
Human Mutation. 2021;42:799–810. wileyonlinelibrary.com/journal/humu | 799

Received: 21 September 2020 | Revised: 16 March 2021 | Accepted: 17 April 2021

DOI: 10.1002/humu.24212

I N FORMAT I C S

Benchmarking deep learning splice prediction tools using
functional splice assays

Tabea V. Riepe1,2 | Mubeen Khan2 | Susanne Roosing2 |

Frans P. M. Cremers2 | Peter A. C. 't Hoen1

1Centre for Molecular and Biomolecular

Informatics, Radboud Institute for Molecular

Life Sciences, Radboud University Medical

Center, Nijmegen, The Netherlands

2Department of Human Genetics and

Donders Institute for Brain, Cognition and

Behavior, Radboud University Medical

Center, Nijmegen, The Netherlands

Correspondence

Peter A. C. 't Hoen, Centre for Molecular and

Biomolecular Informatics, Radboud Institute

for Molecular Life Sciences, Radboud

University Medical Center, CMBI 260,

PO Box 9101, 6500 HB Nijmegen,

The Netherlands.

Email: Peter-Bram.tHoen@radboudumc.nl

Abstract

Hereditary disorders are frequently caused by genetic variants that affect pre‐
messenger RNA splicing. Though genetic variants in the canonical splice motifs are

almost always disrupting splicing, the pathogenicity of variants in the noncanonical

splice sites (NCSS) and deep intronic (DI) regions are difficult to predict. Multiple

splice prediction tools have been developed for this purpose, with the latest tools

employing deep learning algorithms. We benchmarked established and deep

learning splice prediction tools on published gold standard sets of 71 NCSS and 81

DI variants in the ABCA4 gene and 61 NCSS variants in the MYBPC3 gene with

functional assessment in midigene and minigene splice assays. The selection of

splice prediction tools included CADD, DSSP, GeneSplicer, MaxEntScan, MMSplice,

NNSPLICE, SPIDEX, SpliceAI, SpliceRover, and SpliceSiteFinder‐like. The best‐
performing splice prediction tool for the different variants was SpliceRover for

ABCA4 NCSS variants, SpliceAI for ABCA4 DI variants, and the Alamut 3/4 con-

sensus approach (GeneSplicer, MaxEntScacn, NNSPLICE and SpliceSiteFinder‐like)
for NCSS variants in MYBPC3 based on the area under the receiver operator curve.

Overall, the performance in a real‐time clinical setting is much more modest than

reported by the developers of the tools.
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1 | INTRODUCTION

An estimated 50% of pathogenic variants result in aberrant splicing

(López‐Bigas et al., 2005; Pan et al., 2008). Genetic variants may

affect all sequence elements required for correct splicing, including

the three core elements, which are recognized by the spliceosome:

The canonical 5ʹ splice donor site (SDS), the canonical 3ʹ splice ac-

ceptor site (SAS), and the branchpoint. Both the SDS and SAS contain

conserved dinucleotides. At the SDS, the most commonly en-

countered dinucleotide is a GT and at the SAS invariably an AG.

Alternative dinucleotides for the SDS are known, of which GC with a

frequency of 1% is the most common one (Sheth et al., 2006).

In contrast with the SDS and SAS, the branchpoint motif is

less conserved (Will & Lührmann, 2011). The noncanonical

sequences around the canonical splice sites are part of the splice site

consensus and therefore also conserved. The noncanonical
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sequences at the SAS are located from 14 to 3 nucleotides (nt) up-

stream and 2 nt downstream, that is, in the exon. For the SDS, these

are the last 2 nt of the exon and positions 3 to 6 downstream.

In addition to the three main core elements, other cis‐acting ele-

ments, such as intronic and exonic splicing enhancers and silencers,

are involved in splicing (Albert et al., 2018; Glisovic et al., 2008).

