data reports

OPEN access

Marcel Sonneck, Tim Peppel,* Anke Spannenberg and Sebastian Wohlrab

Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany. *Correspondence e-mail: tim.peppel@catalysis.de

Received 20 June 2015; accepted 22 June 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

The crystal structure of (E)-dodec-2-enoic acid, $C_{12}H_{22}O_2$, an α,β -unsaturated carboxylic acid with a melting point (295 K) near room temperature, is characterized by carboxylic acid inversion dimers linked by pairs of O-H···O hydrogen bonds. The carboxylic acid group and the following three carbon atoms of the chain of the (E)-dodec-2-enoic acid molecule lie almost in one plane (r.m.s. deviation for the four C atoms and two O atoms = 0.012 Å), whereas the remaining carbon atoms of the hydrocarbon chain adopt a nearly fully staggered conformation [moduli of torsion angles vary from 174.01 (13) to 179.97 (13)°].

Keywords: crystal structure; hydrogen bonding; dimer; unsaturated carboxylic acid; fatty acid.

CCDC reference: 1407997

1. Related literature

For the synthesis of unsaturated α,β -carboxylic acids including the title compound by adapted routes established by Knoevenagel (1898) and Doebner (1902), see: Shabtai et al. (1981). For crystal structure determinations of related α,β -unsaturated carboxylic acids, see, for acrylic acid: Higgs et al. (1963), Chatani et al. (1963), Boese et al. (1999), or Oswald et al. (2011); see, for crotonic acid: Shimizu et al. (1974); see, for (E)pent-2-enoic acid: Peppel et al. (2015a); see, for (E)-hex-2enoic acid: Peppel et al. (2015b); see, for (E)-undecen-2-enoic acid: Sonneck et al. (2015). For structures of co-crystals containing (E)-hex-2-enoic acid, see: Aakeröy et al. (2003), or Stanton & Bak (2008).

2. Experimental

2.1. Crystal data

 $C_{12}H_{22}O_2$ $M_r = 198.29$ Triclinic. P1 a = 4.6475 (2) Å b = 5.4169 (2) Å c = 24.7041 (10) Å $\alpha = 91.547 \ (2)^{\circ}$ $\beta = 91.788(2)^{\circ}$

 $\gamma = 102.3158 \ (19)^{\circ}$ $V = 606.96 (4) \text{ Å}^3$ Z = 2Cu Ka radiation $\mu = 0.56 \text{ mm}^{-3}$ T = 150 K $0.44 \times 0.30 \times 0.12 \text{ mm}$

2.2. Data collection

Bruker APEXII CCD	12048 measured reflections
diffractometer	2117 independent reflections
Absorption correction: multi-scan	1964 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2014)	$R_{\rm int} = 0.026$
$T_{\min} = 0.80, \ T_{\max} = 0.94$	

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.046$ wR

$R[F^2 > 2\sigma(F^2)] = 0.046$	129 parameters
$wR(F^2) = 0.131$	H-atom parameters constrained
S = 1.13	$\Delta \rho_{\rm max} = 0.29 \text{ e} \text{ \AA}^{-3}$
2117 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D - H $\mathrm{H}{\cdot}{\cdot}{\cdot}A$ $D \cdot \cdot \cdot A$ $D - H \cdots A$ $O1 - H1 \cdot \cdot \cdot O2^i$ 0.84 1.80 2.6319 (15) 170

Symmetry code: (i) -x + 1, -y + 3, -z.

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: SHELXL2014/7; software used to prepare material for publication: SHELXL2014/7.

Acknowledgements

The authors thank P. Thiele (University of Rostock) for the DSC measurements and Professor Dr. J. G. de Vries (LIKAT) for helpful support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7452).

References

- Aakeröy, C. B., Beatty, A. M., Helfrich, B. A. & Nieuwenhuyzen, M. (2003). Cryst. Growth Des. 3, 159–165.
- Boese, R., Bläser, D., Steller, I., Latz, R. & Bäumen, A. (1999). Acta Cryst. C55 IUC9900006.
- Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chatani, Y., Sakata, Y. & Nitta, I. (1963). J. Polym. Sci. B Polym. Lett. 1, 419–421.
- Doebner, O. (1902). Ber. Dtsch. Chem. Ges. 35, 1136-1147.
- Higgs, M. A. & Sass, R. L. (1963). Acta Cryst. 16, 657-661.
- Knoevenagel, E. (1898). Ber. Dtsch. Chem. Ges. 31, 2596-2619.

