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Consumers’ demand for “minimally processed” products that maintain the “fresh-like”

characteristics has increased in recent years. Ultrasound (US) is a non-thermal

technology that enhancesmass and energy transfer processes resulting in improved food

quality. A new method of applying US to food without using a liquid or gaseous medium

for the propagation of acoustic waves has recently been under research. It is known as

direct contact US, since the food is directly placed on a plate where the transducers are

located. In this type of systems, the main effect is not cavitation but acoustic vibration,

which encourages mass and energy transfer processes due to the “sponge effect.”

Furthermore, as the product is not immersed in a liquid medium, the loss of hydrophilic

nutritional compounds is reduced; systems such as these can thus be more easily

implemented on an industrial level. Nevertheless, the very few studies that have been

published about these systems mainly focus on dehydration and freezing. This article

summarizes published research on the impact of direct contact US in nutritional and

organoleptic quality of food in order to assess their potential to meet new market trends.
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INTRODUCTION

In recent years, consumers are demanding safe, healthy and long shelf-life products that maintain
their “fresh-like” characteristics but without any chemical preservatives. However, this cannot
be achieved through the application of thermal technologies, which, although longer shelf-life is
possible, nutritional and quality losses are caused due to the high temperatures and long processing
time. Therefore, since the twentieth century, non-thermal food processing technologies such as
pulsed electric fields (PEF), high hydrostatic pressure (HPP), ultrasound (US), UV light, cold
plasma and irradiation (IR) have been widely investigated (1). These technologies allow extending
the shelf-life of the food but with small increase in the temperature, affecting minimally the
nutritional properties, texture, color, taste and aroma of the food, which means, that products with
similar characteristics to those of fresh food are obtained (2). However, despite consumers’ demand
for “minimally processed” products, awareness of novel technologies is still very low and there is a
lack of trust in them (3).

One of these non-thermal food processing technologies is US, and its potential to improve mass
and energy transfer processes has attracted great attention. Moreover, US is included within the
“Green Food Processing” concept proposed by Chemat et al. (4) to refer to those technologies that
allow to process food with a lower consumption of energy and water, thereby obtaining processing
methods that are more sustainable and environmentally friendly.
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In the food industry, most research on the application of high
power US (20–100 kHz, > 1 W/cm2) is focused on systems in
which a liquid or a gaseous medium (such as air, then called
airborne US) is used for the propagation of US waves (5). Most of
the applications of this technology (such as cleaning, atomization,
homogenization and emulsification, defoaming, drying, and
freezing) are based on that manner of applying US due to its
capability to produce permanent changes in the propagation
medium (6). The mechanisms of action behind these effects are
the cavitation phenomenon,microcurrents, microjets, the sponge
effect, and the primary radicals H· and ·OH, which occur in the
food matrix (Figure 1) (7, 8).

Several studies have been conducted over the last few years on
the potential of ultrasound to obtain food with greater nutritional
value and better organoleptic properties (9). This technology
favors mass and energy transfer processes, assisting i.e., the
elaboration of infusions at lower temperatures (30◦C) with a
higher content of total polyphenols (6–10 folds higher) and
anthocyanins (8–10 folds higher) (10), and red wines with a
greater content of polyphenols (11). Moreover, US also promote
the elimination of compounds naturally present in food that are
potentially harmful to human health, such as oligosaccharides
from pulses (12) or heavy metals such cadmium from edible
crabs (13), and even carcinogenic compounds such as acrylamide
from fried potatoes (14). One of the most commonly used food
preservation process is dehydration in which US application
reduces the loss of bioactive compounds and improves the color
of dehydrated products (15). In the case of freezing, in addition to
reducing processing times, the US favors the formation of small
ice crystals that, when thawed, reduce the loss of water, resulting
in a product with better texture (16, 17).