Variants affecting canonical sequences are considered to have a

major effect, where the relevant exon is skipped and even skipping of

neighboring exons can be observed. In the presence of alternative

splice sites in or outside of the exon, partial exon skipping or exon

elongation also have been observed (Fadaie et al., 2019; Fang

et al., 2001; Khan et al., 2020; Labonne et al., 2016; Ramalho

et al., 2003; Sangermano et al., 2018; Symoens et al., 2011). Variants

in the noncanonical splicing motifs are referred to as noncanonical

splice site (NCSS) variants. Disrupting NCSS variants usually affects

splicing by weakening the existing splice site (Bradley et al., 2005;

Shaw et al., 2003), and occasionally by creating a new splice site

(Fadaie et al., 2019). On the contrary, deep‐intronic (DI) variants are

known to both create or strengthen cryptic splice sites (Fadaie

et al., 2019; Khan et al., 2020; Sangermano et al., 2018; Sobczyńska‐
Tomaszewska et al., 2013; Sun & Chasin, 2000). In general, if DI

variants alter splicing, it is through pseudo‐exon inclusion into the

messenger RNA due to the creation of a cryptic SAS or SDS when an

appropriate naturally existing SAS or SDS, respectively, is present

(Dhir & Buratti, 2010; Romano et al., 2013).

To determine the impact of a putative pathogenic variant or

variant of unknown significance (VUS) on splicing, in silico splice

prediction tools may be employed. The available tools make use of

three different algorithms: Motif‐based algorithms, classical machine

learning algorithms, and deep learning algorithms. Whereas classical

machine learning algorithms rely on preselected features, novel deep

learning tools show promising improvements in the field of in silico

splice prediction (Cheng et al., 2019; Louadi et al. 2019; Naito, 2019),

as they learn informative features from the data. Deep learning al-

gorithms may capture more complex information, such as the distance

between different sequence motifs, structural motifs, and nonlinear

relationships. They may also capture the joint effects of the SDS and

SAS, explaining splice site interdependence (Hefferon et al., 2002;

Khan et al., 2020; Ohno et al., 2018). Most in silico splice prediction

tools are trained and evaluated on RNA‐seq data, achieving high

scores for accuracy and precision. The high precision, however, often

cannot be reproduced in diagnostics. The reported area under the

precision‐recall curve for SpliceAI for instance is 0.98 (Jaganathan

et al., 2019), whereas SpliceAI demonstrated lower performance in

small clinical real‐time test sets (Ellingford et al., 2019; Wai

et al., 2020).

In the past, nondeep learning tools have been compared to each

other (Jian et al., 2014; Moles‐Fernández et al., 2018), whereas more

recently, one deep learning tool has been compared to nondeep

learning tools, in which case the deep learning tool has shown to be

more accurate in its predictions (Ellingford et al., 2019; Jaganathan

et al., 2019; Jian et al., 2014; Ohno et al., 2018). Currently, there is

no study comparing different deep learning splice prediction tools on

a clinically relevant set of variants. Therefore, in this study, we

compared the motif‐based algorithm SpliceSiteFinder‐like (Shapiro &

Senapathy, 1987), the interaction‐based algorithm MaxEntScan

(Yeo & Burge, 2004), the classical machine learning tools CADD

(Rentzsch et al., 2019), GeneSplicer (Pertea, 2001), NNSPLICE

(Reese, 1997), and SPIDEX (Xiong et al., 2015) and the deep learning

tools DSSP (Naito, 2019), MMSplice (Cheng et al., 2019), SpliceAI

(Jaganathan et al., 2019) and SpliceRover (Zuallaert et al., 2018). A mo-

tivation for this selection is given in Section 2. The comparison was done

on two of the largest, high‐confidence sets of variants that are rare,

potentially clinically relevant, and for which the effect of splicing has been

functionally assessed using mini‐ or midigene assays.

The variants are located in genes coding for adenosine triphosphate‐
binding cassette subfamily A member 4 (ABCA4) and myosin‐binding
protein C (MYBPC3). The ABCA4 protein is expressed in the retina

where it removes retinaldehyde from the photoreceptor cells (Molday

et al., 2000; Sun & Nathans, 1997). Biallelic pathogenic variants in ABCA4

cause Stargardt disease (STGD1), which displays a spectrum of retinal

phenotypes encompassing early‐onset, classical, and late‐onset STGD1,

depending on the severity of the two alleles (Allikmets et al., 1997;

Cremers et al., 1998, 2020; Maugeri et al., 2000). MYBPC3 is involved in

muscle contraction in heart muscle cells, and defects are associated with

cardiomyopathy (Marston et al., 2009; van Dijk et al., 2009).

2 | METHODS

2.1 | Datasets

Seventy‐one ABCA4 NCSS variants, 81 ABCA4 DI variants, and 61

MYBPC3 NCSS variants with functional validation from LOVD,

ClinVar, and ExAC were selected (Table S1). The selection and splice

assays were already performed, and details can be found in the re-

ferences listed in Table S1. Only variants that may disrupt splicing by

affecting noncanonical splice sites or that may create novel splice

sites in deep intronic regions are included.

