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Abstract

Background: Simple models inspired by processes shaping consumer-resource interactions have helped to establish the
primary processes underlying the organization of food webs, networks of trophic interactions among species. Because other
ecological interactions such as mutualisms between plants and their pollinators and seed dispersers are inherently based in
consumer-resource relationships we hypothesize that processes shaping food webs should organize mutualistic
relationships as well.

Methodology/Principal Findings: We used a likelihood-based model selection approach to compare the performance of
food web models and that of a model designed for mutualisms, in reproducing the structure of networks depicting
mutualistic relationships. Our results show that these food web models are able to reproduce the structure of most of the
mutualistic networks and even the simplest among the food web models, the cascade model, often reproduce overall
structural properties of real mutualistic networks.

Conclusions/Significance: Based on our results we hypothesize that processes leading to feeding hierarchy, which is a
characteristic shared by all food web models, might be a fundamental aspect in the assembly of mutualisms. These findings
suggest that similar underlying ecological processes might be important in organizing different types of interactions.
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Funding: This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; url: www.fapesp.org ) grants 2009/54567-6 to MMP and
2009/054422-8 to PRG. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: prguima@usp.br

Introduction

A major challenge in ecology is to understand how ecological

networks are assembled. Network assembly ultimately reflects how

interactions between individuals of different species scale up to

organize ecological communities [1,2]. The study of food webs,

which are networks of trophic interactions among species, has

benefited from the proposal of probabilistic, topological models

that are able to reproduce the structure of trophic interactions by

incorporating simple ecological processes (reviewed by Stouffer

[3]). These models offer a way to build realistic food webs using a

few parameters such as the number of interacting species and the

number of interactions that can be estimated in the field [4,5,6,7].

By connecting the structure of real food webs with candidate

underlying processes, such models provide a basis for investigating

the implications of food web organization for ecological dynamics

[8], species persistence [9,10], and ecosystem services [11].

Moreover, differences in how closely each model fits the structure

of empirical food webs provide insight into the fundamental rules

organizing trophic interactions in ecological systems [7,12,13].

The majority of studies on how such models reproduce

ecological networks have focused on food webs, but there is an

increasing body of theory that relies on probabilistic models to

understand the structure of networks formed by other kinds of

ecological interactions such as mutualisms [2,14,15,16]. The

theoretical background for devising specific models for mutualistic

networks stems from the fact that antagonisms and mutualisms

differ in their fundamental ecological and evolutionary implica-

tions [17,18]. Additionally, mutualistic networks share some

marked structural regularities that differ from antagonistic

networks such as food webs [18,19,20]. For instance, mutualistic

networks are best described as two-mode networks in which there

are two sets of nodes (e.g., animals and plants) and there are no

interactions among species within the same set [21]; in contrast,

food webs are organized into several loosely defined trophic levels

[12]. Moreover, mutualistic networks tend to be highly nested, that

is, a given species interacts with a subset of the partners of species

that have more interactions whereas antagonistic networks have

lower degrees of nestedness [18,19](but see [22]). An additional

feature of mutualistic networks is that they exhibit right-skewed

distributions of the number of interactions per species [21],

whereas in food webs, this skewness is, in general, less pronounced

[23].

The well-established differences between food webs and

mutualistic networks (e.g., [18,24]) have been counterbalanced

by increasing evidence that ecological networks share some basic

similarities. For instance, modularity, which was previously

predominantly related to antagonistic networks [25,26], was

reported in a large set of mutualistic networks [27]. Along the

same lines, although nestedness is often higher in mutualistic than
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in antagonistic two-mode networks [18], a recent study [22]

showed that food webs are actually composed of interconnected,

nested, two-mode sub-webs.

