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Abstract: Cannabinoid receptor-interacting protein 1a (CRIP1a) binds to the C-terminal domain of
cannabinoid 1 receptor (CB1R) and regulates CB1R activities. In this study, we made Tat-CRIP1a fusion
proteins to enhance CRIP1a penetration into neurons and brain and to evaluate the function of CRIP1a
in neuroprotection following oxidative stress in HT22 hippocampal cells and transient forebrain
ischemia in gerbils. Purified exogenous Tat-CRIP1a was penetrated into HT22 cells in a time and
concentration-dependent manner and prevented H2O2-induced reactive oxygen species formation,
DNA fragmentation, and cell damage. Tat-CRIP1a fusion protein also ameliorated the reduction of
14-3-3η expression by H2O2 treatment in HT22 cells. Ischemia–reperfusion damage caused motor
hyperactivity in the open field test of gerbils; however, the treatment of Tat-CRIP1a significantly
reduced hyperactivity 1 day after ischemia. Four days after ischemia, the administration of Tat-CRIP1a
restored the loss of pyramidal neurons and decreased reactive astrocytosis and microgliosis induced
by ischemic damage in the hippocampal cornu Ammonis (CA)1 region. Ischemic damage decreased
14-3-3η expression in all hippocampal sub-regions 4 days after ischemia; however, the treatment of
Tat-CRIP1 ameliorated the reduction of 14-3-3η expression. These results suggest that Tat-CRIP1a
attenuates neuronal damage and hyperactivity induced by ischemic damage, and it restores normal
expression levels of 14-3-3η protein in the hippocampus.

Keywords: cannabinoid receptor–interacting protein 1a; oxidative stress; ischemia; 14-3-3η

1. Introduction

Cerebral ischemia is one of the leading causes of death globally and results in a lower
quality of life in survivors due to neurological disabilities [1,2]. Ischemia results in deficiencies in
glucose and oxygen and leads to an ion imbalance and impairment of cellular homeostasis [3,4].
Excessive neuronal depolarization by ischemia causes excitotoxicity by releasing excitatory
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neurotransmitters, and an over-release of calcium ions activates deleterious enzymatic reactions,
which can result in neuronal death [5]. Many recent studies have focused on various factors and materials
to effectively inhibiting neuroinflammation and neuronal apoptosis following ischemia–reperfusion
damage [6,7]. It is thought that understanding the molecular mechanisms of cerebral ischemia can
advance therapeutic strategies for ischemic stroke [8].

The cannabinoid 1 receptor (CB1R) is a G protein-coupled receptor and is easily detected in the
excitatory presynaptic regions in the hippocampus [9,10]. The cannabinoid receptor–interacting protein
1a (CRIP1a) binds to the C-terminal domain of CB1R and is involved in presynaptic neurotransmitter
release by modulating calcium channel activity [11,12]. In vitro studies demonstrated that the
overexpression of CRIP1a attenuated CB1R downregulation and inhibited CB1R signaling stimulated
by the treatment of exogenous cannabinoid agonists [13]. Hippocampus-dependent memory and neural
plasticity are modulated by cannabinoid signaling, but enhanced memory resulting from cannabinoid
receptor activation does not follow a simple pattern [14]. The expression of CB1R and CRIP1a was
significantly increased following excitotoxicity induced by kanic acid [15]. In addition, considerable
evidence indicates that endogenous cannabinoid signaling is closely involved in neuroprotection,
and these effects are induced by interactions of the cannabinoid with various transcription factors such
as nuclear factor erythroid 2-related factor 2, nuclear Factor kappa-light-chain-enhancer of activated B
cells, and peroxisome proliferator-activated receptors, which inhibit enormous neuroinflammation
and oxidative stress in acute and chronic neurodegenerative diseases [16–18]. Recent studies have
tried to treat neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases by cannabinoid
targeting therapy [19–21].

The 14-3-3 proteins are abundantly expressed in the brain and involved in cellular signaling,
proliferation, and processes of cell death [22]. It has been reported that 14-3-3 proteins
interact with Bcl-2-associated X protein (BAX) and extracellular signal-regulated protein (ERK),
which have crucial roles in apoptosis, and these pro-apoptotic proteins are upregulated during
excitotoxicity-induced neurodegeneration. Unlike BAX and ERK, the expression of 14-3-3 proteins
including 14-3-3η are downregulated during kainic acid-induced neurotoxicity [23]. On the other
hand, in excitotoxicity-induced neuronal death, the expression of CB1R and CRIP1a was significantly
increased [15], and decreased expression of 14-3-3η was restored during neuroprotection induced by
exogenous cannabinoid treatment [24]. Actions of 14-3-3 proteins are closely related to cannabinoid
receptor signaling [24,25], but the related mechanism between CRIP1a and 14-3-3 is not clear.