The selection criterion for functional validation of the ABCA4

variants was a 2% difference in splice score for at least two of the

Alamut programs (SpliceSiteFinder‐like, MaxEntScan, NNSPLICE,

GeneSplicer, and Human Splicing Finder) and relative strength of at

least 75% for novel splice sites, which has shown to include most of

the disruptive variants in the past (Khan et al., 2020; Sangermano

et al., 2019). To assess the pathogenicity of putative causative ABCA4

variants, splice assays were performed using midigenes as previously

described (Fadaie et al., 2019; Khan et al., 2020; Sangermano

et al., 2018). In short, midigenes contain multiple exons and introns

to mimic a natural genomic context for testing the effect of variants

on splicing. A construct containing the wild type is then compared to

a construct, including the mutant variant, which is introduced by site‐
directed mutagenesis. After independent transfection into HEK293T

cells, ABCA4 transcripts were amplified using reverse‐transcription
polymerase chain reaction (RT‐PCR) and separated on a 2% agarose

gel to determine the percentage of mutant RNA in comparison with
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the control line. ABCA4 variants with more than 20% mutant RNA

were classified as splice altering (Sangermano et al., 2018). For

MYBPC3 variants, the selection criterion was a lower MaxEntScan

score than the score of the reference nucleotide. Selected variants

were assessed in minigenes that contained a CMV promoter and a

500‐base pair oligonucleotide with the relevant intron flanked by

exon fragments (Ito et al., 2017). Computational quantification of RT‐
PCR transcripts with a significant difference (p < .001, two‐sided
Fisher's exact test) between wild type and the mutant transcript

was performed, and variants with a significant difference were

classified as splice altering. Both the ABCA4 and MYBPC3 data sets

were aligned to the human genome reference GRCh37/hg19

assembly.

2.2 | In silico splice prediction tools

In silico splice prediction tools were selected based on the following

criteria:

‐ The tool is freely available.

‐ The tool can be applied to a variant in either variant or sequence

format.

‐ The tool either uses deep learning or is widely applied in routine

diagnostics.

‐ The tool can predict a score for most of the variants in the

data set.

An overview of all in silico prediction tools and their char-

acteristics is provided in Table 1. Tools were grouped into the ca-

tegories classical machine learning, deep learning, and others based

on their underlying algorithm. Deep learning is a part of machine

learning. They differ in the way they define their features. In ma-

chine learning, the features are defined by the user before the

training of the model. In deep learning, the features are defined

during the training of the model. Deep learning, therefore, offers

possibilities to capture more complex features, but the included

feature definition also contributes to the black‐box character of

deep learning.

Delta scores according to formula (1) were calculated for tools

that provided a separate score for wild type and variant sequences.

The absolute value of the score was used for tools that returned

negative values to only compare the magnitude of splice change:

=
−

Delta score
WTscore variant score

Maximum score of the tool
(1)

The commonly applied tools GeneSplicer, MaxEntScan,

NNSPLICE, and SpliceSiteFinder‐like were accessed from Alamut

Visual Software version 2.13 (SOPHiA GENETICS). Missing values,

given the default settings of the Alamut tools, likely do not result in a

change compared to wild type and are unlikely to affect splicing.

Therefore, we replaced them with zero. When multiple splice sites

close to the investigated variant were scored, the score for the ca-

nonical splice site was chosen for NCSS variants, and the score for

the novel created/strengthened splice site was chosen for DI

variants.

The other tools were accessed separately from either a website,

available scripts or files with precomputed scores. Tools accessed via

a website were CADD v1.6 and SpliceRover. For CADD, a variant call

format (VCF) file with the variants was uploaded to the website, and

raw scores were obtained. SpliceRover required a FASTA sequence

with a minimal length of 400 nt. Thus, we included 410‐nt long se-

quences around the variant of interest as input. For 11 variants that

caused an error message, we used a different input length to obtain a

score (ABCA4: 1000 nt for c.769−605T>C, c.769−1778T>C,

c.302+628C>T, and 750 for c.769−788A>T; MYBPC3: 1000 for

c.3815−10T>G, c.2906−12C>T, c.1928−11G>A, c.1625−8C>G,

c.1227−9C>A, c.1091−8G>A and 750 for c.906−8T>C). Python

scripts were available for DSSP, SpliceAI and MMSplice. DSSP re-

quired input sequences of 140 nt with the SAS dinucleotide at po-

sitions 69 and 70 or the SDS dinucleotide at positions 71 and 72.