Another way in which mutualistic networks and food webs

converge is that most mutualistic relationships are, in fact, rooted

in consumer-resource relationships [28,29]. For example, pollina-

tion is a type of mutualism that often involves animals foraging for

resources provided by flowering plants [30]. Similarly, the

frugivores that disperse seeds away from parental trees are usually

foraging on fruit pulp [31]. Therefore, even though food webs and

mutualistic networks differ in some key aspects of their structure,

we should expect that ecological processes related to resource use

partially shape these interactions in similar ways. In fact, all of the

models proposed for food webs are inspired by processes shaping

the consumer-resource interactions in a given locality. These

consumer-resource interaction rules are quite general and may

also apply to other types of interactions. In this sense, we

hypothesize that food web models are able to reproduce the

structure of mutualistic networks. To test this hypothesis we

adapted food web models to reproduce two-mode networks and

compared their performance, and that of a model designed for

mutualisms, in reproducing real mutualistic networks. We first

calculated summary statistics that described the structural

properties of real food webs and used a likelihood-based model

selection approach [32] in which we computed the likelihood of

obtaining the observed values under a set of candidate network

models. Finally, we explored whether simple topological features

of mutualistic networks explain the performance of network

models.

Methods

The models
To test the performance of food web models in reproducing the

structure of mutualistic networks, we compiled a set of 10

pollination and 15 frugivory networks totaling 25 mutualistic

networks (see Table S1 in supporting information). These

networks ranged from networks with small species richness (animal

species richness, A = 14; plant species richness, P = 11) to species-

rich networks (A = 64; P = 43) and from loosely connected

networks (connectance, C = 0.07) to highly connected networks

(C = 0.47). For each of those networks, we generated an ensemble

of 1000 matrices using four different models to test model

performance. Whenever a model generated a network with

disconnected species or with a C value 3% larger or smaller than

the real one, we discarded that network before running the model

again [5,33].

In most mutualistic relationships, interactions can only occur

between species in two well-defined sets (e.g., animals and plants),

but food webs do not have this two-mode structure. In this sense,

in food web models, all species but producers can be both predator

and prey; in contrast, animals in the mutualistic networks studied

here (pollination and seed dispersal) act as foragers by feeding on

fruits and nectar provided by plants. Therefore, we adapted all

food web models used to the two-mode nature of mutualistic

networks. Our objective was to make as few changes as possible in

the original models. We used the same set of simple rules of food

web models, but interactions only occurred among species of

different sets. As a result, all of the models used the input

parameters A and P as well as the connectance, which is defined as

C = E/AP, where E is the number of recorded interactions. Below,

we first describe each model in detail and then the adaptations we

made to deal with the two-mode nature of mutualistic networks.

We recognize that the models used in this study only represent a

subset of the available food web models (e.g., [6,13,34,35]), but we

consider this to be a representative set of models that encompass a

wide range of candidate rules for how food webs are built up.

Moreover, several models were proposed to explain the structure

of mutualistic networks (e.g., [2,14,36]). However, because our

focus is to build a bridge between models describing antagonistic

and mutualistic relationships, we chose to compare food web

model performance with that of a recent proposed model that was

directly inspired by food web models and has been shown to

successfully reproduce the structure of mutualistic networks [15].

The cascade model. The cascade model was the first of a

series of static models that were capable of reproducing some of

the structural properties of real food webs [4]. The cascade model

is based on the assumption of hierarchical feeding, assigning each

of the S species in the community a random value that is uniformly

drawn from the interval [0,1], which represents species position

along a one-dimensional feeding hierarchy (Fig. 1A). Each species

has a probability q = 2CS/(S – 1) of consuming those species whose

values are smaller than its own [5]. In our effort to adapt the

cascade model to the two-mode nature of mutualistic networks, the

position of species are assigned independently for animals and

plants so that instead of ordering all species along an axis there are

two axes: one for animals and the other for plants (Fig. 1B).

Animals can potentially interact with plants whose values are

smaller than their own but can never interact with other animals.

The probability q of the original model was not valid for the two-

mode version; we defined it as q = E/T, in which T is the number

of possible interactions after species positions are defined. This

approach ensures that the model creates networks with

connectance that closely resembles the connectance of the

empirical food web.

