. In addition, ventilatory muscle endurance (i.e., MVV12, maximum voluntary ventilation
in 12 s) has been linked to performance in a 330 km MUM [10] and its intra-competition changes
have been shown to be significantly related to the variance in running speed during a 24 h flat
ultramarathon [12]. In fact, these latter authors suggested that the decrease in ventilatory muscle
endurance may constrain running speed during extremely long ultramarathons. There is a lack
of investigations, however, concerning a possible association between inspiratory muscle strength
and MUM performance. Inspiratory muscle training using linear workload devices is accessible to
athletes [13] and it constitutes an effective tool to improve endurance-sports performance [13–15].
Overall, further studies are warranted to resolve whether the limiting factors in ultra-endurance events
are similar to those described in shorter distances [16], as well as studies comparing performance
factors in male and female athletes competing in ultramarathon races [17].

The aims of our study were, therefore, two-fold. Firstly, to compare lower-limb strength
and respiratory parameters between male and female MUM athletes. Secondly, to assess possible
associations of lower-limb strength and respiratory function parameters with performance in a
107 km MUM, and to explore whether those relationships varied between male and female athletes.
Our hypotheses were the following: greater lower-limb isometric strength, ankle reactive strength,
ventilatory muscle endurance and inspiratory strength could be significantly related with a faster race
time, and sex differences may be lower in those variables that correlate larger with performance.

2. Materials and Methods

2.1. Participants

Forty-seven ultra-endurance athletes (29 males and 18 females; 41 ± 5 years; 22.8 ± 2.1 kg/m2)
from the Penyagolosa Trails CSP race in 2019 were selected to take part in the study. The race track
consisted of 107.4 km, starting at an altitude of 40 m and finishing at 1280 m above the sea level, with a
total positive and negative elevation of 5604 and 4356 m, respectively. All participants signed a written
consent to participate and were informed about the procedures and the aims of the study. They were
also allowed to withdraw from the study at any moment. Demographic information, as well as training
and competition history were collected using an online questionnaire, as previously reported [18,19].
The investigation was conducted according to the Declaration of Helsinki and approval for the project
was obtained from the research Ethics Committee of the University Jaume I of Castellon (Expedient
Number CD/007/2019). This study is enrolled in the ClinicalTrails.gov database, with the code number
NCT03990259 (www.clinicaltrials.gov).

2.2. Lower-Limb Strength Assessment

Subjects were familiarized with procedures concerning strength assessment during an informative
session prior to the investigation. The following tests were carried out: (1) a squat jump test to
assess lower-limb explosive strength; (2) an ankle rebound test to assess ankle reactive strength; (3) an
isometric maximal voluntary contraction (IMVC) in a half-squat position. Each test was performed
twice and the best performance was retained for statistical analysis. A 90 s recovery was used between
attempts. Testing was conducted within 2 to 4 weeks before the race.

ClinicalTrails.gov
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In the squat jump test, participants were asked to jump as high as possible from a starting
position with hips and knees flexed 80 degrees and hands stabilized on hips to avoid arm-swing [19].
Jump height (SJheight) was estimated by the flight time measured with a contact platform (Chronojump,
Barcelona, Spain). In the ankle rebound test, participants were asked to perform 10 consecutive
maximal jumps with no knee flexion and the intention of minimizing ground contact time. The ratio
between flight and contact times (Leg QIndex), measured by a contact platform (Chronojump, Barcelona,
Spain), was considered for analysis.

IMVC was measured with a force sensor (Chronojump, Barcelona, Spain) held on to a bar
using a custom-adapted Smith machine (i.e., the bar was firmly anchored to impede any movement).
Participants adopted a half-squat position (i.e., hips and knees flexed 80 degrees) and afterwards they
were instructed to push (as if they were to perform a dynamic contraction) as fast as possible and
maintain the maximal isometric exertion during 5 s. We opted for a half-squat position to evaluate
IMVC as this multi-articular assessment was expected to be closer to the specific joint angles required
during running, especially when compared to monoarticular testing [20]. The highest force produced
was modeled using an inverse monoexponential function considering the speed at which maximal
force was reached. IMVC was relativized by body weight.