Roles of agonists and antagonists for CB1R in neuroprotection have been debated for the past
decade; however, few studies have focused on the function of CRIP1a in mediated signaling CB1R.
Understanding the exact roles of CRIP1a should precede an understanding of the mechanisms involved
in cannabinoid signaling with respect to neuroprotection against ischemic damage. Therefore, in the
present study, we investigated the expression of CRIP1a in the hippocampus after ischemia and
examined the roles of CRIP1a in neuroprotection following hydrogen peroxide-induced cell damage in
HT22 cells and in the gerbil hippocampus following 5 minutes of transient forebrain ischemia.

2. Materials and Methods

2.1. In Vitro Effects of Tat-CRIP1a in HT22 Cells

2.1.1. Cell Preparation

Immortalized mouse hippocampal cells (HT22) were purchased from Sigma (St. Louis, MO, USA)
and were maintained in Dulbecco’s modified eagle medium (DMEM) supplemented with 10% fetal
bovine serum and antibiotics at 37 ◦C with humidified conditions of 95% air and 5% CO2 as described
in a previous study [26].
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2.1.2. Construction of Expression Vectors

A cell-permeable Tat expression vector was prepared as described in a previous study [27].
Sense primer 5′-CTCGAGATGCGCCTCCGC-3′ and antisense primer 5′-GGATCCTTAGAGATCCTC
CTGTGCC-3′ were used to amplify cDNA for CRIP1a by PCR. The PCR product was subcloned in a TA
cloning vector (pGEM®-T easy vector; Promega Corporation, Madison, WI, USA) and ligated into the
Tat expression vector to produce a Tat-His-CRIP1a fusion protein. The Tat domain consists of 9 amino
acids, RKKRRQRRR, and is connected with a 6xHistidine tag. They are inserted in the N-terminal of
CRIP1a. A His-CRIP1a (Control-CRIP1a) without the Tat domain was also prepared to use as a control.

The Tat-His-CRIP1a and His-CRIP1a-containing plasmids were transformed into Escherichia coli
BL21 cells to produce both proteins. Isopropyl-β-d-thiogalactoside (0.1 mM, Duchefa, Haarlem,
The Netherlands) was given to the bacterial cells at 18 ◦C for 8 h, and the harvested cells were
purified with a Ni2+-nitrilotriacetic acid Sepharose affinity column and PD-10 column chromatography
(Amersham, Braunschweig, Germany). To estimate the concentration of purified proteins, a Bradford
assay was performed.

2.1.3. Penetration Efficacy of Tat-CRIP1a Proteins in the HT22 Cells

The concentration and time-dependent intracellular penetration of purified exogenous His-CRIP1a
and Tat-His-CRIP1a proteins were assessed following incubation with both proteins at various
concentration (0.5–5 µM) for 60 min and 1 µM of both proteins at various time points (0–60 min)
in HT22 cells, respectively. Then, the cells were treated with trypsin– ethylenediaminetetraacetic
acid for 10 min and washed with phosphate-buffered saline (PBS) to eliminate proteins attached
to the cellular membranes. Cells were lysed with ice-cold radioimmunoprecipitation assay buffer
buffer (Thermo Scientific, Hanover Park, IL, USA) and Western blot was conducted using rabbit
anti-polyhistidine primary antibody (1:2,000, His-probe, SantaCruz Biotechnology, Santa Cruz, CA,
USA) or rabbit anti-CRIP1a antibody (1:1000, Novus Biologicals, Littleton, CO, USA) as described
in a previous study [26]. In addition, the penetrated His-CRIP1a and Tat-His-CRIP1a proteins were
visualized with immunocytochemical staining for polyhistidine after 1 µM of both proteins were
incubated for 60 min with HT22 cells [26].

2.1.4. Effects of Tat-CRIP1a Proteins on Cell Death and DNA Damage Exposed to H2O2 in the
HT22 Cells

The neuroprotective effects of exogenous His-CRIP1a or Tat-His-CRIP1a against H2O2-induced
oxidative damage were evaluated by water-soluble tetrazolium salt-1 (WST-1) and terminal
deoxynucleotidyl transferase-mediated biotinylated deoxyuridine triphosphate nick end labeling
(TUNEL) staining as described [26]. The WST-1 assay evaluates cell viability via the conversion of
tetrazolium salts into formazans by the activity of cellular mitochondrial dehydrogenase. HT22 cells
were treated with various concentrations of exogenous His-CRIP1a or Tat-His-CRIP1a proteins (0–1 µM)
for 1 h, and oxidative damage was induced by incubation with 1 mM H2O2 for 5 h (WST-1 assay)
and 3 h (TUNEL staining). Cell viability and DNA fragmentation were confirmed by WST-1 and
TUNEL assay kits according to manufacturer’s protocol (Roche Diagnostics, Mannheim, Germany).
In the WST-1 assay, HT22 cells were placed into 96-well plates at a concentration of 8 × 103 cells/well.
Cells were incubated for 24 h and 10 µL/well of WST-1 reagent was added to each well (1:10 dilution).
HT22 cells were incubated with WST-1 reagent for 4 h in standard culture conditions. Optical density
was measured for WST-1 assay at 450 nm using an ELISA microplate reader (Labsystems Multiskan
MCC/340, Helsinki, Finland). TUNEL-positive fluorescence was obtained by a Fluoroskan ELISA plate
reader (Labsystems Oy, Helsinki, Finland).
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2.1.5. Effects of Tat-CRIP1a Proteins on ROS Levels Exposed to H2O2 in the HT22 Cells