Donor and acceptor sequences were processed with separate Python

scripts available on the DSSP GitHub (https://github.com/DSSP-

github/DSSP). SpliceAI v1.3.1 was applied to a VCF file. MMSplice

v2.0.0 was also applied to VCF files but returned multiple scores for

most variants. The maximum absolute delta logit PSI score across all

exons was chosen as the primary score. A file with precomputed

scores was available for SPIDEX v1.0. The data and all analysis

scripts can be found at https://github.com/cmbi/Benchmarking_

splice_prediction_tools.

MMSplice and Spidex could not calculate a score for more than

half of the ABCA4 DI variants, and we, therefore, excluded these

tools completely for the analysis of DI variants. MMSplice only

considers variants located within 300 nt of the SDS or SAS. SPIDEX

scores were retrieved from files with precomputed values, which did

not include DI variants.

2.3 | Classification metrics and receiver operator
curve

The accuracy, sensitivity, specificity, positive predictive value (PPV),

negative predictive value (NPV), and Matthews correlation coeffi-

cient (MCC) were calculated for each data set. The formulas of the

applied classification metrics are provided in Table S2. In addition to

the standard statistical measures, MCC was used. The MCC is best

suited for unbalanced data sets, whereas other metrics are influ-

enced by the size of the positive and negative groups. A consensus of

the Alamut tools (GeneSplicer, MaxEntScan, NNSPLICE, and

SpliceSiteFinder‐like) is frequently considered in diagnostics. There-

fore, an Alamut consensus with 3/4 tools was included in the as-

sessment. Sklearn 0.19.2 for Python was used to calculate the area

under the curve (AUC) and the optimal cutoff to separate the true

positives and true negatives for each prediction tool.
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3 | RESULTS

3.1 | Variants

Seventy‐one ABCA4 NCSS variants, 81 ABCA4 DI variants, and 61

MYBPC3 NCSS variants were evaluated with a selection of splice

prediction tools (Table 1). All variants were taken from previously

published data sets (Bauwens et al., 2019; Braun et al., 2013; Fadaie

et al., 2019; Ito et al., 2017; Khan et al., 2019, 2020; Sangermano

et al. 2018, 2019; Zernant et al., 2014) and either might weaken an

existing noncanonical splice site or create a novel splice site in deep

intronic regions. The number of variants that alter splicing and var-

iants that have no effect on splicing is provided in Figure 1a. Ninety

percent (64 out of 71) of ABCA4 NCSS variants altered splicing,

whereas 74% (60 out of 81) of ABCA4 DI variants had no effect on

splicing. MYBPC3 NCSS variants showed a more even distribution

with 56% (34 out of 61) splice‐altering variants. For all three data

sets, more variants were located near the SDS than the SAS

(Figure 1b). Figure 1c and d show the distribution of variants around

the SAS and SDS, respectively, for all NCSS variants. On the donor

site, most splice‐altering variants were located at the last exonic

position, and on the acceptor site, most splice‐altering variants were

located at the first and second exonic position.

3.2 | Receiver operator curve (ROC) and area
under the curve (AUC)

The ROC curves with AUCs of the five best‐performing tools for each

data set are provided in Figure 2a–c. For ABCA4 NCSS variants those

tools were SpliceRover, SpliceAI, DSSP, Spidex and SpliceSiteFinder‐
like. The best‐performing tools for the ABCA4 DI variants were Spli-

ceAI, SpliceRover, GeneSplicer, NNSPLICE, and MaxEntScan. For

MYBPC3 NCSS variants, Alamut 3/4, SpliceSiteFinder‐like, NNSPLICE,

MMSplice and MaxEntScan achieved the highest AUC. ROC curves

including all tools are provided in Figure S1.

Figure 3 compares the tools of the three different categories based

on their AUC value for the three different data sets. The tools with

the highest AUC value for each category were SpliceAI for deep

learning, NNSPLICE for machine learning, and the Alamut 3/4 con-

sensus approach and MaxEntScan for the other category. For the

ABCA4 NCSS variants, the deep learning tools SpliceAI, SpliceRover

and DSSP had the highest AUC. SpliceAI outperformed all other tools

on the ABCA4 DI variants. For the MYBPC3 dataset, the Alamut tools

GeneSplicer, NaxEntScan, NNSPLICE and SpliceSiteFinder‐like, and
MMSplice achieve the highest AUC.