The niche model. The niche model addresses some of the

limitations of the cascade model; in particular, it addresses the lack

Figure 1. Diagrams comparing original food web models and
their two-mode version. (A) the cascade model: each species
(represented as an inverted triangle) is assigned a random value being
placed along an axis. A given species i (gray) potentially interacts with
those species whose values are less than the value assigned to i (as
indicated by arrows); (B) the cascade model for two-mode networks:
species that pertain to different sets (e.g. plants and animals) are
randomly placed along two separate axes. The upper axis represents
the axis of consumers. Therefore a given species i in the upper axis
potentially interacts with those species in the lower axis whose values
are lower than the value assigned to i. (C) The niche model: Each
species is assigned a random value ni and consume all species within a
range of niche values ri. (D) The niche model for two-mode networks:
species that pertain to different sets (e.g. plants and animals) are placed
along two separate axes according to their ni. Each species in the upper
axis consume all species in the lower axis that fall within a range of
niche values ri.
doi:10.1371/journal.pone.0027280.g001
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of feeding cycles and cannibalism. However, the niche model

retains much of the simplicity and tractability embodied by the

earlier model [5,12]. As in the cascade model, the original niche

model [5] assigns a position (ni) taken from a uniform distribution

on the interval [0,1] for all S species and places each of them along

a gradient (Fig. 1C). For each consumer i, a niche range ri = xni,

where 0 # x # 1 is a random variable with a beta-distributed

probability density function p(x) = b(1 – x)( b – 1) with b = (1/2C) –

1 is then defined. This causes species with higher ni to tend to eat

more species and ensures that the average of all species’ r equals C

[33]. The range center (ci) is a uniformly random number between

ri/2 and min (ni, 12ri/2). A consumer i eats all species j whose nj

fall within its range (Fig. 1C). Hence, a diet interval I(Di) = [ci2ri/2,

ci+ri/2] is defined for all species. As in the cascade model, to adapt

the niche model to mutualistic networks, we defined n for plants and

animals within two separate axes and diet ranges were defined only

for animals and projected in the plants axis, such that animals

always behaved as consumers and plants always behaved as food

resources (Fig. 1D). Although we recognize that in many cases plant

traits are responsible for selecting their interaction partners and thus

network assembly could occur from the perspective of plants (e.g.,

[36]) we opted for an approach that is similar to the original models

in which basal species have no defined ranges [5]. To obtain I(D) for

animals, we used functions that are identical to those used in the

original model (see Text S1 for reasoning).

In addition to having a more complex set of rules, the niche

model differs from the cascade model because it imposes

intervality in how links to resource species are assigned. Intervality

means that all of the species in a food web can be placed in a fixed

order on a line such that each consumer’s set of resources forms a

single contiguous segment of that line. Therefore, intervality

suggests that trophic niche space can be represented by a single

dimension [12,37].

The minimum potential model. Even though the niche

model seemed to perform fairly well in reproducing most of the

features of empirical food webs, food webs often do not show

intervality for all species [34]. The minimum potential niche

model [7] is a niche-based model that relaxes the interval feeding

constraint of the niche model in a similar way to the relaxed niche

model [33]. In the minimum potential niche model (hereafter

MPN), forbidden interactions lead to gaps in consumers’ diets [7].

The MPN model can be seen as a way of embedding

multidimensional niches into a one-dimensional context [7]. The

MPN model is similar to the niche model in that at first, the

positions along the niche axis and diet interval I(Di) of each species

are defined. However a consumer eats species that fall within its

diet interval with probability 1 – f, where f is the probability of

having forbidden links in the diet (see Text S2). To adapt the MPN

model to mutualisms two axes are defined and only animals posses

I(D) as in the niche model.

Model of bipartite cooperation networks. The model of

bipartite cooperation (hereafter the BC model) was conceived for

two-mode cooperation networks such as mutualistic networks and

was directly inspired by food web models [15]. Here, we used a

slightly different version of the model described by Saavedra et al.

[15], following the authors’ suggestion. In this model, plants are

treated as members of class P and animals as members of class A.