The formation of intracellular reactive oxygen species (ROS) was evaluated by the conversion
of 2′,7′-dichlorofluorescein diacetate (DCF-DA) to DCF in HT22 cells as described previously [26].
The HT22 cells were incubated with 1 µM His-CRIP1a or Tat-His-CRIP1a proteins for 1 h and then
sequentially treated with 1 mM H2O2 for 10 min and 20 µM DCF-DA for 30 min. DCF-positive
fluorescence was quantified using a Fluoroskan ELISA plate reader (Labsystems Oy, Helsinki, Finland).

2.1.6. Effects of Tat-CRIP1a Proteins on 14-3-3η Levels in the HT22 Cells

To elucidate the possible neuroprotective mechanisms of Tat-CRIP1a against H2O2-induced
oxidative damage, HT22 cells were incubated with 1 µM His-CRIP1a or Tat-His-CRIP1a proteins for
1 h and then treated with 1 mM H2O2 for 3 h. Western blot was conducted using a rabbit anti-14-3-3η
antibody (1:1000; Merck Millipore, Temecula, CA, USA) as described in a previous study [26].

2.2. Changes of CRIP1a after Ischemia and In Vivo Effects of Tat-CRIP1a against Ischemic Damage in Gerbils

2.2.1. Experimental Animals

Male Mongolian gerbils were obtained from Japan SLC Inc. (Shizuoka, Japan). All animals were
handled and cared for in accordance with the guidelines of current international laws and policies
(National Institutes of Health Guide for the Care and Use of Laboratory Animals, Publication No. 85–23,
1985, revised 1996) to minimize physiological stress, and experimental procedures were approved by
the Institutional Animal Care and Use Committee (IACUC) of Soonchunhyang University (SCH20-0007,
approval date: 2020/03/04).

2.2.2. Induction of Transient Forebrain Ischemia

Mongolian gerbils were anesthetized with a mixture of 2.5% isoflurane (Baxter, Deerfield, IL, USA)
in 33% oxygen and 67% nitrous oxide. Both common carotid arteries were blocked with aneurysm
clips for 5 min, as described in the previous study [28]. Body temperature was regulated at 37 ± 0.5 ◦C
until recovery from anesthesia. Sham operation was performed without the occlusion of common
carotid arteries for control animals.

2.2.3. Experimental Design

To observe the temporal and spatial changes in CRIP1a immunoreactivity within the hippocampus,
animals were sacrificed at 3 h, 6 h, 12 h, 1 day, 2 days, 4 days, and 7 days after ischemia (n = 5 in each
time points). To confirm the penetration of Tat-His-CRIP1a into hippocampal sub-regions, a single
injection of His-CRIP1a or Tat-His-CRIP1a was administered intraperitoneally to the animals, and they
were sacrificed 8 h after administration as described in previous studies [29,30]. To elucidate the effects
of Tat-CRIP1a in ischemic damage, experimental animals were divided into 4 groups: sham-operated
control (sham) group, 10% glycerol-treated ischemic (vehicle) group, His-CRIP1a-treated ischemic
(Control-CRIP1a) group, and Tat-His-CRIP1a-treated ischemic (Tat-CRIP1a) group. In the gerbils at
3 months of age (50–60 g body weight), transient forebrain ischemia was induced by the occlusion of
both common carotid arteries for 5 min. Immediately after surgery, vehicle or the exogenous CRIP1a
proteins were injected intraperitoneally (3 mg/kg).