2.3. Respiratory Assessment

Pulmonary function testing was conducted using an automated online system (Oxycon Pro
system, Jaeger, Würzburg, Germany), while the participant was seated and wearing a nose-clamp,
following the American Thoracic Society and European Respiratory Society guidelines for spirometry
standardization [21]. A 1 min recovery between attempts was used in all respiratory assessments.
All the tests were performed by the same experienced investigator to guarantee that maneuvers
were carried out properly [22]. Forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1),
FEV1/FVC ratio and peak expiratory flow (PEF) were determined from the maximal flow volume loop
(MFVL). Each participant performed three acceptable MFVL maneuvers that lasted at least 6 s each
one. The spirometric maneuver with the highest sum of FVC and FEV1 was accepted.

On the other hand, maximal inspiratory pressure (MIP) was measured using a handheld electronic
device (Powerbreathe K5, HaB International Ltd., UK) [23]. This test was carried out to evaluate
volitional maximal inspiratory strength. Each participant performed three attempts and the best result
that did not differ by more than 5% was considered for analysis. This value was relativized by body
weight. Lastly, respiratory muscle endurance was assessed using the MVV12 maneuver. Athletes were
asked to breathe as rapidly and deeply as possible for 12 s and the best result from two attempts was
retained for statistical analysis. MVV testing was performed last to avoid participant fatigue.

2.4. Statistical Analysis

Statistical analyses were performed with the aid of the Statistical Package for the Social Sciences
software (IBM SPSS Statistics for Windows, version 22.0, IBM Corp., Armonk, NY). Normality was
verified conducting the Shapiro–Wilk test. Since all the variables were normally distributed (p > 0.05),
possible sex differences in lower-limb strength variables (SJ, IMVC, Leg QIndex), respiratory variables
(FVC, FEV1, FEV1/FVC ratio, PEF, MVV12) and training-related data collected in the questionnaire
were compared using a Student’s t-test and chi-square test (categorical data). On the other hand,
possible associations between race time and lower-limb strength variables and respiratory variables
were assessed using Pearson correlations. This analysis was carried out for the whole sample and for
the males and females sample sets. The following criteria were considered to evaluate the magnitude
of the correlations: r ≤ 0.1, trivial; 0.1 < r ≤ 0.3, small; 0.3 < r ≤ 0.5, moderate; 0.5 < r ≤ 0.7, large;
0.7 < r ≤ 0.9, very large; and r > 0.9, almost perfect; while a Cohen’s D between 0.3–0.5 was considered
small; between 0.5–0.8, moderate; and greater than 0.8, large [24]. The significance level was set at
p < 0.05 and data are presented as means and standard deviations (±SD).
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3. Results

Four participants did not start the race due to injury. From a starting sample of 43 athletes,
32 runners (19 men and 13 women) successfully completed the race. The finishers/starters ratio for the
participants of our study (74.4%) was similar to the ratio when all race participants were considered
(73.8%). Male athletes’ average finish time was 20 h 43 min ± 3 h 58 min, while females athletes’
average finish time was 22 h 20 min ± 2 h 24 min. Those average finish times represented 174% of
men’s winning time and 157% of women’s winning time, respectively. They ranked from 13th to 395th
place (of 397 finishers) in the male category, and from 7th to 32nd place (of 47 finishers) in the female
category; so the sample was highly heterogeneous regarding its performance level.

Sex differences in training-related data, lower-limb and respiratory variables are outlined in
Tables 1 and 2. No significant sex differences were identified in training-related data. Regarding
lower-limb strength variables, SJ was largely greater in male athletes, while no sex differences were
found in Leg QIndex and IMVC. Lastly, concerning respiratory parameters, FVC, FEV1, PEF and MVV12

were largely greater in male athletes, whereas no sex differences were identified in FEV1/FVC and MIP.

Table 1. Sex differences in training-related data.

Males
(n = 19)

Females
(n = 13)

% Difference
(Men vs. Women) p ES

Number of Years Running 8 ± 2 8 ± 3 −0.5% 0.969 0.01
Number of Races > 100 km 2 ± 3 2 ± 4 −3.9% 0.936 0.03

Weekly Training days 5 ± 1 5 ± 1 −2.3% 0.798 0.10
Weekly Running Volume (km) 76 ± 25 61 ± 13 19.4% 0.065 0.71
Weekly Positive Elevation (m) 1868 ± 765 1631 ± 565 12.7% 0.348 0.35

Weekly Training Hours 10 ± 4 9 ± 5 10.0% 0.520 0.24
Strength Training (yes/no) 74%/26% 92%/8% −25.3% 0.185 -

Abbreviations: Strength training, percentage of participants who performed at least one weekly lower-limb strength
training in the previous 3 months; ES, Effect Size.

Table 2. Sex differences in lower-limb strength and respiratory variables.