The model consists of two mechanisms: specialization and

interaction. The specialization rule determines the number of

interaction partners, lpi, of each species p M P. This number is

determined by the interaction among two values: the reward trait,

tRp, a number randomly drawn from an uniform distribution [0,1],

which is attenuated or amplified by an external factor lp that is

randomly drawn from an exponential distribution, which accounts

for effects such as population density. The higher the reward value

of plant pi, the higher is the number of potential interactions

established by pi. The interaction rule determines which species a M
A interacts with each species p M P. Interactions are limited by the

complementarity between the reward traits, tRp, for p M P and

foraging traits, tFa, for a M A. The foraging trait tFa, which are also

uniformly drawn from [0,1], limits the range of possible partners

for each member of class A, but again, interactions are affected by

external factors llp, which could represent, for instance, temporal

variation and population density that are randomly drawn from an

exponential distribution for each interaction.

Interactions are distributed to plants sequentially, in ascending

order, according to their foraging traits tRp. Whenever tRpi.llpi

each link lpi is connected to the first node a9 M A9, where A9 is the

subset of nodes in A that have not already been linked to by

another node p ? pi. Conversely, if tRpi # llpi, interactions of pi are

distributed using a mechanism similar to that proposed by Cattin

et al. [6], i.e., a plant p M P with lower trait value is randomly

selected, and an interaction is established with an animal

randomly chosen among its partners a’’ M A’’ where A’’ is the

subset of nodes in A that have been linked in a previous time step.

If the supply of nodes in either A9 or A’’ is exhausted before all lpi

links have been allocated, then nodes in the other subset are linked

to instead. For additional detailed information on the model we

refer readers to Saavedra et al. [15].

Performance analysis
For each empirical network and their theoretical counterparts,

we calculated four structural properties often used to describe the

structure of mutualistic networks: the degree of nestedness [19],

degree of modularity [27] and the cumulative degree distributions

for both animals and plants [21]. We then used two procedures,

model fit and model likelihood, to evaluate the model perfor-

mances in reproducing these structural properties. Below, we

describe each structural property and both procedures to test

model performances.

Nestedness. Nestedness is a property of networks in which

the interacting assemblage of a species is a subset of the interacting

assemblage of species with more interactions [19]. The index

NODF (an acronym for nestedness metric based on overlap and

decreasing fill [38]) was used to compute the degree of nestedness

of both empirical networks and those generated by the models.

NODF ranges from 0, when the matrix shows other nonrandom

patterns of resource use, to 100, when the matrix is perfectly

nested (additional information on NODF at [38]).

Modularity. Modules within a network are subsets of species

that are more densely connected to each other than to species in

other modules [39]. To find the best partition of a given network

into modules, we used the simulated annealing algorithm to

maximize and index of modularity, M, that accounts for the

number of interactions between species belonging to the same

module and the number of interactions between species belonging

to different modules [39]. M equals 0 if nodes are placed at

random into modules or if all nodes are in the same module and

approaches 1 if modules have well-delimited boundaries (i.e., few

between-module interactions). Although M does not take into

account the fact that mutualistic networks are two-mode networks,

any potential effect of the two-mode structure on modularity is

controlled since all networks analyzed have two sets of species.

Thus, any difference in M among real and theoretical networks

cannot be related to the two-mode structure.

Degree distributions. The degree, k, of a species i in a

mutualistic network can be defined as the number of species with

which species i interacts. Therefore, the cumulative degree

Food Web Models Reproduce Mutualistic Networks
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distribution of a mutualistic network describes the proportion of

species with k or more interaction partners [21]. It can therefore be

considered a description of the pattern of ecological specialization

in the community [40]. Because we dealt with two-mode networks,

degree distributions were calculated separately for animals and

plants.

Model fit. To test whether the models were capable of

reproducing empirical network properties, we used different

procedures depending on the topological property analyzed. For

nestedness and modularity, we calculated the normalized model

error (NME) between the empirical values and the values obtained

from the numerical simulations of each model. The NME can be

defined as the difference between the model’s median property

value and the empirical value divided by the difference between

the model’s median property value and the property value at the

2.5% or 97.5% quantiles, depending on whether the empirical

value is lower or larger than the model’s median [33]. A value of

NME greater than 1 means that the empirical value is significantly

different from the degrees of nestedness or modularity of networks

generated by a given model [33]. By doing this, we did not make

particular assumptions about the distribution of property values

generated by the food web model [33]. Here, we used a slightly

modified version of NME in which we use the absolute value of the

difference between the median and the quantile to normalize the

index so that the direction of the deviation is maintained.