- Oswald, I. D. H. & Urquhart, A. J. (2011). CrystEngComm, 13, 4503-4507.
- Peppel, T., Sonneck, M., Spannenberg, A. & Wohlrab, S. (2015a). Acta Cryst. E71, 0316.
- Peppel, T., Sonneck, M., Spannenberg, A. & Wohlrab, S. (2015b). Acta Cryst. E71, 0323.
- Shabtai, J., Ney-Igner, E. & Pines, H. (1981). J. Org. Chem. 46, 3795-3802.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Shimizu, S., Kekka, S., Kashino, S. & Haisa, M. (1974). Bull. Chem. Soc. Jpn, 47, 1627–1631.
- Sonneck, M., Peppel, T., Spannenberg, A. & Wohlrab, S. (2015). *Acta Cryst.* E**71**, o426–o427.
- Stanton, M. K. & Bak, A. (2008). Cryst. Growth Des. 8, 3856-3862.

supporting information

Acta Cryst. (2015). E71, o528–o529 [doi:10.1107/S2056989015011937]

Crystal structure of (E)-dodec-2-enoic acid

Marcel Sonneck, Tim Peppel, Anke Spannenberg and Sebastian Wohlrab

S1. Synthesis and crystallization

Malonic acid (25.0 g, 240.2 mmol, 1.0 eq) is dissolved in dry pyridine (38.0 g, 480.5 mmol, 2.0 eq) at room temperature in a three-necked flask equipped with a magnetic stir bar and a reflux condenser under a mild flow of argon. Decanal (37.5 g, 240.2 mmol, 1.0 eq) is then added in one portion and the resulting clear solution is further stirred for 72 h at room temperature under argon. Afterwards, the resulting light yellow to orange solution is brought to an acidic pH value by adding phosphoric acid at 0 °C (42.5wt. %, 138.5 g, 600.6 mmol, 2.5 eq). The resulting two layers are extracted three times with 150 mL portions of ethyl acetate and reduced to a volume of ca. 150 mL in vacuo. To remove impurities from aldol condensation the raw acid is converted into the corresponding sodium salt by addition of an aqueous solution of sodium carbonate (20.4 g, 192.2 mmol, 0.8 eq in 200 mL). After stirring for 30 minutes the water phase is separated and extracted three times with 150 mL portions of ethyl acetate. The water phase is then acidified with concentrated hydrochloric acid (37.0wt. %, 35.5 g, 360.4 mmol, 1.5 eq), the organic phase is separated and the water phase is again extracted three times with 150 mL portions of ethyl acetate. The combined organic phases are dried over Na₂SO₄ and evaporated to dryness under diminished pressure. The resulting raw product is further purified by distillation in vacuo yielding the product in purity >99% (GC). M. p. 22 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 12.15$ (br s, 1H, OH); 7.09 (dt, ³*J* = 15.6 Hz, ³*J* = 7.0 Hz, 1H, -CH-); 5.82 (dt, ³*J* = 15.6 Hz, ⁴*J* = 1.6 Hz, 1H, -CH-); 2.26-2.19 (m, 2H, -CH₂-); 1.50-1.42 (m, 2H, -CH₂-); 1.32-1.24 (m, 12H, 6x -CH₂-); 0.90-0.86 (m, 3H, -CH₃-). ¹³C NMR (100 MHz, CDCl₃): $\delta = 172.53$ (CO); 152.68 (CH); 120.76 (CH); 32.47 (CH₂); 32.02 (CH₂); 29.61 (CH₂), 29.52 (CH₂), 29.43 (CH₂); 29.29 (CH₂); 28.02 (CH₂); 22.81 (CH₂); 14.23 (CH₃). MS (EI, 70eV): m/z = 198 (M⁺, 0), 99 (16), 98 (12), 97 (17), 96 (14), 95 (11), 86 (17), 84 (18), 83 (16), 82 (12), 81 (20), 73 (34), 71 (13), 70 (15), 69 (21), 68 (18), 67 (20), 57 (29), 56 (22), 55 (47), 54 (11), 53 (20), 45 (14), 43 (70), 42 (19), 41 (100), 40 (14), 39 (52), 29 (58). HRMS (ESI-TOF/MS): calculated for $C_{12}H_{22}O_2$ ([M—H]⁻) 197.1547, found 197.15481. Elemental analysis for C₁₂H₂₂O₂ % (calc.): C 72.53 (72.68); H 11.24 (11.18). Suitable single crystals were grown by slow evaporation of an ethanolic solution at -30 °C over one week.