Males
(n = 19)

Females
(n = 13)

% Difference
(Men vs. Women) p ES

Leg QIndex 1.89 ± 0.33 1.72 ± 0.22 9.0% 0.111 0.61
IMVC (N/kg) 10.9 ± 2.71 10.32 ± 4.45 5.3% 0.650 0.17
SJheight (cm) 26 ± 4 21 ± 3 19.7% <0.001 1.48

FVC (L) 5.19 ± 0.68 3.65 ± 0.52 29.5% <0.001 2.53
FEV1 (L) 4.24 ± 0.54 2.97 ± 0.39 29.9% <0.001 2.69

FEV1/FVC (%) 81.95 ± 5.68 81.28 ± 2.63 0.8% 0.697 0.15
PEF (L/min) 9.9 ± 1.56 5.89 ± 1.39 40.5% <0.001 2.77

MVV12 (L/min) 171 ± 39 108 ± 23 36.9% <0.001 1.93
MIP (cm H2O/kg) 1.61 ± 0.33 1.39 ± 0.32 13.8% 0.068 0.70

Abbreviations: Leg QIndex, ratio between flight and contact times in ankle rebound test; IMVC, isometric maximal
voluntary contraction; SJheight, squat jump height; FVC, forced vital capacity; FEV1, forced expiratory volume in 1 s;
PEF, Peak expiratory flow; MVV12, maximum voluntary ventilation in 12 s; MIP, maximal inspiratory pressure; ES,
Effect Size.

Results from correlational analysis are depicted in Table 3. Considering the whole sample, leg
QIndex and IMVC were inversely and moderately correlated with race time, while MIP was inversely
and largely associated with race time. In the male sample set, only MIP was largely correlated with
performance; while in the female sample set, only Leg QIndex was largely associated with performance.
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Table 3. Results from correlational analysis.

Correlation with Race Time (r/p)

All Sample
(n = 32)

Men
(n = 19)

Women
(n = 13)

Leg QIndex −0.390/0.027 −0.278/0.249 −0.607/0.028
IMVC (N/kg) −0.349/0.049 −0.371/0.118 −0.398/0.178
SJheight (cm) −0.324/0.070 −0.224/0.357 −0.290/0.336

FVC (l) −0.277/0.125 −0.109/0.657 −0.318/0.289
FEV1 (l) −0.239/0.188 −0.027/0.912 −0.310/0.303

FEV1/FVC (%) 0.175/0.337 0.199/0.415 0.200/0.511
PEF (l/min) −0.213/0.242 0.060/0.807 −0.336/0.261

MVV12 (l/min) −0.234/0.197 −0.096/0.695 −0.140/0.648
MIP (cm H2O/kg) −0.544/0.001 −0.576/0.010 −0.384/0.195

Abbreviations: Leg QIndex, ratio between flight and contact times in ankle rebound test; IMVC, isometric maximal
voluntary contraction; SJheight, squat jump height; FVC, forced vital capacity; FEV1, forced expiratory volume in 1 s;
PEF, Peak expiratory flow; MVV12, maximum voluntary ventilation in 12 s; MIP, maximal inspiratory pressure.

4. Discussion

The present study aimed at analyzing sex differences in lower-limb strength and respiratory
function and assessing which of those variables were correlated with race time in a 107 km MUM.
Our results showed that male athletes exhibited significantly better values of lower-limb explosive
strength, as compared to women. However, no sex differences were identified in ankle reactive strength
and lower-limb isometric strength (IMVC). At the same time, those latter variables were significantly
correlated with performance (Leg QIndex in the entire sample and female sample set; IMVC in the
entire sample), while SJ was not correlated with race time. On the other hand, inspiratory pulmonary
function variables (except for FEV1/FVC) were significantly better among male athletes, while sex
difference in MIP did not reach statistical significance. Interestingly, MIP was the only respiratory
variable associated with performance (in the entire sample and male sample set).

Balducci et al. [5] found that knee extensors isometric force was correlated with race time in a 75 km
MUM. Our results thus reinforce the relationship between isometric strength and MUM performance.
Indeed, isometric strength training performed at a long muscle length is highly recommended to
improve strength at biomechanically disadvantaged joint positions (i.e., as the ones that mountain
runners sustain during downhill sections of MUMs) [25]. Therefore, its importance regarding MUM
performance could be related with muscle fatigue subsequent to downhill running [26,27]. Moreover,
percentage sex difference in this strength-related capacity was the least in the array of strength variables
analyzed (5.3%). In the same line, Temesi et al. [28] demonstrated that force loss in the knee extensors
following a 110 km MUM was lower among women as compared with men. Collectively, lower muscle
fatigability and minor difference in isometric strength (compared to other strength-related capacities)
could be two of the factors that explain why the performance gap between males and females is
reduced in ultramarathons compared to shorter endurance events [29–32].