Therefore, a positive NME indicates overestimation of a

property value by the model, and a negative NME indicates

underestimation. To test whether the models were capable of

reproducing degree distributions, we used the Kolmogorov-

Smirnov test [13].

Model likelihood. The procedures described above allow us

to distinguish among situations in which a network property is

reproduced or not. However one model could be regarded as the

one with larger fit when in fact it just produces a larger variance of

metric values. Therefore, to perform comparisons among models,

we opted to use the likelihood approach, which is a statistical

framework specifically designed to allow direct comparisons

among many competing models [32]. Recent studies (e.g.,

[41,42]) aiming to describe how mutualistic networks change

over time have shown that species pairwise-interactions are highly

variable whereas the overall network structure often remains

unmodified. Therefore, we opted for a likelihood approach that

differs from recent proposed likelihood frameworks, which focused

on finding the model that was most likely to reproduce all pair-

wise interactions observed in real networks [7,43]. Because we

were interested in the distinct overall structural properties of each

network, the objective of our likelihood approach is to determine

which model was most likely to reproduce the observed value for

each property separately, gauged by a summary statistic (see [44]).

If the difference between the negative log-likelihood of the best

model and another given model was less than 2, they were

considered equally plausible [32]. For additional information on

how we computed model likelihood using simulations see Text S3.

Correlates of model performance. To develop a better

understanding on which characteristics of the real network affects

the performance of each model, we used a general linear model to

test whether features such as connectance (C), animal species

richness (A), plant species richness (P), and the nestedness and

modularity values themselves affected the normalized errors of

each model, NME (i.e., a proxy for the degree of fit of a given

model for each real network). We used relative nestedness (N*;

[19]) and relative modularity (M*), in which the observed value is

corrected using the average value of 1000 random networks with

the same size and connectance as the original network. The results

still held if we assumed other theoretical benchmark that kept

heterogeneity in the number of interactions across species (‘‘null

model 2’’, [19], Table S2). There was no correlation among N*

and M* (r = 20.39, n = 25, P.0.05), which allowed both to be

included in the analysis as explanatory variables. Then, for each of

the four models, we used multiple regression models of the

following form:

NME = b0 + C6b1 + A6b2 + P6b3 + N*6b4 + M*6b5 + e
where NME is the normalized error, bi are the coefficients of the

multiple regression and e is the usual Gaussian error. All

regressions assumptions, such as the normality of residuals, were

met. Then we used the Akaike criterion to select the best set of

variables in predicting NME [45]. The tests were performed for

NMEs in reproducing NODF and M separately.

Results

All models performed remarkably well in reproducing both the

nestedness and modularity of the mutualistic networks. The

percentage of networks whose metrics were reproduced by each

model varied between nearly 50% and 95% (Table 1). The models

that reproduced the properties in the largest proportion of

networks were the two-mode cascade model and the BC model

(Table 1). When we directly compared the models as competing

hypotheses using the likelihood approach, the outcome of the

model comparison depended on the property being analyzed

(Table 1). The cascade and niche models were among the most

likely models for 84% of the networks considering nestedness. This

result held when using a different nestedness metric, the matrix

temperature, which indicates that these results are not affected by

metric choice (Text S4). Similarly, when considering modularity,

the cascade model was among the most likely models for 84% of

the networks. However, the BC model instead of the niche model

was the second best model in terms of reproducing modularity

(Table 1). Regarding degree distributions, the results are less

straightforward. All four models reproduced degree distributions

for nearly all analyzed networks according to the Kolmogorov-

Smirnov test results (Table 1). Nonetheless, the model comparison

suggested that the cascade model was usually among the best

models in reproducing plants degree distributions, whereas the

niche and BC models outperformed the others more often in

reproducing the degree distribution of animals (Table 1).

