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marek.nowicki@put.poznan.pl (M.N.); paulina.blaszkiewicz@put.poznan.pl (P.B.)

7 Institute of Mechanical Technology, Poznan University of Technology, 60-965 Poznań, Poland;
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Abstract: The fascinating tribological phenomenon of carbon nanotubes (CNTs) observed at the
nanoscale was confirmed in our numerous macroscale experiments. We designed and employed CNT-
containing nanolubricants strictly for polymer lubrication. In this paper, we present the experiment
characterising how the CNT structure determines its lubricity on various types of polymers. There is
a complex correlation between the microscopic and spectral properties of CNTs and the tribological
parameters of the resulting lubricants. This confirms indirectly that the nature of the tribological
mechanisms driven by the variety of CNT–polymer interactions might be far more complex than ever
described before. We propose plasmonic interactions as an extension for existing models describing
the tribological roles of nanomaterials. In the absence of quantitative microscopic calculations of
tribological parameters, phenomenological strategies must be employed. One of the most powerful
emerging numerical methods is machine learning (ML). Here, we propose to use this technique, in
combination with molecular and supramolecular recognition, to understand the morphology and
macro-assembly processing strategies for the targeted design of superlubricants.

Keywords: carbon nanotubes; nanolubricants; machine learning

1. Introduction

The element carbon displays exceptional diversity in atomic 3D-arrangement-driven
nanoarchitectures (Figure 1) [1,2]. Structures that rely on C-sp2+e hybridisation, where
e = 0 (graphene) . . . 1 (diamond), are frequently controllable and, thus, transferable to
macroscale materials possessing a one-of-a-kind combination of superb physicochemical
properties [3,4]. One of the most intriguing phenomena that has been observed for carbon
nanoparticles as the tribo-active components (and their formulations) at the interface of
various tribo-pairs is the vanishing/ultra-low (typically less than 0.01) coefficient of friction
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called superlubricity [5–7]. Here, (i) sp2-carbons, that is layer-structure carbons with the
most eminent graphite and its structural component graphene, (ii) sp2+e diamond-like,
onion-like, and fullerene-like carbons, carbon nanotubes (CNTs), and (iii) sp3-carbons,
that is nanocrystalline diamonds, served as the solid lubricants [8–10]. Importantly, nu-
merous carbon nanoparticles can be amalgamated with functional liquids to obtain novel
nanofluids, that is stable nanodispersions of synergetic, thus exceptional, characteristics
upon friction [11–15]. As for graphene, graphite, and CNTs themselves, superlubricity is
attributed to the formation of atomically incommensurate contact between (variously sepa-
rated) carbon nanolayers attached to the tribo-pairs. Hence, the lateral force “felt” by the
atoms in the interface during sliding can be eradicated by the corresponding atom. The key
disadvantage is that the structural (solid phase) superlubricity of carbon nanoparticles
strongly depends on the surface perfection/crystallinity and on the given environment(s),
such as surface defectiveness, contamination, temperature, humidity, and the velocity of the
tribo-pairs [16]. Furthermore, this phenomenon has so far been observed predominantly at
the nanoscales and microscales, while its translation into everyday life applications is yet
to be achieved [7,17].

Figure 1. Overview of carbon allotropes that have so far been proposed as nanolubricants.

In a related effect, the ultra-low friction of water in carbon nanochannels has been
observed [18–21], and the concept of fluctuation-induced quantum friction was proposed
in this context [22]. This showed that friction results not only from the static roughness of
the solid surface, but also from the coupling of molecular water fluctuations to electronic
excitations within the solid. This mechanism might also contribute to the superfluidity
effect. A solid-state analogue of such molecular to electronic fluctuations’ coupling occurs
at the surface of a topological insulator and leads to the formation of a plasmon–polaron
collective mode, a hybrid of the phonon and plasmon excitations [23].