2.2.4. Open Field Test

To evaluate the effects of Tat-CRIP1a on hyperactivity induced by ischemic damage, an open field
test was performed one day after ischemia/reperfusion, as described previously [26]. Motor activity
was measured by distance traveled for 30 min and recorded with a digital camera system (Basler106200,
Ahrensburg, Germany). The recorded data were reanalyzed by Ethovision XT14 (Noldus, Wageningen,
The Netherlands).
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2.2.5. Tissue Processing and Immunohistochemistry

Animals were anesthetized with a mixture of alfaxalone (Alfaxan, 75 mg/kg; Careside, Seongnam,
South Korea) and xylazine (10 mg/kg; Bayer Korea, Seoul, South Korea) at 3 h, 6 h, 12 h, 1 day, 2 days,
4 days, and 7 days after ischemia (n = 5 in each time points) and perfused transcardially with 0.1 M
phosphate-buffered saline (PBS, pH 7.4) and 4% paraformaldehyde in 0.1 M PBS sequentially. The brains
were removed and postfixed in 4% paraformaldehyde in 0.1 M PBS for 12 h at 25 ◦C. The brains were
infiltrated with 30% sucrose overnight and cut into 30 µm tissue sections with a cryostat (Leica, Wetzlar,
Germany). Sections between 1.4 and 2.0 mm posterior to the bregma were stained with rabbit
anti-CRIP1a antibody (1:200, Novus Biologicals, Littleton, CO, USA), rabbit anti-polyhistidine antibody
(1:200, His-probe, SantaCruz Biotechnology, Santa Cruz, CA, USA), 1% cresyl violet solution (Sigma,
St. Louis, MO, USA), rabbit anti-glial fibrillary acidic protein (GFAP) antibody (1:1000; Merck Millipore,
Temecula, CA, USA), rabbit anti-ionized calcium-binding adapter molecule 1 (Iba-1) antibody (1:500;
Wako, Osaka, Japan), or rabbit anti-14-3-3η antibody (1:1000; Merck Millipore) according to the previous
study [26].

2.2.6. Semi-Quantification of Data

The immunoreactivity of CRIP1a and 14-3-3η was analyzed using ImageJ software v. 1.5
(National Institutes of Health, Bethesda, MD, USA). Digital images of stained hippocampi were
captured using a BX51 light microscope (Olympus, Tokyo, Japan) with a digital camera (DP72, Olympus)
and calibrated into 512 × 512 pixels. Each pixel had 256 gray levels, and the intensity of each picture
was represented by relative optical density (ROD), which was the transformed mean gray level by
the formula: ROD = log (256/mean gray level). ROD of the background staining was subtracted to
correct for nonspecific staining, using ImageJ v. 1.50 software (National Institutes of Health). Data are
expressed as a percentage of the sham groups.

Cresyl violet-positive neurons were taken from the midpoint of the hippocampal CA1 region from
four sections at 120 µm intervals, and the number of cresyl violet-positive cells was counted using
OPTIMAS software (version 6.5; CyberMetrics® Corporation, Phoenix, AZ, USA). Data are calibrated
into percentile values versus control group.

2.2.7. Statistical Analysis

The data were expressed as the mean of the experiments performed for each experimental
investigation. To evaluate the changes and effects of Tat-CRIP1a after ischemic damage, the differences
among the means were statistically analyzed using a one-way or two-way analysis of variance
(ANOVA), followed by Bonferroni’s post-hoc test with GraphPad Prism 5.01 software (GraphPad
Software, Inc., La Jolla, CA, USA). The results were considered statistically significant when p < 0.05.

3. Results

3.1. In Vitro Effects of Tat-CRIP1a in HT22 Cells

3.1.1. Expression and Purification of Tat-CRIP1a Protein

To generate a Tat-His-PDIA3 fusion protein, the human CRIP1a gene was fused to a Tat
peptide expression vector, and the His-CRIP1a protein was manufactured without a Tat domain.
Purified proteins were separated with confirmation by Western blot analysis. Prominent Tat-His-CRIP1
protein and His-CRIP1a protein bands were found with about 1.6–1.7 kDa differences, which is
the molecular weight for the Tat peptide, on Western blot using rabbit anti-polyhistidine antibody
(Figure 1A).
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Density of polyhistidine and β-actin bands were analyzed and the data were calibrated using a ratio 
of polyhistidine/β-actin. A two-way ANOVA test was used to analyze the data followed by a 
Bonferroni’s post-hoc test (a p < 0.05, significantly different from the Control-CRIP1a group; b p < 0.05, 
significantly different from the Control group). Data are expressed as mean with standard deviation. 
(D) Visualization of internalized His-CRIP1a and Tat-His-CRIP1a proteins with immunocytochemical 
staining for polyhistidine at 60 min after treatment. Scale bar = 50 μm. (E) Penetration of exogenous 