3.4 | Comparison of thresholds

The ROC was used to determine the best threshold for each data set to

classify the variants as splice‐altering or nonsplice‐altering. Table 2 shows

the comparison of the thresholds identified with the ROC curve with the

predefined threshold for the different tools suggested by the developers.

The best threshold to maximize the number of true positives and true

negatives depended highly on the data set. For MaxEntScan and

NNSPLICE the best thresholds were higher than the predefined

threshold, whereas the best thresholds for DSSP, MMSplice, SPIDEX and

SpliceAI were lower. SpliceSiteFinder‐like thresholds were higher than

the predefined threshold for ABCA4 DI variants and MYBPC3 variants,

and the threshold for ABCA4 NCSS variants was lower. The thresholds

for CADD were difficult to compare to the predefined thresholds be-

cause these utilize a threshold depending on the location of the variant.

GeneSplicer and SpliceRover have no predefined threshold. Three tools,

MMSplice, SpliceAI and SpliceSiteFinder‐like, showed thresholds close to

the predefined threshold.

3.5 | Performance assessment of the splice
prediction tools

The accuracy, sensitivity, specificity, PPV, NPV, and MCC for each data

set, as defined in Table S2, are provided in Tables 3–5. For the ABCA4

NCSS variants, the PPV was above 90% for all tools and the NPV was

below 30% for all tools. This can be explained by the imbalance in the

variants as the majority of the variants in this data set affected splicing.

The highest MCC, a measure that is optimal for unbalanced test data

sets, was found for SpliceAI and SpliceRover. For ABCA4 DI variants, the

tools with the lowest MCC, and also PPV and specificity, corresponded to

the tools with the lowest AUC (SpliceSiteFinder‐like and CADD). SpliceAI

showed the highest accuracy, PPV, sensitivity, specificity, NPV, and MCC.

For the MYBPC3 NCSS data set, all tools showed a reasonable perfor-

mace based on both the AUC and MCC. The tool with the highest AUC

was the Alamut 3/4 consensus approach, followed by GeneSplicer,

MMSplice and SpliceSiteFinder‐like.

4 | DISCUSSION

Increasing use of whole genome and whole exome sequencing in

routine diagnostics requires in silico splice prediction tools to select

likely pathogenic variants for further testing. To date, there are

studies evaluating single splice prediction tools, but none comparing

multiple deep learning tools. This study benchmarked selected es-

tablished and deep learning in silico splice prediction tools based on

multiple classification metrics on two of the largest sets of variants

for which the effect of splicing is functionally assessed using mini‐ or
midigene assays. The data showed that SpliceAI, the Alamut 3/4

consensus approach, NNSPLICE, and MaxEntScan perform well on all

data sets based on the AUC. Though for ABCA4 variants tools of the

deep learning category showed the highest AUC values, the Alamut

tools and MMSplice performed best on the MYBPC3 variants. Ad-

ditionally, this study demonstrated that the choice of the best splice

prediction tool may depend on the gene of interest and the type of

splice‐altering variants. Only for ABCA4 DI variants we could clearly

identify SpliceAI as the best performing tool.
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We included NCSS and DI variants in the ABCA4 gene and NCSS

variants in theMYBPC3 gene. There was no single best‐performing splice

prediction tool for all three data sets. This may be explained in several

ways. ABCA4 and MYBPC3 are expressed in a tissue‐specific manner,

with high expression in the retina and heart muscle, respectively. The

representation of splice patterns in these tissues in the data used for

training different deep learning algorithms may affect its performance.