The sign of NME indicates whether the model overestimates or

underestimates a property value for a given network. Therefore,

an excess of negative values of NME indicates that a model often

Table 1. Proportion of mutualistic networks (N = 25) whose
properties were reproduced by each model (NME,1;
PKS,0.05)/proportion of networks in which each model was
among the most likely.

NODF M PkA PkP

Cascade 0.84/0.84 0.88/0.84 0.96/0.52 1.00/0.76

Niche 0.80/0.84 0.52/0.44 1.00/0.88 0.96/0.60

MPN 0.60/0.68 0.56/0.60 0.84/0.64 1.00/0.64

BC 0.72/0.80 0.80/0.72 0.96/0.84 0.92/0.60

Columns represent the network properties analyzed: NODF = nestedness, M =
modularity, PkA = cumulative degree distribution of animals, PkP = cumulative
degree distribution of plants. Because more than one model could reproduce or
be among the most likely models in reproducing the property of a given
network the sum of the proportions in each column is larger than 1.
doi:10.1371/journal.pone.0027280.t001

Food Web Models Reproduce Mutualistic Networks
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underestimates a given property, whereas positive values suggest

that the model has a tendency to overestimate it. The niche and

MPN models tended to generate networks with lower degrees of

nestedness and higher degrees of modularity than real networks

(Fig. 2). The cascade and BC models were more balanced and

showed fewer signs of systematic biases in one direction or another

(Fig. 2). However, the degree of fit of models was associated with

basic topological features of networks (see Table 2). Noteworthy

network basic features explained between 70 and 95% of variation

in model fit regarding nestedness and modularity. All models

tended to underestimate nestedness as the degree of relative

nestedness observed increased (P,0.01; Table 2, Fig. 2A). The

degree of relative nestedness also affected the ability of the

cascade, niche and MPN models to reproduce modularity. These

models tended to overestimate network modularity for networks

that had a high degree of relative nestedness (Table 2). The degree

of relative modularity had the opposite effect for the cascade,

MPN and BC models. When reproducing networks with high

Figure 2. Normalized error (NME) of each model in reproducing nestedness (A) and modularity (B) for each of the 25 analyzed
networks. In (A) networks are sorted in increasing order of relative nestedness. Notice nestedness tend to be underestimated for networks with
large nestedness degrees as suggested by partial regression coefficients (Table 2). In (B) networks are sorted in increasing order of relative modularity.
doi:10.1371/journal.pone.0027280.g002

Table 2. Effects of basic real network features in model degree of fit as expressed by the NME.

F df r2 A P C N* M*

Cascade 266.4** 23, 1 0.92 – – – 22.01*** –

Niche 67.1*** 21,3 0.89 20.01* – – 21.05*** 2.07*

MPN 241.5*** 22,2 0.95 20.01*** – – 21.84*** –

BC 19.11*** 21,3 0.70 – – 3.15** 20.6*** 4.12*

Cascade 31.54** 20,4 0.83 0.01* – 1.6* 0.60*** 26.15***

Niche 40.5*** 21,3 0.83 0.01** – 21.59* 0.76*** –

MPN 86.84*** 22,2 0.87 0.01*** – – 1.00*** –

BC 31.89*** 22,2 0.72 – – 2.53** – 28.34***

Multiple regression analyses results reporting the F-statistics (F), degrees of freedom (df), determination coefficient (r2) and the partial regression coefficients of each of
the following factors: animal species richness (A), plant species richness (P), connectance (C), relative nestedness (N*) and relative modularity (M*). Traces mean that the
factor was not included in the best regression. The significance of each factor and the model as a whole is represented as follows:
*,0.05;
**,0.01;
***,0.001. The first 4 rows correspond to the NME for nestedness and the last for modularity.
doi:10.1371/journal.pone.0027280.t002

Food Web Models Reproduce Mutualistic Networks

PLoS ONE | www.plosone.org 5 November 2011 | Volume 6 | Issue 11 | e27280



relative modularity, these models were more prone to underesti-

mate modularity (Table 2). Connectance also affected model fit.

Networks with larger connectance tended to have their degrees of

modularity and nestedness overestimated by the cascade (only for

nestedness) and BC models, whereas modularity NME decreased

with increasing connectance for the niche model (Table 2).