Figure 1. Construction of the control and Tat-CRIP1a fusion proteins and confirmation of efficient
delivery into HT22 cells. (A) Expression and purification of the His-CRIP1a and Tat-His-CRIP1a
proteins were confirmed by Coomassie brilliant blue staining and Western blot analysis with
an anti-polyhistidine antibody. (B) The delivery of exogenous His-CRIP1a and Tat-His-CRIP1a
proteins in various concentrations was evaluated by Western blot for polyhistidine at 60 min after
the treatment. (C) Time-dependent delivery of 1 µM His-CRIP1a and Tat-His-CRIP1a proteins was
confirmed by Western blot for polyhistidine. Bar graph represents the mean with standard deviation.
(B) and (C) Density of polyhistidine and β-actin bands were analyzed and the data were calibrated
using a ratio of polyhistidine/β-actin. A two-way ANOVA test was used to analyze the data followed by
a Bonferroni’s post-hoc test (a p < 0.05, significantly different from the Control-CRIP1a group; b p < 0.05,
significantly different from the Control group). Data are expressed as mean with standard deviation.
(D) Visualization of internalized His-CRIP1a and Tat-His-CRIP1a proteins with immunocytochemical
staining for polyhistidine at 60 min after treatment. Scale bar = 50 µm. (E) Penetration of exogenous
Tat-CRIP1a and expression of endogenous CRIP1a proteins are confirmed by Western blot analysis
with an anti-CRIP1a antibody. Data were expressed by ratio of Tat-CRIP1a/β-actin or endogenous
CRIP1/β-actin. One-way ANOVA test was used to analyze the data followed by a Bonferroni’s
post-hoc test (a p < 0.05, significantly different from the Control-CRIP1a group; b p < 0.05,
significantly different from the Control group). CRIP1a: cannabinoid receptor–interacting protein 1a,
Tat-CRIP1a: Tat-His-CRIP1a-treated ischemic.
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3.1.2. In Vitro Efficacy of Intracellular Delivery of Tat-CRIP1a Protein in HT22 Cells

The concentration and time-dependent intracellular delivery of purified exogenous His-CRIP1a
and Tat-His-CRIP1a was determined by Western blot analysis using a polyhistidine antibody.
Polyhistidine bands were not observed in His-CRIP1a-treated cells at any concentration (0.5–5.0 µM)
or time after treatment. In contrast, incubation with Tat-CRIP1a resulted in strong polyhistidine
bands, and their density increased in a concentration and time-dependent manner (Figure 1B,C).
Significant increases of polyhistidine levels were found at 0.5 µM and 30 min after CRIP1a treatment.
The intracellular delivery of exogenous His-CRIP1a and Tat-His-CRIP1a was confirmed using
immunofluorescent staining for polyhistidine in HT22 cells. In the vehicle-treated control and
Control-CRIP1a-treated groups, no polyhistidine immunoreactive structures were detected in HT22
cells. However, in the Tat-CRIP1a-treated group, strong polyhistidine immunoreactivity was found
in the cytoplasm of HT22 cells (Figure 1D). Endogenous and exogenous CRIP1a were detected by
Western blot analysis using a CRIP1a antibody. In the Tat-CRIP1a-treated groups, we observed
double bands, which indicate endogenous and exogenous CRIP1a, respectively, and density of the
bands for Tat-CRIP1a increased with concentration dependently. In the groups without exogenous
Tat-His-CRIP1a treatment, we only detected the bands of endogenous CRIP1a (Figure 1E).

3.1.3. Effects of Tat-CRIP1a Proteins on Cell Death, DNA Damage, ROS, and 14-3-3η Levels Following
Exposure to H2O2

In the vehicle-treated group, cell viability was significantly decreased to 62.2% of the control
group after H2O2 exposure (Figure 2A). In the Control-CRIP1a-treated groups, cell viability was
observed as 57.6–59.0% of the control group and did not show any significant changes depending
on the concentration of His-CRIP1a. In contrast, incubation with Tat-CRIP1a showed significant
increases in cell viability with values of 68.4–94.2% compared to the control group and changed in
a concentration-dependent manner.

In the control group, very little DCF fluorescence was detected in the HT22 cells. In the
vehicle-treated group, cells with strong DCF staining were found after H2O2 exposure, and fluorescence
intensity was dramatically increased by 496.9% compared to the control group. In the His-CRIP1a-treated
cells, DCF-stained cells were found in abundance after H2O2 exposure, and a fluorescence intensity
similar to the vehicle-treated group was found. In the Tat-His-CRIP1a-treated group, few DCF-stained
cells were observed after H2O2 exposure, and the fluorescence intensity was significantly decreased by
178.4% compared to the control group vehicle or Control-CRIP1a-treated group (Figure 2B).

In the control group, few TUNEL-positive cells were found in the HT22 cells. In the vehicle and
Control-CRIP1a-treated groups, many TUNEL-positive cells were found in the HT22 cells after H2O2

exposure, and fluorescence intensity was significantly increased by 630.2% and 560.7% compared to the
control group, respectively. In the Tat-CRIP1a-treated group, few TUNEL-positive cells were found in
the HT22 cells after H2O2 exposure, and the fluorescence intensity was significantly decreased to 218.2%
of the control group compared to that of the vehicle or Control-CRIP1a-treated group (Figure 2C).