The tribological mechanisms induced by carbon nanomaterials (CNMs) can be directly
observed in detail, mostly only under the idealised conditions of atomic and microscale
experiments. Scaling up these experiments to the friction components used in machines
produces new effects, which completely change the friction conditions, an example of
which is the non-controlled geometrical position of strongly anisotropic particles such
as CNTs or other CNMs [6,10]. The critical impact of the CNMs’ geometrical position in
relation to the surface sliding velocity can further be used to produce controlled-friction
nanofluids—instead of common lubricants. Fluids allowing for a controlled switch from a
low to high coefficient of friction (COF) could bring innovative elements to the machine
design [24].
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In our macroscale experiments, we showed that CNTs combined with liquids can
considerably decrease friction [25–29]. This takes place either by lubricating the nanofluid
films or forming interface molecular layers, both of which yield superlubricity. In particular,
CNTs have emerged as powerful tribo-active nanomaterials that have high-aspect-ratio
coaxial cylindrical graphene walls—hence, they are atomically smooth. Indeed, theoret-
ical computations predict that perfectly crystalline multiwalled CNTs (MWCNTs) could
become the “smoothest cylinder-in-cylinder bearings”. This behaviour was confirmed at
the nanoscale by suppressing the stick–slip motion for double-walled CNTs [30,31]. In that
experiment, the walls were in incommensurate contact. Nevertheless, no clear relationship
can yet be found between carbon nanoparticles at the nanoscale to microscale morphology
levels and the surface physicochemistry with the tribological parameters observed for
macroscale polymer–metal/polymer–polymer surfaces. In order to ensure the real-life per-
formance of this rising new class of nanolubricants, they need to be taken from molecular
design to the macroscale. However, to date, most tribological tests have not been conducted
via the properties-by-design approach.

Our experimental results indicate the general complexity of the tribological processes
induced by the presence of CNTs in lubricants. We believe that, despite purely mechanical
actions such as surface coverage (graphene), CNTs may also produce the following effects:
(i) transfer of energy revealed in single-asperity contacts, in particular tribo-electrons and
heat; (ii) tribochemical impact, for example interactions with common oil additives such as
anti-wear additives, which lead to the activation of zinc dithiophosphate (ZDDP) [28,29];
(iii) preventing lubricant molecules from being arranged in symmetrical superstructures,
thus reducing stick–slip vibrations according to the theory of shear-induced vibrations [27];
and (iv) in situ modifications of CNMs in the friction process, for example CNTs due to
mechanical stress—and hence, graphene production. It is worth noting all of the above-
mentioned effects, and we strongly believe that there are other specific carbon-based
nanolubricant effects not yet found, which can occur simultaneously, even if only trace
amounts of CNMs have been introduced into the lubricant [27]. It is therefore clear that
while studying the details of the tribological roles of nanoparticles is extremely impor-
tant, we must simultaneously accept that quantitative calculations of friction for machine
parts will not be possible in a predictable time. Moreover, contrary to the classical lu-
bricants such as greases consisting of various oils and thickeners (whose applicability in
defined friction conditions is part of the general knowledge on tribology and was studied in
detail [32–36]), the application of CNMs still delivers unpredictable and frequently con-
tradictory experimental results [37–41]. Therefore, there is an urgent need to test a new
approach to the application-tailored design of nanolubricants that is based on machine
learning algorithms (MLAs) [42,43].

In this paper, we propose the structure of a numerical model that includes MLAs
to predict the COF for a sliding tribo-pair lubricated with defined virtual nanolubricants
under defined operating conditions. Comparing different COFs, predicted via ML for a
variety of virtual nanolubricants, allows the potentially most promising ones to be chosen.
Specifically, we propose an MLA that evaluates the real experiment data obtained in our
numerous macroscale friction experiments, that is those conducted in a tribometer, roller
bearings, and fired engines where the substantial tribological impact of CNTs resulted in
reduced friction, wear, and vibrations. We tested CNTs introduced into conventional grease
(labelled CNT-enriched grease) or used solely as a liquid thickener (CNT-based grease).