On the other hand, unlike Balducci et al. [5], we found a significant correlation between ankle
reactive strength and performance. Although we performed the same test, the reason for this
discrepancy may lie in the fact that Kleg (the variable assessed in the abovementioned study) considers
body mass whereas Leg QIndex (the variable analyzed in the present study) does not. Overall, leg
stiffness improvement has been correlated with an increase in running economy [33] and ankle
reactivity has been associated with better downhill running performance [20]. Consequently, it appears
reasonable that ankle reactive strength was associated with MUM performance. In addition, this
relationship was stronger among female athletes, so training strategies aimed at improving this
strength-related capacity seem especially pertinent among women. Lastly, our results corroborate
a lack of relationship between lower-limb explosive strength and performance in uphill–downhill
MUMs [5,20].
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The absence of a significant relationship between MVV12 and race time in our study contrasts with
previous investigations undertook in flat and mountain ultramarathons [10,12]. Male participants in our
study showed better values in this variable compared to the samples previously analyzed, so it could be
that a ceiling effect exists regarding positive transfer effects from MVV to MUM performance; this would
explain why we failed to find a significant relationship between MVV12 and race time. Notwithstanding,
further studies are required to clarify whether MVV is associated with MUM performance. On the
other hand, the significant association between MIP and race time reinforce previous suggestions about
the importance of inspiratory muscle function in ultramarathon running [11,34]. Inspiratory muscle
fatigue has been demonstrated to impair locomotor muscle performance because a larger fraction of
total cardiac output is required by the respiratory muscles and a sympathetic vasoconstrictor response
to working skeletal muscle is triggered through a respiratory muscle metaboreflex [35,36]. At the same
time, it has been proposed that inspiratory muscle strength is a critical determinant of the magnitude
of inspiratory muscle fatigue during prolonged endurance exercise [34,35]. Therefore, although we
cannot infer a causal relationship from a correlation, our results reinforce the pertinence of a specific
inspiratory muscle training in MUM runners, as it has been advocated for other endurance sports (i.e.,
road running, rowing, cycling) [13–15]. This specific inspiratory muscle training could be performed
with the aid of a pressure threshold device, either in isolation or integrated into core workouts [37] and
stationary cycling [38]. It is usually recommended to start with a protocol of 30 resisted breaths, twice
daily, at an intensity corresponding to the 50% of MIP [13–15].

Moreover, as respiratory muscles play an important role regarding trunk stability [37,39,40]
and post-MUM reductions in static and dynamic postural control have been documented [41,42],
a better muscle inspiratory capacity may minimize the risk of fall and improve ventilatory efficiency
and running economy in the last segments of the races [10,11,34,43]. Indeed, regarding ventilatory
efficiency, a recent study has observed that during downhill running, as compared with uphill
running, the ventilation pattern becomes more superficial (greater respiratory frequency and lower
tidal volume) [20]; so inspiratory muscle training could aid to improve the ventilatory pattern during
the downhill sections of MUM.

Some limitations of the study should be acknowledged. On one hand, we failed to perform
any lower-limb muscular endurance tests, so we could not know whether a possible relationship
existed between race time and lower-limb muscular endurance. Further studies are needed to clarify
the relative importance of muscular strength vs. muscular endurance regarding MUM performance.
On the other hand, as maximal oxygen uptake was not considered in the analysis, we cannot discard
that the relationship between inspiratory strength and performance could be mediated by maximal
oxygen uptake. Lastly, the whole set of lower-limb strength tests could not be performed following
the MUM or in the days following the race, so we could not compare how race effort affected each
strength-related capacity and its rate of recovery.

5. Conclusions

The findings of the present study suggest that lower-limb isometric strength and ankle
reactive strength are two main lower-limb strength-related capacities regarding MUM performance.
Consequently, it seems that strength training and assessment in athletes competing in those races
should focus on the above-mentioned strength-related capacities. Nevertheless, further interventional
studies are required to confirm these exploratory results. In addition, minor sex difference in isometric
strength (compared to other strength-related capacities) could be one of the factors that explain why
the performance gap between males and females is reduced in MUMs as compared with shorter trail
running races. Lastly, athletes and coaches are encouraged to include inspiratory muscle training
exercises into their daily routine to improve MUM performance.
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