Nonetheless, consumers not only demand “minimally
processed” food, but also have great interest in functional

FIGURE 1 | Cavitation and sponge effect due to US.

food or nutraceutical ingredients that have additional healthy
benefits beyond basic nutrition (18). However, the conventional
extraction of natural food additives is quite limited due to
the high-energy cost, the use of toxic solvents or the high
consumption of water (19). US allows the extraction of bioactive
compounds in an environmentally friendly way (4) reducing the
use of solvents or with lower energetic costs. In fact, the potential
of US to improve the extraction of bioactive compounds
(such as polyphenols, carotenoids and anthocyanins) has been
demonstrated in many studies (18–25). In addition, US also
favor the extraction of functional compounds from foods that
give them specific characteristics (18, 26). Within this group
are the polysaccharides such as pectins (27, 28), gums (29),
alginate and carrageenans (30, 31) and cellulose (32) that provide
structure, stability and viscosity to the products. Finally, US also
improved the extraction of proteins used to enrich food with low
protein content or those used as functional additives to stabilize
emulsions or foams (33–35).

Therefore, US is a non-thermal technology with great
potential for the food industry and, in fact, there is already some
equipment operating in industries e.g., for extraction, cutting
soft products and filtration (36). However, there are still many
limitations that make this not always possible, and that is why
new US application systems are sought such as direct contact or
contactingUS system, in which the food sample is in close contact
with the transducer. Differently to traditional US in which the
product is immersed in a liquid, usually water, or applied to air
(airborne US), US is applied in dried conditions. In this case, the
acoustic vibrations that reach the solid matrix cause successive
compressions and expansions of the material, which behaves as a
sponge (Figure 1) (37). This mechanical stress (“sponge effect”)
may result in microcracks and microchannels in the internal
structure. Acoustic vibration can also improve energy transfer,
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as reported in different processes such as freezing, drying, etc.
(38). As indicated, the main advantage of this system is that the
loss of hydrophilic macro or micronutrients would be reduced
(39), although this point has not been specifically investigated.
In addition, it can be applied to any product without the need
to be immersed in water. However, very few studies have been
published in this field (40) and thus, this review focuses on
describing direct contact US systems and analyzing their impact
on food nutritional, quality and sensory properties.

DIRECT CONTACT US SYSTEMS

Similar to water-immersed or airborne US systems, frequency,
vibrational amplitude and power intensity are the key parameters
(5) for direct contact US. In general, low frequencies are used
(close to 20 kHz) where physical and mechanical effects are
mostly observed. However, there is not specific studies of the
effect of this parameter. Similarly, it occurs with the other
parameters. Any case, associated to them, thermal effect can
occur if high intensities are applied. This is a crucial parameter
in direct contact US which has to be considered for its scaling-
up, since it can affect product quality by losing thermosensitive
nutritional compounds (i.e., ascorbic acid) or degrading certain
pigments (i.e., anthocyanins, carotenoids) affecting negatively the
color of the food. Although US is a non-thermal technology by
definition, the US-treated product may become heated due to
friction among particles, dispersion, and the viscous absorption
that takes place when sound waves are transmitted through
food products (41), and also due to expansions and contractions
generated by the piezoelectric ceramic of the transducers (42).
Due to this, to minimize the heat emitted by the transducers, a
series of cooling systems or US ON/OFF activation protocols are
applied (43, 44).

Several systems have been developed to apply US by direct
contact in a series of different food producing processes such as
drying, freezing, etc. (Table 1). All of them have the same basic
elements; moreover, in all cases, the transducers or horns are
in direct contact with the plate (emitter) on which the samples
are placed.

Drying
Drying is a preservation process that has a great effect
on organoleptic properties and heat-sensitive nutritional
compounds such as antioxidants and vitamins (39, 59).
Numerous studies have focused on the study of US-assisted
drying of fruits and vegetables and its effect on the physical
(water activity, shrinkage, rehydration, color, porosity, among
others) and chemical (nutrients, antioxidants, vitamins) quality
of the dried product (60–62).

All the studies included in Table 1 reported that US improved
the drying rate (up to 70% in some cases), reduced drying time,
and enhanced the quality of the dehydrated food. For example,
Liu et al. (50) studied the impact of contact-US-assisted drying
(28 kHz) on the color of purple-fleshed sweet potato slices by
applying 30W and 60WUS treatments and four air temperatures
(40, 50, 60 and 70◦C). The effect of the US was more noticeable
at high temperatures, as drying times were greatly reduced: at

70◦C, time reduction was 18.7 % (30W) and 37.5 % (60W), and
the dried potato samples were brighter, redder, and less yellowish
than control. Tao et al. (54) also observed improvements in the
color (whiter values) of dried garlic assisted by US reducing
drying time by 48.5% at 60◦C. Similar conclusions have been
reported using airborne systems for carrots (63), strawberries
(64), and green peppers (65).