Our ultimate goal was to come up with a numerical engineering tool to use for an
application-tailored design for nanolubricants. Importantly, this approach seems to be the
most complex among the currently existing artificial intelligence applications for scanning
electron microscopy (SEM) image processing [44] and can be regarded as modules included
in our model.
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2. Characterisation of Materials—Structure of the Input Data for Machine Learning

The different potential of CNM friction-related applications generally grows from a
twofold approach. This is based on the dispersion of certain amounts of CNMs in oils
and other liquids when they are added to conventional greases (labelled CNT-enriched
grease) or when the thickening ability of CNTs is used to produce grease from oils or other
liquids (CNT-based grease). Nevertheless, we address the manufacture of solid CNM
layers and CNM composites, including polymers or sintered metal composites as well.
These applications have been experimentally tested, and some are reported in this paper in
detail. Figure 2 shows the general idea behind these experiments, while Table 1 presents
the CNTs that were selected for the experiments. The justification for selecting these CNTs
was the need to analyse a large number of types, produced by various manufacturers.
Thanks to this, we were able to test a wide range of CNT morphologies revealing the
variety of tribologically relevant interactions. It is worth noting that our experiment could
easily be extended by, for example, adding carbon allotropes other than CNTs, adding
decorated or intentionally functionalised CNTs, or even more complex hierarchical CNM-
based structures. The functional tests of nanolubricants are described and discussed in
Section 3.

In general, a high BET surface area calculated from the controlled isotherm gas ad-
sorption on the tested material surface according to the Brunauer–Emmett–Teller theory is
intuitively characteristic for small-diameter CNTs, especially single-walled CNTs (SWC-
NTs), and corresponds to the high material reactivity. Therefore, the BET surface area may
be one of the essential parameters needed to predict nanolubricant properties. Although, it
is not the only decisive factor, for example sample A with MWCNTs revealing a specific
surface area of ca. 304 m2/g acted as an oil thickener incomparably more efficiently than
CNT batch J, which contained SW/DWCNTs and had a significantly higher BET surface
area of 340 m2/g (Table 1). It is worth noting that the BET values measured for two batches
of the same type of CNTs might vary significantly (compare samples B and C in Table 1),
whereby no significant differences in their tribological behaviour were observed.

Figure 2. General idea of manufacturing nanolubricants and testing CNTs (only red-framed contents
are discussed in this paper in detail as case-studies).
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Table 1. CNT properties: length, diameter, and BET surface (measured experimentally).

Color
CNT

Manufacturer Label
Diameter * Length * BET

Sample [nm] [µm] [m2/g]

A Nanocyl, Sambreville, Belgium NC 7000 9.5 1.5 300

B Nanocyl, Sambreville, Belgium NC 7000 purified (Al2O3) batch 1 9.5 1.5 295

C Nanocyl, Sambreville, Belgium NC 7000 purified (Al2O3) batch 2 9.5 1.5 213

D Cheap Tubes Inc., Grafton, VT, USA MWCNT > 95% <8 0.5. . . 2.0 273

E Cheap Tubes Inc., Grafton, VT, USA MWCNT > 95% <8 10. . . 30 261

F Cheap Tubes Inc., Grafton, VT, USA MWCNT > 95% >50 0.5. . . 2.0 110

G Cheap Tubes Inc., Grafton, VT, USA MWCNT > 95% >50 10. . . 20 84

H NanoLab, Waltham, MA, USA PD15 L1-3 15 1. . . 3 231

I NanoLab, Waltham, MA, USA PD15 L5-20 15 5. . . 20 220

J Cheap Tubes Inc., Grafton, VT, USA SWCNT/DWCNT 60% 1–4 5. . . 30 340

* values declared by manufacturers.

2.1. SEM Microscopy

CNTs are easily observable under high-resolution SEM magnified at 100,000× and
higher. CNT images allow for a preliminary assessment of CNT purity and finding any
defects of the crystal lattice (visible as elbows) and the art of spaghetti-like entanglement.
We intentionally show micrographs obtained at 2000×, 10,000×, and 100,000× magnifi-
cation, revealing fundamental differences in the form(s) of the agglomerates, which are
usually neglected in the classical approach to studying the formation of nanolubricants
(see Figure 3). Thin and long SWCNTs tend to form aligned fibrous-like architectures. On
the contrary, thick MWCNTs produce spatially disordered, entangled networks [40,41,45].
Assuming that the formation of CNT agglomerates results from the physicochemical prop-
erties, especially from the surface energy of each type of nanotube, we hypothesised that
the ML process would be able to find a non-trivial, hidden correlation between the form of
the agglomerates and the friction-related properties.