Discussion

Our results show that all four models performed fairly well in

reproducing the properties of empirical mutualistic networks.

However, the cascade and BC models more often generated

theoretical networks that were in agreement with the structure of

real mutualistic networks. Moreover, the cascade model was

frequently among the most likely candidate models in reproducing

the structure of mutualistic networks. Although the performance of

the cascade and BC models was similar, the cascade model is

much simpler than the BC model. In addition to attributing a

value to each species as done in the cascade model, the BC model

has many other free parameters that act as external factors that

affect interactions. Therefore, the good performance of the

cascade model appears even better when model complexity is

taken into account.

In food webs, the cascade model also reproduced some aspects

of the structure of interactions between consumers and resources

[5]. Nevertheless, other models such as the niche and MPN

models often outperformed the cascade model in reproducing food

web structure [5,7,33]. The niche model was mainly proposed as a

solution that included the possibilities of feeding loops and

cannibalism, which were not allowed by the minimal rules of the

cascade model [12]. In plant-animal mutualisms, on the other

hand, interactions only occur between species in different trophic

levels (plants and animals that forage in plant resources).

Therefore, as we dealt with this two-mode structure of mutualisms,

feeding loops were not a problem. This may partially explain the

success of the cascade model for mutualisms in spite of being

outperformed by niche model derivatives in the context of food

webs [5,7,33]. In addition to the two-mode structure, other

biological aspects of mutualisms might explain why the strict

feeding hierarchy generated by the cascade model suffices to

reproduce much of the structure of mutualistic networks.

Hierarchy is also an essential component in the BC model,

which was directly inspired by the set of rules of food web models

[15]. The success of the BC model in reproducing network

structural patterns in a previous work [15] already suggested that

such hierarchical processes should play a crucial role in organizing

mutualistic networks. Because all models considered here

encompass hierarchical processes our results reinforce their

relevance in mutualisms. Moreover, the similar success in

reproducing the structure of real networks of both BC and the

much simpler food web models suggest that the feeding hierarchy

by itself is enough to capture much of the structure of mutualistic

networks. Although multiple processes may generate similar

patterns in ecological systems, our results at least indicate possible

mechanisms shaping the organization of mutualistic interactions in

networks of interacting species.

The most compelling biological basis proposed for the ordering

dimension that induces a feeding hierarchy in food web models is

body size [12,37,43,46]. In this sense, in the context of food webs,

the hierarchical ordering in the cascade model would lead to

larger species interacting with smaller species. Similarly, in niche

models, larger species would tend to have wider trophic niches

[43]. In the case of pollination and frugivory networks, such

hierarchy could refer to any measurable traits related to the

feeding interaction among fruiting/nectar-producing plants and

fruit/nectar consumers such as bill diameter, bill or mouthparts

length, and fruit size or corolla depth. Such traits would be

represented in the adapted models as the two independent axes in

which animals and plants are ordered. Indeed in a series of studies,

Stang et al. [47,48] showed that structural patterns of pollination

networks such as nestedness could be reproduced by incorporating

size thresholds imposed by floral morphology on nectar-feeding

animals. Moreover, body size was found to predict the number of

interactions of ants in ant-plant mutualisms [49]. Finally, larger

frugivores are often able to eat a large variation in fruit sizes than

smaller frugivores, leading to hierarchical ordering in frugivory

[31]. From an evolutionary perspective trait based feeding

hierarchies can emerge as a consequence of natural selection

favoring particular high profitable resource combinations [17].

The way each model encompass feeding hierarchies may also

partially explain differences in model performance. Species-rich

mutualisms often form networks modules of interacting species

based on shared phenotypic traits such as fruit color, flower shape,

animal body mass [27,50]. Nevertheless, modularity in mutualisms

such as pollination and seed dispersal is often smaller than

observed in antagonistic interactions [18] or in symbiotic

mutualisms [2]. The strict feeding hierarchy imposed by the

cascade model causes high overlap in the set of interaction

partners among consumer species, leading to low modularity.