An important aspect to be considered in the traditional heat-
dried process is the potential loss of thermosensitive bioactive
compounds (66). Thus, the reduction of drying times by
accelerating mass and energy transfer processes minimizes the
loss of nutritional compounds. Liu et al. (51, 52) studied the
effect of direct-contact-US-assisted convective drying on total
phenolic content (TPC), flavonoids, and ascorbic acid of pear
slices by applying hot air flow (35, 45 and 55◦C) or far infrared
radiation (FIR) (100, 220, 340W). It was observed that the higher
the ultrasonic power the lower the loss in TPC: e.g., at 45◦C
and ultrasonic powers of 24 and 48W, the retention of TPC
was 14.7 and 39.7%, respectively, whereas at 220W FIR and
ultrasonic powers of 30 and 60W, the improvement compared to
control was 6.7 and 16.7%, respectively. However, no beneficial
effect of US was observed at 55◦C and 340W FIR; it even
had a negative effect as compared to control. According to the
authors, this was related to oxidation reactions, since at elevated
temperatures the tissue was more sensitive to damage; when
US was applied, associated mechanical effects could intensify
heat damage, while oxidative reactions occurred more easily
due to increased contact between phenolic compounds and
oxygen (67). Similar results were found for flavonoids when
US was applied at low temperatures (35◦C; 48W US) or at
low FIR powers (100W, 220W; 60W US), thereby leading
to increases in flavonoid content of 21.1, 45.5 and 26.6%,
respectively. However, at higher temperatures or FIR powers,
the effect of US was harmful. The effect of the US treatment on
ascorbid acid content was always positive, and increased along
with power. The highest ascorbic acid contents were observed
at 35◦C and 48W US (US samples, 42.5mg vitamin C/100 g
vs. non-US samples, 30.0mg vitamin C/100 g), and at 100W
FIR and 60W US (US samples, 265.5mg ascorbic acid/100g
vs. non-US samples, 226.1mg ascorbic acid/100 g). Another
example is that of Tao et al. (54) applying 20 kHz-US during
the drying at 60◦C of garlic slices (Allium sativum L.). Garlic
has healthy benefits associated with thiosulfinates that have anti-
inflammatory, antioxidant and antimicrobial properties (68). In
this study, the total thiosulfine content was 16% higher at an
ultrasonic intensity of 902.7 W/m2 compared to non-sonicated
samples, The TPC was also improved at 902.7 W/m2 (12 %),
while at a higher ultrasonic intensity (1,513 W/m2) the content
was even lower than control. Nevertheless, the antioxidant
capacity was very similar between non-sonicated and sonicated
samples, showing a small improvement when applying 902.7
W/m2. The application of direct contact US to food drying
systems can therefore increase the retention of thermosensitive
bioactive compounds but the treatment conditions need to be
optimized, mainly the ultrasonic power.

Finally, in the studies by Liu et al. (50, 52) it was observed that
rehydration capacity, one of the most important parameters that
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TABLE 1 | Different systems of application of US by direct contact with food.

Process US system Study Results References

Drying

Adapted from (45)

Carrot slices

US parameters:

- Frequency: 20 kHz

- Power: 100W

- Static pressure

Conditions evaluated:

- Airflow: 1 and 3 m/s

- Air temperature: 22◦C

Improvement in the drying rate

(70.0%)

Lower final moisture

(45)

Drying The same as (45)

Adapted from (46)

Carrot, apple, and

mushroom slices

US parameters:

- Frequency: 20 kHz

- Power: 100W

- Pressure static (1):

0.05 kg/cm2

Conditions evaluated:

- Airflow: 1.7–2 m/s

- Air temperature: 20

and 55◦C

Reduction of drying time (carrots:

up to three times, apples:

50.0–76.7% and mushrooms:

68.3–83.3%)

Reduction of drying time (carrots:

50.0–58.3%, apples:

66.7–233.7% and mushrooms:

50.0–75.0%)

(46)

Drying

Adapted from (47)

Apples and potatoes

slices

US parameters:

- Frequency: 20 kHz

- Power: 25 and 50, W

- Static pressure:

0.0155–0.050 kg/cm2

- Suction pressure: 10

and 20 mbar

Conditions evaluated:

- Airflow: 1 m/s

- Air temperature: 31◦C

Increase in the effective diffusivity

coefficient

(6, 37)

(Continued)
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TABLE 1 | Continued

Process US system Study Results References

Drying

Adapted from (48)

Apple slices

US parameters:

- Frequency: 20 kHz

- Power: 75 and 90W

Conditions evaluated:

- Air temperature: 40

and 60◦C

- RH% air: 25%

- Airflow: 1m

Reduction of drying time

(46.0–57.0 %)

No differences in texture

(48)

Drying

Adapted from (43)

Red bell peppers and

apples

US parameters:

- Frequency: 24 kHz

- Power: 42W

- Effective amplitude:

6–13µm

Conditions evaluated:

- Air temperature: 70◦C

- Continuous US

treatment

- Intermittent US

treatment:

• 50% net sonication

time

• 10% net

sonication time

No impact on final relative water

content

Intermittent US treatment at net

sonication of 10 % did not

improve the process, but at net

sonication of 50% there was a

reduction in drying time (18–20%)

Continuous US treatment allowed

to reduce drying time (18–27%)

(43)

Drying The same as (43) Potato cylinders

US parameters:

- Frequency: 24 kHz

Conditions evaluated:

- Air temperature: 70◦C

US effect was strongest in the

outermost layer (0.0–0.6mm) and

at the sonicated surface

US treatment allowed to reduce

drying time (by 10.3%)

(49)

Drying

Adapted from (50)

Purple-fleshed sweet

potato slices

US parameters:

- Frequency: 28 kHz

- Power: 30 and 60W

Conditions evaluated:

- Air temperature: 40,

50, 60, and 70◦C

- Airflow: 1 m/s

Drying time was reduced by

increasing the US power

(31.5–47.7 %) but the US effect

was less pronounced at higher air

temperature

The drying rate was improved

(50.8–100.0 %) at high US power

and low temperature

Increase in the effective moisture

diffusivity (Deff ) (17.6–48.1%)

Distortions of the cellular tissue

and the appearance of large

cavities

Improvement of the

rehydration capacity

(50)

(Continued)
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TABLE 1 | Continued

Process US system Study Results References

Drying

Adapted from (51)

Pear slices

US parameters:

- Frequency: 28 kHz

- Power: 30 and 60W

Conditions evaluated:

- FIR power: 100, 220,

and 340W

- Air flow: 1.5 m/s

Increase in the drying rate (at

45◦C, the increase was 33.3% at

24W and 140.1% at 48W)

Positive impact on total phenolic

content, flavonoids, and ascorbic

acid

Appearance of more numerous

and larger microchannels in the

cell tissue

(51)

Drying The same as (51) Kiwi slices

US parameters:

- Frequency: 28 kHz

- Power: 18, 36, and

54W

Conditions evaluated:

- FIR temperature: 120,

200, and 280◦C

- Airflow: 1.5 m/s

Reduction of drying time (the

increase at 120, 200, and 280◦C

was 32.2–48.4%, 22.2–38.9%,

14.3–33.3%, respectively)

The drying rate was improved

(66.7%) by increasing US power

US decreased the resistance to

internal diffusion, facilitated the

migration and removal of the

immobilized and bound water

(52)

Drying The same as (50) Pear slices

US parameters:

- Frequency: 28 kHz

- Power: 24 and 48W

Conditions evaluated:

- Air temperature: 35,

45, and 55◦C

- Airflow: 1 m/s

Best increase in drying rate

(33.3–140.1 %) at low air

temperature

The microstructure of the pear

samples showed more numerous

and larger cavities

Positive impact on total phenolic

content, flavonoids, and vitamin C

Improvement in

rehydration capacity

(53)

Drying

Adapted from (54)

Garlic (Allium sativum L.)

US parameters:

- Frequency: 20 kHz

- US treatment: 3 s on/

1 s off

Conditions evaluated:

- Power: 216.8, 902.7,

and 1513.5 W/m2.

- Air temperatura 50, 60,

and 70◦C

- Airflow: 2.5 m/s

Reduction of drying time (the

increase at 216.8, 902.7, and

1513.5 W/m2 was 5.0%, 12.5%,

35.0% respectively, at 50◦C)

The drying time was reduced by

increasing air temperature

Positive impact on thiosulfinate

and TPC at 216.8 and 902.7

W/m2

Greater retention of organosulfur

compounds

Color improvement

(54)

(Continued)
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TABLE 1 | Continued

Process US system Study Results References

Drying The same as (54) White cabbage (Brassica
oleracea L. variety

Capitana L.)