2.2. Raman Spectra

In the case of CNTs, the Raman spectra are characterised by several spectral features
attributed to various vibration modes [46–48]. We start with a low-wavenumber range of
the Raman spectrum (below 350 cm−1), the radial breathing mode (RBM) is observed for
SWCNTs). For all types of CNTs, graphene, and even amorphous carbon (soot), the intensity
ratio ID/IG can be calculated (Figure 4). This value allows the assessment of CNM purity.
The ID/IG ratio is an indicator of the graphitic perfection understood as the content of
sp2-hybridised carbon atoms. A comparison of the spectroscopic features shows that the
carbon materials can be divided into CNTs, graphite-like CNMs, and amorphous carbon
(carbon black). In the group of CNTs, CNT J (SWCNT 40%/DWCNT 60%) is the most
distinctive, for which the RBM modes are recorded, and the ID/IG ratio is the smallest
(0.081). This also confirms the most perfect graphitic structure. For samples CNT I, CNT G,
and CNT F, the ID/IG ratio is relatively comparable at ca. 0.54, and for sample CNT H, it
is slightly higher, that is 0.724. The ID/IG ratio for the other CNTs is considerably above
1, reaching nearly 1.6 for CNT A. Moreover, regularity can be observed in the CNTs, that
is longer CNTs are characterised by a lower ID/IG ratio than those observed for shorter
CNTs—the exceptions are the samples CNT F and CNT G, for which the difference is
negligible. Furthermore, a comparison of samples CNT A, CNT B, and CNT C shows that
the purification process improves the graphitisation degree (a lower ID/IG ratio).
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Figure 3. Comparison of selected CNM bulk material used for nanolubricant formulation: SEM
images obtained at various magnification for the as-produced CNT powders.

MLAs can test spectra for the presence of RBM peaks, the D/G value, and impurities
observed at 3000 cm−1. In a more simplified version, only the D/G value is analysed.
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Figure 4. Comparison of Raman spectra for pure SW/DWCNTs and common MWCNTs of low
purity, additional carbon black (CB) and graphene signals for reference; crystallite size La calculated
by using the equation [49] where λ is the laser line wavelength in nanometres.

3. Tribological Tests of CNT-Based Nanolubricants

The results of exploratory tribological tests, in some configurations, confirm the ex-
traordinary lubricating properties of CNT-based greases. We are aware of the limitations
resulting from the restrained scope of the presented results; however, the excellent tribolog-
ical properties obtained for some lubricants prompted us to debate their source.

3.1. CNT-Based and CNT-Enriched Greases in “Block-on-Ring” Tribometers

In the first experiment (Figure 5), various CNT-based greases were prepared using
high-shear mixing to disperse CNTs in CASTROL RS 10W/60 motor oil, propylene gly-
col (research-grade purity), and distilled water. The CNT A and CNT B nanolubricants
were compared to Mobil Mobilux EP2 grease, which was used as a reference. There were
15 × 10 × 8 mm blocks machined from commercially available polymer (polyethylene,
polyoxymethylene, and polyamide-6; see Figure 5 for details) plates mounted in the tri-
bometer and pressed against a rotating steel ring (ground steel type AISI4130, Sa ≈ 0.5 µm).
The dimensions of the ring counter-sample were: diameter 45 mm and width 12 mm.
Pressure was applied gradually during the first seconds of the tribometer run and set
to 750 N for all test configurations. The ring speed was kept constant at 115 rpm for all
30 min testing periods for each sample set, which were only lubricated with 0.1 mL of
grease at the beginning of the test. The COF was measured to compare the lubricants.
The 3D topography of the initial and worn surfaces were measured to estimate wear, thus
both volumetric wear (volume and depth of the friction scar on the polymer block) and
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multi-parameter worn surface roughness analyses were conducted. The ISO 25178 height
parameters, volume characteristics of the Abbott–Firestone curves, and anisotropy were
used in this study of the topography. On this basis, we estimated the correlations to CNT
morphology, and we tried to find parameters suitable for machine learning (ML).