Conversely the set of rules in other food web models, such as niche

and MPN models, that partially relax the cascade hierarchy [9]

might favor higher modularity. In niche and MPN model, species

whose feeding ranges overlap may form network modules that

differ from modules formed by species whose feeding ranges

overlap farther in the niche axis. In fact, both niche and MPN

models were outperformed by the cascade and BC models in

reproducing the low degree of modularity in mutualistic networks,

especially because they usually generated networks that were more

modular than the empirical ones. This may also partially explain

the superior performance of both the niche and MPN models in

comparison with the cascade model in generating the more

modular structure of food webs [5,33].

The degree of relative nestedness and relative modularity of the

real network were the main features of real networks affecting

model fit; for networks with higher relative nestedness, the

cascade, niche and MPN models tended to underestimate

nestedness and overestimate the modularity of real networks.

Conversely for networks with higher relative modularity, real

modularity was usually underestimated. The sensitivity of the

models accuracy to the degree of nestedness and modularity in the

real networks indicates that the high degrees of nestedness or

modularity observed in some mutualistic networks are not

completely explained by the processes incorporated in food web

models analyzed here. Stouffer et al. [13] showed analytically that

a food web model should satisfy two criteria in order to reproduce

most empirical food web properties: niche values should form a

totally ordered set, and each species has a specific, exponentially

decaying probability of preying on a fraction of the species with

lower niche-values. In the context of mutualisms, it seems that a

model’s ability to reproduce empirical networks is not only a

matter of reproducing the functional forms for the distributions of

numbers of prey, predators and links per species, but also of

reproducing the relationship between nestedness and modularity.

Many mechanisms have been proposed for the occurrence of the

nested pattern, namely, differences in abundance among species

[26,51], low interaction intimacy [2], trait complementarity and/

or exploitation barriers coupled with coevolutionary convergence

[14,17,48] and frequent extinctions of specialist-specialist interac-
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tions [52]. Along the same lines, trait matching along with

phylogenetic constraints [20] and high interaction intimacy [2] are

regarded as the main mechanisms that could lead to a modular

structure in mutualistic networks [27]. The rules of the cascade,

niche and MPN models can be interpreted as a form of

encompassing trait complementarity and exploitation barriers

among interacting species. Similarly, the BC model is based on the

complementarity among plants reward traits and animals foraging

traits. Although they do incorporate complementarity, they do not

explicitly consider other mechanisms shaping network structure

such as interaction intimacy, differential extinction and phyloge-

netic constraints. Evolving network models, models in which the

number of species and interactions change over time, have also

been shown to partially explain the structure of mutualistic

networks [2,36]. Future studies combining the mechanisms present

in these two different classes of models might provide additional

insights in the organization of mutualistic networks.

To sum up, food web minimal models were capable of

reproducing most of the mutualistic networks analyzed. Notewor-

thy, even the cascade model, the simplest among the models

considered here, reproduced the structure of nearly the whole set

of networks. Such results open the possibility that the assembly of

networks that describe mutualisms and antagonisms obey a similar

simple set of rules and reinforce that feeding hierarchy might be a

fundamental piece in this puzzle. Therefore, despite the differences

in ecology and evolution of mutualisms and antagonisms [17,18],

they seem to share some key aspects. Our knowledge of the

assembly of natural communities would benefit from future studies

that scrutinize those commonalities and differences and attempt to

sort out the evolutionary and ecological mechanisms that are

responsible for each.

Supporting Information

Text S1 The probability distribution for X for niche and MPN

models.

(DOC)

Text S2 Definition of f for the MPN model.

(DOC)

Text S3 Computing model likelihood.

(DOC)

Text S4 Results using the metric Nestedness Temperature (T).

(DOC)

Table S1 Information on analyzed networks.

(DOC)

Table S2 Effects of basic real network features in NME with

different N* and M* calculations.

(DOC)

Acknowledgments
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50. Donatti C, Guimarães Jr. PR, Galetti M, Pizo MA, Marquitti FMD, et al. (2011)

Analysis of a hyper-diverse seed dispersal network: modularity and underlying
mechanisms. Ecol Lett 14: 773–781.
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