US parameters:

- Frequency: 20 kHz

- US treatment: 4 s

on/2 s off

Conditions evaluated:

- Power: 492.3 and

1131.1 W/m2

- Air temperature: 60 ◦C

- Airflow: 2.5 m/s

- Pre-blanching

treatment (100◦C/30 s)

Synergistic effect of blanching

and subsequent US drying to

intensify drying process

No color differences

Higher TPC (12.6 %) in

un-blanched sonicated samples

at 492.3 W/m2

No positive effect on Vitamin C

content

No clear effect on glucosinolate

(55)

Freezing

Adapted from (56)

Mushroom (Agaricus
bisporus)
US parameters:

- Frequency: 20 kHz

- Power: 300W

- 12 transducers

Conditions evaluated:

- US treatment: 10 s

on/20 s off when the

sample temperature

reached −1◦C

- US treatment: 10 s on/

10min off during 3

weeks of

frozen storage

Earlier nucleation

Smaller crystal size and more

uniform shape

The microstructure was more

uniform, featuring more numerous

and more dense pores

(56)

Freezing

Adapted from (57)

Chicken breasts

US parameters:

- Frequency: 40 kHz

- Power: 50W

Conditions evaluated:

- US treatment: 3s on/

5s off throughout the

entire freezing process

- Air temperature −13 to

−25◦ C

- Air flow: < 0.4 m/s

Reduction of freezing time

(19.9%)

No difference in quality attributes

such as WHC, CL and

protein digestibility

(57)

(Continued)
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TABLE 1 | Continued

Process US system Study Results References

Freeze-

drying

Adapted from (58)

Red bell peppers

Samples were frozen in a

cooling chamber to reach

a temperature of −20◦C

Then they were dried by

applying US

US parameters:

- Frequency: 20 kHz

Freeze-drying pressure

was 46Pa

Conditions evaluated:

- Power: 76, 90, and

110W

- Net sonicated time:

continuo (100%), 25%,

14% and 10%

Minimum US thermal effect at

76W and net sonication time of

10 %

Reduction of drying time

No difference in quality attributes

such as bulk density, color,

ascorbic acid, and

rehydration capacity

(58)

defines the quality of dehydrated food (69, 70), was improved
by 10.6 % in samples of purple-fleshed sweet potato dried at
40◦C and 60W (US), and by 36.4, 15.7 and 13.2% in samples of
pear slices dried at 35, 45 and 55◦C, respectively, and applying
a US power of 48W. These results can be explained by the
fact that the application of US by direct contact in solid food,
as reported in liquid immersion systems and air systems (19,
71), leads to the formation of cavities and microchannels in
plant tissues via mechanical effects (49–52) that reduce internal
resistance to the flow of water and enhance its incorporation
during rehydration.

Freeze-Drying
Freeze-drying is a process widely used to obtain high-quality
dehydrated food by preserving shape and color while minimizing
the loss of nutrients (72). However, extended processing times
and high energy costs are involved. The application of US could
thus serve as a useful alternative in order to accelerate mass and
energy transfer process. To the best of our knowledge, only one
published study deals with the application of US by direct contact
to vacuum freeze-drying. This would probably be due to the
technical difficulties involved in applying US in vacuum freeze-
drying systems (58). US equipment in that study consisted in
two sonotrodes, in the tip of which a mesh was fixed to hold the
samples (Table 1). An intermittent (10s on/90s off) application
of US (from 76 to 110W) led to a reduction in the freeze-
drying time of red bell peppers of 11.5%, but no differences were
observed in terms of rehydration capacity, bulk density, color,
or ascorbic acid content of the treated samples compared to the
conventionally freeze-dried samples. Since the application of US
in the freeze-drying process allows reducing the processing time,
it is necessary to conduct more studies to evaluate its impact on
the nutritional and organoleptic quality of the food.