In most cases, the COF value increased along with the test time. The CNT-based grease
produced from motor oil thickened with purified B CNTs turned out to be a very efficient
lubricant for polyamide-6 (PA6), a reliable lubricant for polyethylene (PE), and partially
acceptable as a lubricant for polyoxymethylene (POM). The CNT A slurry formed in water
was unsuitable for the lubrication of polymers, especially POM and PA6, that is it forced the
polymers to melt, and CNTs were introduced into the polymers, producing a uniform layer
on the counterpart. It is possible that, after cooling down, such a CNT–polymer composite
may reveal certain desirable properties. Both pristine and purified CNTs in glycol showed
an ultra-low COF in the first few minutes of the sample run; however, the COF remained
stable for the next few minutes only for purified B CNTs. The pristine CNTs forced a rapid
and unacceptably high increase in the friction—this behaviour might have been the effect
of high Al2O3 hardness. Less probable, but still possible, this effect is the result of the
unintended surface modification of CNT B with hydroxyl radicals, thus making it more
compatible with the polyamide surfaces.

An additional factor important for the friction and wear of polymer–steel friction pairs
was the roughness of the rubbing surfaces. An analysis of the roughness parameters of the
technological surface (before the test) and of the worn surface (after the test) can be helpful
in determining the level of wear and can be a starting point for the selection of the optimal
characteristics to be used in ML. Figure 5 shows the surface of the selected polyamide block
after the wear test.

Generally, changes in all height parameters indicate wear. The average height of the
roughness parameters (Sa, Sq) increased upon testing. This means that a larger number
of high peaks and deep valleys appeared on the worn surface compared to the native
technological surface. This was confirmed by parameters characterising the maxima of
the surface topography, that is Sp, Sv, and Sz. More detailed information comes from
comparing the skewness and kurtosis. The initial surface has an Ssk of less than 0, which
means that the surface is very flat, and most of the material is concentrated around the
valleys. An increase in the Ssk value due to the wear test to a value above 0 (0.121) proves
that the ratio of the share between the peaks and valleys of the surface has changed.
The share of peaks increased, which allows us to assume that the basic wear mechanism
was abrasion in the form of micro-cutting. The roughness of the peaks of the steel counter-
samples mainly “punched out” the core of the polymer material without significantly
interfering with the valleys. The surfaces before and after the wear test are characterised by
a kurtosis value above 3. Such surfaces are characterised by the presence of inordinately
high peaks/deep valleys. The conclusions resulting from the analysis of Ssk and Sku
coincide with the observations of the Abbott–Firestone curve characteristics. ISO 25178
volumetric parameters were used in this part of the tests. In fact, no changes in the volume
parameter of the valleys were observed, which confirmed the earlier conclusion about the
wear being concentrated in the core of the material. As for the material core, an increase
in both parameters was observed (Vmc and Vvc). The increase in the Vvc parameter was
particularly clear (approximately 75%). More free space in the material core means loss due
to wear and confirms the cutting nature of the destruction.
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Figure 5. Design and results of the first, “block-on-ring” tribometer experiment (roughness nomen-
clature: Sa (average roughness), Sq (root-mean-squared roughness), Sp (max peak height), Sv (max
valley depth), Sz (max height of surface), Vmp (peak material volume), Vmc (core material volume),
Vvc (core void material), Vvv (valley void volume)).

The last part of the topographic investigation was an analysis of the surface geometric
isotropy. The rose plot for the initial surface shows that the surface is characterised by a
relatively low anisotropy of 42.6% (100% minus the measured isotropy). The frictional inter-
action made a significant change in this aspect. The worn area is already highly anisotropic,
at a level of 84.6%. Summarising the topographic studies, it seems that the parameters
describing the loss of the material core and the size of the peaks most appropriately describe
the wear nature of the surface of the polyamide block.

In the second stage, we tested CNT-enriched greases. Regular lithium soap Mobil
Mobilux EP2 grease was used as the base for a total of nine nanolubricants formulated by
adding CNTs of various morphologies (CNT A. . . J; see Table 1). The CNT mass concen-
tration, maintained constantly at 0.01% for this trial, was too low to reveal any relevant
thickening function, although significant differences in lubricity were observed depending
on the CNT morphology. The ”block-on-ring” tribometer was used for these CNT-enriched
lubricity tests, in which various polymer blocks were pressed against the rotating steel ring
(Figure 6). Tests were conducted using 100Cr6 steel rings with a diameter of 35 mm and a
width of 9 mm, against which 15.7 × 10 × 6 mm polymer blocks were pressed. The con-
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stant load was 500 N, and the linear velocity was kept constant at 0.29 m/s (at 160 rpm).
The sliding distance during each 60 min-long test was approximately 1000 m. The greases
were applied only at the beginning of the test—an amount of 0.2 mL.