S2. Refinement

H atoms were placed in idealized positions with d(C-H) = 0.95 Å (CH), 0.99 Å (CH₂), 0.98 Å (CH₃) and refined using a riding model with $U_{iso}(H)$ fixed at 1.2 $U_{eq}(C)$ for CH and CH₂ and 1.5 $U_{eq}(C)$ for CH₃. The carboxylic acid group was assigned by examining the C—O distances and H1 was placed using the AFIX 147 instruction (d(O-H) = 0.84 Å, $U_{iso}(H)$ fixed at 1.5 $U_{eq}(O)$).

Figure 1

Molecular structure of the title compound with atom labelling and displacement ellipsoids drawn at 50% probability level.

Figure 2

Packing diagram showing intermolecular hydrogen bonding.

(E)-dodec-2-enoic acid

Crystal data	
$C_{12}H_{22}O_2$	$\alpha = 91.547 \ (2)^{\circ}$
$M_r = 198.29$	$\beta = 91.788 \ (2)^{\circ}$
Triclinic, $P\overline{1}$	$\gamma = 102.3158 \ (19)^{\circ}$
a = 4.6475 (2) Å	$V = 606.96 (4) \text{ Å}^3$
b = 5.4169 (2) Å	Z = 2
c = 24.7041 (10) Å	F(000) = 220

 $D_x = 1.085 \text{ Mg m}^{-3}$ Cu *Ka* radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 6666 reflections $\theta = 3.6-66.9^{\circ}$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: microfocus
Multilayer monochromator
Detector resolution: 8.3333 pixels mm ⁻¹
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
$T_{\min} = 0.80, \ T_{\max} = 0.94$

Refinement

•	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.046$	H-atom parameters constrained
$wR(F^2) = 0.131$	$w = 1/[\sigma^2(F_o^2) + (0.0529P)^2 + 0.282P]$
<i>S</i> = 1.13	where $P = (F_o^2 + 2F_c^2)/3$
2117 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
129 parameters	$\Delta \rho_{\rm max} = 0.29 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\mu = 0.56 \text{ mm}^{-1}$

Plate, colourless

 $0.44 \times 0.30 \times 0.12 \text{ mm}$

 $\theta_{\rm max} = 66.0^{\circ}, \, \theta_{\rm min} = 3.6^{\circ}$

12048 measured reflections 2117 independent reflections 1964 reflections with $I > 2\sigma(I)$

T = 150 K

 $R_{\rm int} = 0.026$

 $h = -5 \rightarrow 5$ $k = -6 \rightarrow 6$ $l = -29 \rightarrow 29$

Fractional	atomic	coordinates	and isotro	nic or a	anivalant	isotropic	displacemen	t naramotors	(Å2	?)
Trachonal	aiomic	coorainales	unu isoire	ipic or e	equivaieni	isoiropic	uispiacemen	<i>i purumeters</i>	(A)	1

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.7187 (3)	1.2963 (3)	0.03952 (6)	0.0277 (4)	
C2	0.8819 (3)	1.1356 (3)	0.06965 (6)	0.0314 (4)	
H2	0.9763	1.0250	0.0497	0.038*	
C3	0.9029 (3)	1.1384 (3)	0.12290 (6)	0.0306 (4)	
H3	0.8092	1.2517	0.1421	0.037*	
C4	1.0622 (4)	0.9777 (3)	0.15566 (7)	0.0332 (4)	
H4A	1.2230	1.0881	0.1778	0.040*	
H4B	1.1523	0.8714	0.1309	0.040*	
C5	0.8573 (3)	0.8076 (3)	0.19299 (6)	0.0303 (4)	
H5A	0.7510	0.9129	0.2148	0.036*	
H5B	0.7090	0.6858	0.1706	0.036*	
C6	1.0184 (3)	0.6615 (3)	0.23115 (6)	0.0304 (4)	
H6A	1.1303	0.5606	0.2094	0.036*	
H6B	1.1618	0.7832	0.2545	0.036*	
C7	0.8121 (4)	0.4855 (3)	0.26692 (6)	0.0311 (4)	
H7A	0.6701	0.3631	0.2435	0.037*	
H7B	0.6985	0.5865	0.2882	0.037*	