In the vehicle group, 14-3-3η levels were significantly decreased to 69.8% of the control group.
In the Control-CRIP1a group, similar levels of 14-3-3η was observed compared to that of the vehicle
group. In the Tat-CRIP1a group, 14-3-3η levels were significantly increased compared to that in the
vehicle or Control-CRIP1a group with similar results for the Control group (Figure 2D).
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Figure 2. In vitro neuroprotective effects and mechanism of His-CRIP1a and Tat-His-CRIP1a proteins
against H2O2-induced damage in HT22 cells. (A) Concentration-dependent cell viability was observed in
HT22 cells after His-CRIP1a and Tat-His-CRIP1a treatment for 1 h and subsequent treatment with 1 mM
H2O2 for 5 h. A two-way ANOVA test was used to analyze the data followed by a Bonferroni’s post-hoc
test (a p < 0.05, significantly different from the Control-CRIP1a group; b p < 0.05, significantly different
from the vehicle group). (B) H2O2-induced reactive oxygen species (ROS) production was measured
with 1.0 µM His-CRIP1a and Tat-His-CRIP1a treatment for 60 min and subsequent treatment with 1 mM
H2O2 for 10 min and 20 µM 2′,7′-dichlorofluorescein diacetate (DCF-DA) for 30 min. (C) H2O2-induced
DNA fragmentation was visualized with TUNEL staining after 1 µM His-CRIP1a and Tat-His-CRIP1a
treatment for 1 h and subsequent treatment with 1 mM H2O2 for 3 h. (B) and (C) Scale bar = 100 µm.
Intensities of DCF-stained and terminal deoxynucleotidyl transferase-mediated biotinylated dUTP nick
end labeling (TUNEL)-positive cells were measured and the data are presented as percentile values
vs. Control group. (D) Levels of 14-3-3η were measured with Western blot after 1 µM His-CRIP1a or
Tat-His-CRIP1a proteins for 1 h and then treated with 1 mM H2O2 for 3 h. The density of 14-3-3η and
β-actin bands were analyzed, and the data was calibrated with a ratio of 14-3-3η/β-actin. A one-way
ANOVA test was used to analyze the data followed by a Bonferroni’s post-hoc test (a p < 0.05,
significantly different from the control group; b p < 0.05, significantly different from the vehicle group;
c p < 0.05, significantly different from the Control-CRIP1a group). Data are expressed as mean with
standard deviation.
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3.2. Changes of CRIP1a after Ischemia and the In Vivo Effects of Tat-CRIP1a Following Ischemic Damage
in Gerbils

3.2.1. Changes of CRIP1a Immunoreactivity in the Hippocampal CA1 Region after Transient
Forebrain Ischemia

In the sham-operated group, CRIP1a immunoreactivity was found in non-pyramidal and
pyramidal cells in the CA1 region. From 3 to 12 h after ischemia/reperfusion, similar CRIP1a
immunoreactivity was found in the control group, but fewer CRIP1a immunoreactive cells were
detected in the non-pyramidal cells located in the stratum oriens and radiatum. One to two days after
ischemia, fewer CRIP1a immunoreactive structures were seen in the stratum pyramidale of the CA1
region. In addition, CRIP1a immunoreactivity was significantly decreased in the hippocampal CA1
region 2 days after ischemia compared to that in the sham-operated group. Four and seven days after
ischemia, CRIP1a immunoreactive structures were only found in the non-pyramidal cells because of
neuronal death in pyramidal cells (Figure 3).
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Figure 3. Spatial and temporal changes of CRIP1a immunoreactivity in the gerbils at various time
points after ischemia. Relative optical densities in each region are described as a percentage of the value
of the sham group, and a one-way ANOVA test was used to analyze the data followed by Bonferroni’s
post-hoc test (n = 5 per group; a p < 0.05, significantly different from the Sham group; b p < 0.05,
significantly different from the pre-adjacent group). SO, stratum oriens; SP, stratum pyramidale; SR,
stratum radiatum.
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3.2.2. Effects of CRIP1a on Ischemia-Induced Motor Activity and Cell Death

Spontaneous motor activity was assessed by the open field test to evaluate hyperactivity after
ischemic damage. In the sham group, the mean distance traveled in 30 min was 102.7 m. In the
vehicle and Control-CRIP1a groups, spontaneous motor activity was significantly increased compared
to the sham group (232.7 and 235.5 m for 30 min respectively). In contrast, the administration of
Tat-His-CRIP1a significantly decreased motor hyperactivity (134.6 m) compared to the vehicle group
(Figure 4A).
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Figure 4. In vivo neuroprotective effects of Control-CRIP1a and Tat-CRIP1a proteins against ischemic
damage in gerbils. (A) Images showing track visualization for 30 min in each groups 1 day after
ischemia. (B) Cresyl violet staining in the hippocampal CA1 region of the sham, vehicle, Control-CRIP1a,
and Tat-CRIP1a groups at 4 days after ischemia reperfusion. (C) Confirmation of penetrated Tat-CRIP1a
into neurons in the SP, GCL and PoL in the Tat-CRIP1a group using anti-histidine antibody. A single
injection of His-CRIP1a or Tat-His-CRIP1a was administered intraperitoneally to the animals, and they
were sacrificed 8 h after administration. Scale bar = 100 µm. SO, stratum oriens; SP, stratum pyramidale;
SR, stratum radiatum; GCL, granule cell layer; PoL, polymorphic layer. Meters moved in 30 min,
described as mean values, and the number of cresyl violet-positive cells are shown as a percentage
of the value of the sham group. A one-way ANOVA test was used to analyze the data followed by
Bonferroni’s post-hoc test (n = 5 per group; a p < 0.05, significantly different from the control group;
b p < 0.05, significantly different from the vehicle group; c p < 0.05, significantly different from the
Control-CRIP1a group). Data are expressed as mean with standard deviation.