On the other hand, it is worth mentioning that US
airborne systems have been tested in atmospheric drying at
low temperature processes (an alternative to freeze-drying) with
the aim of improving the quality of air-dried food. Bantle
and Eikevik (44) did not observe any differences in color or
shrinkage of green peas when US was applied. Similarly, Colucci
et al. (73) investigated the impact of US-assisted atmospheric
drying at freezing temperatures on the antioxidant properties
of eggplant samples, and likewise did not find significant
differences when applying US (25 and 50W).Moreover, although
differences were not significant, the application of US promoted
the degradation of ascorbic acid (1.5–7%), TPC (4.2–15%) and
antioxidant capacity (3–13.8%) in samples dried at −10◦C
and 2 m/s.

Freezing
The quality of frozen food is determined by the shape,
location, and distribution of ice crystals inside the product
(74, 75). Therefore, rapid freezing is sought in order to
allow the formation of small and numerous intra- and
extra-cellularly located ice crystals that minimize quality
losses after thawing (76, 77). Many studies have shown
that immersion freezing in ultrasonic baths improves the
quality (microstructure, weight loss, texture, color, and
nutritional components) of frozen food by promoting the
initiation of nucleation, thereby controlling the growth
of ice crystals and accelerating the transfer of mass and
heat (19, 40, 78).

Islam et al. (56) studied the effect of direct contact US on
the freezing process of mushroom (Agaricus bisporus) cubes
by applying a frequency of 20 kHz and a power of 300W
with intermittent treatment of 1 s on/20 s off once the sample
temperature reached −1◦C, and treatments of 10 s on/10min off
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in the course of storage during 3 weeks. They observed that the
sonicated samples displayed earlier nucleation at temperatures
of −2.0 ± 0.05◦C compared to control samples, in which it
occurred at −2.6 ± 0.01◦C. Differences in morphology and
size of the ice crystals were also detected by cryo-electron
microscopy. The crystals of the sonicated samples were smaller,
thinner, and columnar shaped, while those of control were larger,
more irregular, and featured dendrites. Although no quality
parameters were analyzed in this study, the characteristics of
the ice crystals strongly suggest that the US-assisted process
would have a lower impact on the quality of the frozen/thawed
products. Recently, Astráin-Redín et al. (57) studied the influence
on Water Holding Capacity (WHC), Cook Loss (CL) and
protein digestibility of meat when applying direct contact US
(40 kHz, 50W) in freezing chicken breasts while applying an
intermittent US treatment. No differences in terms of those
quality parameters were observed between sonicated and control
samples. These results may be due to the fact that the sample
size was small (5–6 g), and, although US-assisted freezing was
more rapid (9.9–11.3%), the process was already rapid enough
in the control samples to have a negative impact on quality.
Indeed, in larger pork loin samples (120 g), Zhang et al.
(79) observed smaller and more uniformly distributed crystals
resulting from immersion US freezing (180W and 30 kHz), and
they obtained 61% and 12.3% lower weight losses after thawing
and cooking, respectively, when applying US compared to a
forced air system. Moreover, Li et al. (17) evaluated the influence
of immersion-US-assisted freezing (20 kHz) on chicken breast
meat, and observed an increase in the proportion of water
retained within the myofibrillar protein, thereby resulting in a
higher WHC.

CONCLUSIONS

This review summarized the current state of knowledge regarding
a new method of applying US to food samples, known as
direct contact US systems. Although very few articles have been
published on this subject, the application of US has already

achieved considerable improvements in mass and energy transfer
processes in the food industry, such as dehydration and freezing.
In the case of dehydration, the application of US leads to a
reduction in drying times, resulting in dehydrated food with a
higher content of TPC, flavonoids and ascorbic acid, as well as
improved sensory attributes such as color, along with improved
functional properties (i.e., rehydration). However, most of the
studies did not analyse the thermal effect that these systems could
have on the samples; thus, the effect of the US treatment cannot
be evaluated correctly as it can be hidden or misleading. As far
as freezing processes are concerned, it has been reported that
direct US contact freezing promotes the formation of small ice
crystals, although no improvements in certain highly relevant
quality parameters of defrosted foods such as WHC and CL have
been observed. For all these reasons, the application of US by
direct contact can be regarded as a thoroughly useful technique
to improve mass and energy transfer processes of food. However,
due to the scarce number of articles on this subject, further
research is required in order to gain a better understanding of
this system’s effect on food nutritional and organoleptic quality.
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