C8	0.9696 (4)	0.3400 (3)	0.30579 (6)	0.0313 (4)
H8A	1.0830	0.2386	0.2846	0.038*
H8B	1.1115	0.4622	0.3293	0.038*
С9	0.7607 (4)	0.1648 (3)	0.34138 (7)	0.0333 (4)
H9A	0.6186	0.0429	0.3178	0.040*
H9B	0.6474	0.2664	0.3626	0.040*
C10	0.9160 (4)	0.0181 (3)	0.38039 (7)	0.0341 (4)
H10A	1.0257	-0.0866	0.3592	0.041*
H10B	1.0612	0.1398	0.4035	0.041*
C11	0.7074 (4)	-0.1519 (4)	0.41657 (8)	0.0432 (4)
H11A	0.5556	-0.2675	0.3936	0.052*
H11B	0.6057	-0.0462	0.4393	0.052*
C12	0.8622 (5)	-0.3083 (4)	0.45332 (8)	0.0495 (5)
H12A	0.9605	-0.4159	0.4311	0.074*
H12B	0.7169	-0.4145	0.4755	0.074*
H12C	1.0089	-0.1952	0.4770	0.074*
01	0.5999 (3)	1.4499 (2)	0.06736 (5)	0.0374 (3)
H1	0.5041	1.5251	0.0464	0.056*
O2	0.7029 (3)	1.2789 (2)	-0.01126 (4)	0.0363 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0262 (7)	0.0246 (8)	0.0319 (8)	0.0035 (6)	0.0022 (6)	0.0044 (6)
C2	0.0306 (8)	0.0301 (8)	0.0352 (9)	0.0100 (7)	0.0022 (6)	0.0046 (6)
C3	0.0274 (8)	0.0291 (8)	0.0358 (9)	0.0071 (6)	0.0010 (6)	0.0042 (6)
C4	0.0309 (8)	0.0359 (9)	0.0347 (9)	0.0110 (7)	-0.0009 (6)	0.0067 (7)
C5	0.0300 (8)	0.0306 (8)	0.0318 (8)	0.0104 (7)	-0.0016 (6)	0.0032 (6)
C6	0.0294 (8)	0.0295 (8)	0.0334 (8)	0.0095 (7)	-0.0032 (6)	0.0030 (6)
C7	0.0311 (8)	0.0301 (8)	0.0335 (8)	0.0102 (7)	-0.0021 (6)	0.0033 (6)
C8	0.0311 (8)	0.0301 (8)	0.0342 (8)	0.0098 (7)	-0.0023 (6)	0.0040 (7)
C9	0.0327 (8)	0.0335 (9)	0.0347 (9)	0.0096 (7)	-0.0019 (7)	0.0051 (7)
C10	0.0351 (9)	0.0342 (9)	0.0347 (9)	0.0109 (7)	-0.0010 (7)	0.0061 (7)
C11	0.0415 (10)	0.0459 (11)	0.0433 (10)	0.0103 (8)	0.0025 (8)	0.0147 (8)
C12	0.0554 (12)	0.0499 (11)	0.0450 (11)	0.0127 (9)	0.0035 (9)	0.0192 (9)
01	0.0442 (7)	0.0364 (7)	0.0367 (6)	0.0193 (5)	0.0013 (5)	0.0060 (5)
O2	0.0453 (7)	0.0357 (7)	0.0307 (6)	0.0143 (5)	-0.0012 (5)	0.0053 (5)

Geometric parameters (Å, °)