Figure 6. COF measured in a “block-on-ring” tribometer for various polymers sliding on a steel
ring; graphs and corresponding COF values for polyethylene, polyoxymethylene, and polyamide.
Comparison of CNT friction-reducing potential tests conducted for various CNT types added to the
reference lithium grease in a mass concentration as low as 0.01% (COF—first 10 s and COF—last
5 min calculated as a mean value).

All CNT lubricants had lower friction coefficients than the reference lubricant when
tested on PE (Figure 6). However, the results showed particularly good tribological prop-
erties of the grease with the addition of CNT A, which failed in the first trial (Figure 5),
in which concentrations as high as 3 wt.% were tested. This could be explained by the
CNTs and, thus, a Al2O3 concentration ten-times lower than in the preliminary test, which
confirms the complexity of the CNTs’ tribological roles and justifies the use of MLAs for the
efficient design of nanolubricants. For CNT A at a concentration as low as 0.01%, the COF
was stabilised at an exceptionally low level of 0.01–0.015, which is significantly lower than
for the other greases, including CNT B. Contrary to the PE tests, the clear impact of the
CNT diameter was observed on POM, where CNT F, which had the thickest diameter in the
trials of ca. 50 nm, clearly outperformed any other CNTs, as well as the reference grease.



Nanomaterials 2022, 12, 1765 11 of 17

Care should be taken when formulating unequivocal conclusions regarding the time-
limited experiments presented here, although the ability of CNTs to formulate ultra-low
friction nanolubricants is obvious. At this stage, we believe that ML could help find
the governing correlations that would answer the question about which CNT features
determine their lubrication capabilities. Again, the industrial application potential of both
CNT-based and CNT-enriched greases is extremely vast due to the unique time stability of
both nanolubricants.

3.2. CNT-Based Nanolubricants in Roller Bearings

Figure 7 shows a roller bearing test stand, with up to eight bearings mounted on
a common shaft driven at a controlled speed, as well as exemplary SEM images of the
tested materials.

Figure 7. Bearing test bench and results obtained for roller bearings lubricated by reference lithium
grease enriched with 0.1% of CNT A (top row); new ball bearing outer races and lubricated by
reference lithium grease without CNT and with 0.5% CNT A after 1000 h of tests (bottom row).

The test performed on roller bearings lubricated by lithium grease enriched with
purified CNTs where the Al2O3 catalyst was removed (sample B) delivered surprising
results. Purified CNT B significantly increased wear, thus clearly promoting the formation
of pockets; simultaneously, the wear of the roller bearing lubricated by grease containing
pristine CNT A was very moderate. After a few hundred hours of the bearing run, grey
powder was rejected from the roller bearing with CNT A and sprayed around. The Al2O3
nanospheres used for CVD CNT growth and partly remaining in the CNT A structure
were separated in the friction process and converted into planar sheets (see Figure 7).
Simultaneously, the ball bearing mounted on the same shaft and lubricated with the same
grease showed no Al2O3 separation. We concluded that the effect of the Al2O3 nanoseed
separation strongly depended on the friction conditions, in this case on the geometry
of the tribological contact. However, we were not able to precisely predict the Al2O3
nanosphere’s behaviour for any possible friction condition [50]. Even more significant
effects of Al2O3 were observed on the surface of the polymer, where these hard nanospheres
produced adverse effects, which rapidly destroyed the polymer’s surface when supplied
with grease over a certain concentration (compare Figure 5). Again, having an incomplete
understanding of the co-existing tribological mechanisms could result in failures in the
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classical approach to the design of nanolubricants; thus, the development of ML methods
becomes fully justified.