To evaluate the effects of Tat-CRIP1a proteins on neuroprotection following transient forebrain
ischemia, cresyl violet staining was performed on hippocampal sections 4 days after ischemia. In the
CA1 region of the sham group, abundant cresyl violet positive cells were mainly detected in the
stratum pyramidale. In the vehicle and Control-CRIP1a groups, the number of cresyl violet positive
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cells were significantly decreased (4.9% and 8.3% of the sham group, respectively). In the Tat-CRIP1a
group, the number of cresyl violet-positive cells was significantly increased (60.1% of control group)
compared to that of the vehicle group (Figure 4B).

To confirm the penetration of exogenous Tat-His-CRIP1a into hippocampal neurons,
immunohistochemistry for histidine was performed. In the control and Control-CRIP1a groups,
histidine immunoreactivity was rarely detected in the dentate gyrus and CA 1 region. In the Tat-CRIP1a
group, strong histidine immunoreactivity was detected in the neurons of the stratum pyramidale,
granule cell layer, and polymorphic layer (Figure 4C).

3.2.3. Roles of Tat-CRIP1a on Glial Activation in Hippocampal CA1 Region

In the sham group, GFAP-positive astrocytes and Iba1-positive microglia had small amounts of
cytoplasm and thin processes in the CA1 region of the hippocampus. In the vehicle and Control-CRIP1a
groups, GFAP-positive astrocytes exhibited hypertrophic cytoplasm 4 days after ischemia. In addition,
Iba1-positive microglia had large cell bodies and thick processes in the stratum oriens and radiatum,
while Iba-1-positive microglia showed a phagocytic phenotype in the stratum pyramidale where
neuronal death occurred after transient forebrain ischemia. In the Tat-CRIP1a group, the morphology
of astrocytes and microglia was similar to that of the sham group; however, some astrocytes and
microglia exhibited large amounts of cytoplasm and thick processes (Figure 5).
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Figure 5. Immunohistochemistry for glial fibrillary acidic protein (GFAP) and Iba-1 in the cornu
Ammonis (CA)1 region of the sham, vehicle, Control-CRIP1a, and Tat-CRIP1a groups at 4 days after
ischemia. In the vehicle group, GFAP-immunoreactive astrocytes have hypertrophied cytoplasm
and processes and ionized calcium-binding adapter molecule 1 (Iba-1)-imunoreactive microglia with
hypertrophied cytoplasm with retracted processes. In the Tat-CRIP1a group, astrocytes and microglia
with activated phenotypes were markedly decreased. Scale bar = 100 µm. SO, stratum oriens; SP, stratum
pyramidale; SR, stratum radiatum.
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3.2.4. Effects of Tat-PDIA3 on 14-3-3-eta Expression in the Hippocampal Sub-Regions

In the sham group, 14-3-3η immunoreactivity was mainly detected in the pyramidal cells of the
CA1 and CA3 regions as well as in granule cells and polymorphic layers of the dentate gyrus. In the
vehicle and Control-CRIP1a groups, the immunoreactivity of 14-3-3η was significantly decreased in all
regions of the hippocampus compared to those in the sham group. In the Tat-CRIP1a group, 14-3-3η
immunoreactive structures were abundant in the hippocampal CA1, CA3, and dentate gyrus. In this
group, 14-3-3η immunoreactivity was significantly higher in these regions than in the vehicle and
Control-CRIP1a groups and was 72.4%, 104.9%, and 89.4% of the control group in the CA1, CA3,
and dentate gyrus, respectively (Figure 6).
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Figure 6. Immunohistochemistry for 14-3-3η in the hippocampal sub-regions of the sham, vehicle,
Control-CRIP1a, and Tat-CRIP1a groups at 4 days after ischemia. In the CA1 and CA3 regions,
the immunoreactivity of 14-3-3η was primarily detected in pyramidal neurons. In the dentate
gyrus, the immunoreactivity of 14-3-3η was observed in the polymorphic layer and granule
cell layer. Scale bar = 100 µm. SO, stratum oriens; SP, stratum pyramidale; SR, stratum radiatum;
PoL, polymorphic layer; GCL, granule cell layer. Relative optical densities in each region are described
as a percentage of the value of the sham group, and a one-way ANOVA test was used to analyze the
data followed by a Bonferroni’s post-hoc test (n = 5 per group; a p < 0.05, significantly different from the
control group; b p < 0.05, significantly different from the vehicle group; c p < 0.05, significantly different
from the Control-CRIP1a group).
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4. Discussion