C1—02	1.2543 (19)	С7—Н7В	0.9900
C1—O1	1.2881 (19)	C8—C9	1.524 (2)
C1—C2	1.473 (2)	C8—H8A	0.9900
C2—C3	1.316 (2)	C8—H8B	0.9900
С2—Н2	0.9500	C9—C10	1.524 (2)
C3—C4	1.496 (2)	С9—Н9А	0.9900
С3—Н3	0.9500	С9—Н9В	0.9900
C4—C5	1.527 (2)	C10—C11	1.518 (2)

supporting information

C4—H4A	0.9900	C10—H10A	0.9900
C4—H4B	0.9900	C10—H10B	0.9900
С5—С6	1.525 (2)	C11—C12	1.523 (2)
С5—Н5А	0.9900	C11—H11A	0.9900
C5—H5B	0.9900	C11—H11B	0.9900
C6C7	1 522 (2)	C12—H12A	0.9800
С6—Н6А	0.9900	C12H12B	0.9800
C6 H6B	0.9900	C12 $H12C$	0.9800
	1.524(2)	01 H1	0.9800
C_{7} H_{7}	1.324(2)	01—111	0.8400
$C/=\pi/A$	0.9900		
02 - C1 - 01	123 37 (14)	H7A—C7—H7B	107 7
$0^{2}-C^{1}-C^{2}$	129.37(11) 119.24(14)	C9 - C8 - C7	113 34 (13)
01 - C1 - C2	117.24 (14)	C9 C8 H84	108.9
$C_1 = C_1 = C_2$	117.30(15) 122.01(15)	C7 C8 H8A	108.9
$C_3 = C_2 = C_1$	122.91 (13)	$C_{1} = C_{0} = H_{0}$	108.9
$C_3 = C_2 = H_2$	110.3		108.9
C1 - C2 - H2	118.5	$C = C \delta = H \delta B$	108.9
$C_2 = C_3 = C_4$	125.30 (15)	H8A - C8 - H8B	107.7
С2—С3—Н3	117.4	C8-C9-C10	113.76(13)
C4—C3—H3	117.4	С8—С9—Н9А	108.8
C3—C4—C5	112.03 (13)	С10—С9—Н9А	108.8
C3—C4—H4A	109.2	С8—С9—Н9В	108.8
C5—C4—H4A	109.2	С10—С9—Н9В	108.8
C3—C4—H4B	109.2	H9A—C9—H9B	107.7
C5—C4—H4B	109.2	C11—C10—C9	113.50 (14)
H4A—C4—H4B	107.9	C11—C10—H10A	108.9
C6—C5—C4	113.32 (13)	C9—C10—H10A	108.9
С6—С5—Н5А	108.9	C11—C10—H10B	108.9
С4—С5—Н5А	108.9	C9-C10-H10B	108.9
C6—C5—H5B	108.9	H10A—C10—H10B	107.7
C4—C5—H5B	108.9	C10-C11-C12	113.18 (15)
H5A—C5—H5B	107.7	C10-C11-H11A	108.9
C7—C6—C5	113.10(13)	C12—C11—H11A	108.9
С7—С6—Н6А	109.0	C10-C11-H11B	108.9
C5-C6-H6A	109.0	C12—C11—H11B	108.9
C7 - C6 - H6B	109.0	H11A_C11_H11B	107.8
C5-C6-H6B	109.0	C11 - C12 - H12A	109.5
HEA CE HEB	107.8	C_{11} C_{12} H_{12R}	109.5
C6 $C7$ $C8$	113 85 (13)	$H_{12A} = C_{12} = H_{12B}$	109.5
C_{0}	119.05 (15)	$\begin{array}{cccc} \text{III} & \text{CI2} & \text{III2D} \\ \text{CI1} & \text{CI2} & \text{HI2C} \\ \end{array}$	109.5
C_{0} C_{1} H_{1}	100.0		109.5
C_{0} C_{1} H_{1} H_{2}	108.8	H12A - C12 - H12C	109.5
	108.8	H12B - C12 - H12C	109.5
С8—С/—Н/В	108.8	CI-OI-HI	109.5
02 - C1 - C2 - C3	-178 37 (15)	C5—C6—C7—C8	-179 36 (13)
01 - C1 - C2 - C3	1.9 (2)	C6-C7-C8-C9	179 97 (13)
C1 - C2 - C3 - C4	179 24 (14)	C7-C8-C9-C10	179.96 (13)
C2-C3-C4-C5	-120.08(17)	C8-C9-C10-C11	178.76 (14)

supporting information

C3—C4—C5—C6 C4—C5—C6—C7	-174.01 (13) -178.05 (13)	C9—C10—C11—C12	176.92 (15)	
				-

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	D····A	D—H…A
01—H1…O2 ⁱ	0.84	1.80	2.6319 (15)	170

Symmetry code: (i) -x+1, -y+3, -z.