4. Neural Network for the Nanolubricant Design

The correlation matrix presents some obvious relations, that is that the CNT diam-
eter and BET are strongly correlated, and this is in accordance with the theoretical cal-
culations [51], which thus confirms the matrix’s principal usefulness (Figure 8). When
analysing the oil-thickening and grease-formation abilities of CNTs, it becomes clear that,
against some intuitive predictions, the CNT diameter, length, and even BET surface do not
matter substantially. Therefore, we were unable to predict the lubricating performance of
such a grease via similar analysis of any of the tested CNT-characterising parameters. It is
thus obvious that these CNT characteristics show no significant correlation to any friction
and wear parameter from the wide range of parameters that were measured. We strongly
believe that MLAs will be able to discover complex multi-parameter relations, which will
then allow accurate predictions to be made for the friction and wear behaviour of CNTs of
a defined morphology working under defined friction conditions.

Figure 8. Correlation matrix for CNT diameter and length, BET surface, ID/IG ratio calculated for
the CNTs’ Raman spectra, and COF reduction (tribometer) for all analysed plastics: polyethylene (a),
POM-C (b), and polyamide PA6 (c).

The first milestone we targeted in our project was to build a model that would allow us
to predict the COF for a given nanolubricant under certain friction conditions (e.g., pressure,
velocity, temperature) and for defined rubbing surfaces (e.g., material, roughness). The COF
should be predicted based on a detailed characterisation of the CNTs (e.g., diameter, length,
BET, and more specific test results) and on the continuous phase of the nanolubricant,
which is usually the liquid in which the CNTs should be dispersed.

It is without a doubt difficult to build a single deterministic model that would consider
all of the above-mentioned parameters. On the one hand, our expertise knowledge and
experience allowed us to assess, via analysing certain functional relations, the quality of
the material being tested; yet, on the other hand, the compiled results of individual studies
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turned out to be, simultaneously, completely unpredictable. It is worth noting that applying
CNMs in lubrication is an emerging science; thus, a large part of the above-mentioned
functional relations has not yet been discovered [27]. Hence, the idea of building a database
using expertise knowledge, which will then be used to train selected MLAs with particular
emphasis on artificial neural networks seems to be, undoubtedly, a promising solution.
Due to the large variety of data at our disposal, that is SEM images, 3D topography of
the friction track, the set of coefficients (e.g., BET or IGC parameters), and diagrams (e.g.,
Raman spectra or BET isotherms), we decided that it would be better to start the analyses
separately for each of these types of data, particularly since, to the best of our knowledge,
no such solutions have been proposed so far for this specific material in the literature.

There are ready-made solutions in the form of convolutional neural networks, such
as the VGG16 [52], ResNet [53], or GoogleNet [54] networks, for input data in the form of
images. Similarly, a feed-forward network can typically be intuitively constructed for a
set of coefficients. It will undoubtedly be a challenge to build a neural network that will
process charts such as Raman spectra or Abbott–Firestone curves, for example. Each of the
data types presented in this paper can therefore be considered independently—there are
similar solutions for selected types of images or sets of parameters, for example:

• Images of the topography of a friction track on the block have visually similar proper-
ties to maps, so trying to apply similar ML methods seems to be appropriate, that is
mainly deep neural networks. Such an example solution can be found in, for exam-
ple, [55].

• Microscopic images, such as SEM, TEM, or AFM, are used in many fields of science, but
intuitively, we can immediately associate them with the field of medicine, particularly
in cancer research studies. Here, solutions based on deep neural networks can also be
found, e.g., [44,56,57].

• It seems that the easiest task would be to design an artificial neural network that would
determine the COF on the basis of all kinds of parameters describing nanotubes, such
as the BET area or ICG. The feed-forward neural network concept immediately comes
to mind for such defined numerical inputs.

• Ultimately, nanotubes can be characterised via different graphs, such as a Raman
spectrum or nitrogen adsorption isotherm, which we believe will be the greatest
challenge for MLAs. As we have already mentioned, the most reasonable approach
at this point is to use images of these graphs, as was done in, for example [58–61],
or graphs generally in [62]. Another approach may be to create a feed-forward or
convolutional neural network where pairs of coordinates marked on such a graph
would be given as the input for this network. Perhaps the use of a convolutional
neural network, where the matrix of these coordinates is treated as an image, would
also be appropriate. We found no such solutions in the literature; thus, a study of such
charts would be interesting.