Cannabinoid signaling is closely involved in neuroprotection through various mechanisms [18,31],
but their exact actions do not follow a simple pattern, and the processes involved remain controversial.
It has recently been identified that CRIP1a binds to the C-terminal of CB1R in the presynaptic terminal
to modulate its activity [11], and both CRIP1a and CB1R expression are increased by treatment with
an excitotoxin [15]. In the present study, we evaluated the neuroprotective role of CRIP1a against
H2O2-induced oxidative stress in HT22 cells and ischemia-induced neuronal damage in the gerbil
hippocampus. First, we made a Tat-CRIP1a protein to facilitate the delivery of the protein into brain
tissue and neurons because the Tat peptide acts as a transfection carrier of proteins and delivers the
Tat-CRIP1a fusion protein into cells [32,33]. The purified exogenous Tat-His-CRIP1a easily penetrated
into HT22 cells in a time and concentration-dependent manner, and treatment with Tat-CRIP1a, but not
His-CRIP1a, significantly ameliorated H2O2-induced ROS formation and neuronal damage in HT22
cells. CRIP1a has shown responsiveness to both CB1R agonists and antagonists [34], which have
neuroprotective effects following excitoxicity [35,36].

We also confirmed that the treatment of CRIP1a mitigated neuronal loss and a hyperactive
motor phenotype induced by ischemic damage. It has been reported that the expression of CRIP1a
mRNA is co-localized with CB1R mRNA in hippocampal pyramidal neurons and interneurons [12].
Following ischemic damage, deficiencies in oxygen and glucose results in excitotoxicity through the
massive release of excitatory neurotransmitters, such as glutamate, which can result in neuronal
death [37]. Presynaptic calcium entry is necessary for neurotransmitter release, and it is well known
that CB1R activity inhibits presynaptic calcium channels. CRIP1a interacts with CB1R, suppressing the
internalization of CB1R, which is essential for limiting glutamate release into the synaptic cleft [38].
The inhibition of internalization is caused by competing for β-arrestin [39,40], and it has been also
reported that CRIP1a delivers newly synthesized CB1Rs to the presynaptic membrane without
exogenous agonists of CB1R [41]. In hippocampal pyramidal neurons, CRIP1a overexpression
prolongs the inhibition of excitatory currents induced by cannabinoids and decreases the severity
of seizure [12], suggesting that treatment with CRIP1a may reduce ischemic neuronal damage by
attenuating excitotoxicity in the present study.

In this study, we observed a decreased expression of 14-3-3η protein in HT22 cells and in gerbil
hippocampal sub-regions 4 days following ischemia. The 14-3-3 family proteins are involved in many
biological processes such as cell survival, proliferation, apoptosis, and gene expression. The deletion
of all 14-3-3 isoforms in mice results in death [24,42]. The 14-3-3 proteins exhibit anti-apoptotic effects
through interactions with Bcl-2-associated agonist of cell death (BAD), BAX, and p53, which are
well-known pro-apoptotic proteins [43]. Moreover, an altered expression and function of the 14-3-3
proteins have been detected in neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s
disease [44,45]. Treatment with kainic acid, which causes excitotoxic neuronal loss, resulted in
a decreased 14-3-3η expression and increased BAX in cortical neurons [23]. In cardiomyocytes, 14-3-3η
expression is decreased after anoxia and anoxia/reperfusion [46]. It has also been reported that 14-3-3η
is involved in cannabinoid signaling, and expression following excitotoxin was reversed by treatment
with the CB1R agonist delta-9-tetrahydrocannabinol in another study [24]. In the present study,
we also observed that treatment with CRIP1a reversed the decrease in 14-3-3η expression induced by
forebrain ischemia. CRIP1a has been reported to modulate cyclic adenosine 3′, 5′-monophosphate
(cAMP) production, and expression of the 14-3-3η protein is regulated by cAMP and other cellular
signals [40,47]. These results support that the expression level of 14-3-3η is closely associated with
neuronal survival following forebrain ischemia and can be changed by the action of CRIP1a.

In conclusion, we observed that the treatment of Tat-CRIP1a attenuated neuronal damage and
normalized expression of the 14-3-3 η protein in hippocampal sub-regions. These results suggest that
CRIP1a and its related cannabinoid molecules could be considered a therapeutic target for attenuating
neuronal apoptosis following ischemic damage.
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