Therefore, for individual data classes (images, charts, sets of coefficients), we were
able to find independent solutions via a review of the literature and our own research
experience. However, with such an extensive database, it seems that such solutions are
not sufficient, as they do not consider all of the above types of data simultaneously, which
distorts our main concept. Constructing a huge neural network that would process all
types of data simultaneously seems to be impossible for several reasons. First, the structure
of such a neural network would require enormous computing power, which may turn out
to be impossible to implement. Second, if we had a huge database of, for example, images
and if we wanted to show the neural network via as many patterns as possible during
training, this could lead to a drastically long training time, which would not be counted in
days or weeks, but possibly in months.

Therefore, we developed a general design of the ensemble model in which the artificial
neural networks as described above constitute the so-called weak learners (Figure 9).
Each such weak learner is thus supposed to solve a smaller problem on the way towards
determining the COF, and then, in the standard approach, the meta-model can work in
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two ways; namely, it can be a simple average or a weighted average from the outputs of
individual neural networks, or it can be an independent model that will determine the COF
in an implicit way (non-deterministically). Unfortunately, in our case, the use of the average
or weighted average will not necessarily work—an example is a low ID/IG calculated
from the Raman spectrum, which does not necessarily provide meaningful information.
A low ID/IG ratio can be obtained for CNTs with poor graphitisation, which mostly turned
out to be an efficient thickener and lubricant; unfortunately, the same ID/IG ratio may
characterise soot, which is entirely unsuitable for a thickening and lubricating function.
On the other hand, if a low ID/IG is accompanied by a high BET, it becomes interesting,
as the analysed material is not soot, but has a strongly developed surface.

Figure 9. The general concept of the machine learning algorithm to predict the coefficient of friction
and nanolubricant design.

As an alternative to the above ensemble model, considering all parameters of nanoma-
terials that are commonly recognised as important, we can imagine an extremely simplified
model based only on information about the length and diameter of the nanotubes and their
full Raman spectrum. These are very readily available data; therefore, such a model could
be attractive for use in industrial applications while possibly being satisfactorily accurate
for a relatively narrow range of the most common input parameters.

There are three types of ensemble models: bagging (built from homogeneous weak
learners joined in parallel), boosting (built from homogeneous weak learners joined se-
quentially), and stacking (built from heterogeneous weak learners joined in parallel) [63,64].
In our case, we can interpret the type of ensemble in two ways, namely without delving
into the structures of individual neural networks, we could say that the weak learners are
homogeneous because they constitute the same group of classifiers; on the other hand,
considering each neural network as a different structure (e.g., a convolutional network has
a completely different structure to the feed-forward network), we could treat our model
as being of the stacking type. The choice of meta-model is also important, apart from the
selection of individual weak learners, and since weak learners are neural networks, a neural
network can obviously be used as a meta-model. Other decision models, such as decision
trees or gradient-boosted decision trees (XGBoost [65]), should also be considered.

5. Conclusions

CNMs may induce or affect numerous tribological mechanisms that take place si-
multaneously in the lubricating contact region and, thus, reveal complex interactions. We
strongly believe that the classic approach to tribology, which relies on analytical studies
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and on describing the tribological roles of CNMs, should be continued even if, in a time
frame that is possible to predict, the results will be qualitative rather than quantitative.
In this paper, we proposed involving plasmonic interactions as one of the factors greatly
affecting the friction in nanofluids. In fact, the existing insufficiencies in the knowledge on
CNT tribology are one of the dominant reasons explaining the obvious gaps between out-
standing CNM friction-reducing properties as observed at the atomic scale and microscale
levels and the lack of large-scale industrial applications. Tribometers, bearings, and real
machine tests confirmed, once again, the great potential of CNTs for reducing friction and
provided widely unpredictable results that indeed depend on the nanolubricant composi-
tion and friction conditions. The COF and wear measured in the tribometer showed no
significant correlation to any physicochemical CNT parameter from the wide range tested
here. We thus recommend a more complex, ML-based approach to find the non-obvious
multi-parameter correlations and to enable an application-tailored design of nanolubricants
containing CNMs, especially CNTs.

This potential for industrial applications is promising for both CNT-based and CNT-
enriched CNTs due to their unlimited time stability, which is unique among nanolubricants.
Moreover, the low CNT crystallinity that turned out to be beneficial for lubricants raises the
concept of large-scale and low-priced CVD process development for specific CNT growth.
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