None of the tools included retina tissue in its training data, as far as we

can judge. Moreover, most splice prediction tools focus on the area

around the canonical splice sites and were not trained on DI variants,

which explains their lower performance on the DI data set. Another

reason for differences in performance may lie in the selection criteria

used to functionally assess the ABCA4 and MYBPC3 variants. MYBPC3

variants were selected for functional validation based on MaxEntScan

scores, and ABCA4 variants were selected when they showed a differ-

ence in splice score for at least two of the Alamut programs (including

Human Splicing Finder) and/or a delta score of at least 2%. This may lead

to a positive bias in the performance assessment for the tools that were

F IGURE 1 Variant effect on splicing and splice site. (a) Distribution of splice‐altering variants and distribution of variants that affected
either the splice acceptor site (SAS) or splice donor site (SDS) in the ABCA4 NCSS, ABCA4 DI, and MYBPC3 NCSS data set. (b, c) Plot of the
number splice‐altering and nonsplice‐altering NCSS variants present at the SDS (+3 to +6, panel b) and SAS (−14 to −3, panel c) and the first or
last two nucleotides of the exon and the number of variants found to affect splicing
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used to select the variants, but we find the opposite, where Alamut 3/4

performs best on theMYBPC3 data, and MaxEntScan performs relatively

well on the ABCA4 data set. Yet another source of difference in per-

formance can be found in the functional assays used for their evaluation;

ABCA4 variants were tested in midigenes and MYBPC3 variants in

minigenes. In most cases, minigenes and midigenes result in the same

transcripts but when the flanking exons of the minigene vector are

stronger than the ones in the gene of interest, they can cause artifacts.

Ideally, we would have used only data sets tested in midigenes; however,

the data was not available. The different splice assays might also explain

why SpliceAI performed better on the ABCA4 data sets than on the

MYBPC3 data set.

The performance measures of splice prediction tools need to be

carefully chosen, in particular when there is an imbalance in the

F IGURE 2 Receiver operator curve (ROC) and area under the curve (AUC) for the five splice prediction tools with the highest AUC for each
data set. ROC curves for (a) ABCA4 NCSS variants, (b) ABCA4 DI variants, and (c) MYBPC3 NCSS variants. The AUC values are given in the insets

F IGURE 3 Comparison of the area under the curve (AUC) for all tools in the three different data sets. In addition to the individual tools, the
Alamut 3/4 consensus was included. The best tool for each category is highlighted in dark blue. For the other category, both the Alamut 3/4
consensus approach and MaxEntScan showed comparable high AUC values and are, therefore, highlighted
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TABLE 2 Comparison of the optimal
thresholds for each data set with the
suggested threshold by the developers

Tool

ABCA4

NCSS ABCA4 DI

MYBPC3

NCSS Suggested threshold

CADD 2.66 0.24 2.09 5ʹ extended: 7.39, 3ʹ intronic:
0.0964, exonic: 0.39

DSSP 0.01 0.13 0.01 0.30

GeneSplicer 0.18 0.05 0.21 –

MaxEntScan 0.26 0.31 0.24 0.10

MMSplice 1.42 – 1.37 2

NNSPLICE 0.13 0.40 0.30 0.05

Spidex 0.86 – 1.72 5

SpliceAI 0.19 0.18 0.11 0.20

SpliceRover 0.18 0.26 0.10 –

SpliceSiteFinder‐like 0.01 0.12 0.09 0.05

TABLE 3 Confusion matrix and statistical measures of the ABCA4 NCSS variants

Tool Missing values TP FP TN FN Accuracy (%) PPV (%) Sensitivity (%) Specificity (%) NPV (%) MCC

Alamut Consensus 3/4 0 35 2 5 29 56 95 55 71 15 0.16

CADD 0 40 3 4 24 62 93 63 57 14 0.12

DSSP 0 51 2 5 13 79 96 80 71 28 0.35

GeneSplicer 0 31 3 4 33 49 91 48 57 11 0.03

MaxEntScan 0 40 2 5 24 63 95 63 71 17 0.21

MMSplice 0 43 2 5 21 68 96 67 71 19 0.24

NNSPLICE 0 42 2 5 22 66 95 66 71 19 0.23

Spidex 5 43 2 5 21 68 96 67 71 19 0.24

SpliceAI 0 50 1 6 14 79 98 78 86 30 0.42

SpliceRover 0 48 1 6 16 76 98 75 86 27 0.39

SpliceSiteFinder‐like 0 40 2 5 24 63 95 63 71 17 0.21

Abbreviations: FN, false negatives; FP, false positives; MCC, Mathew's correlation coefficient; NPV, negative predictive value; PPV, positive predictive

value; TN, true negatives; TP, true positives.

TABLE 4 Confusion matrix and statistical measures of the ABCA4 DI variants

Tool Missing values TP FP TN FN Accuracy (%) PPV (%) Sensitivity (%) Specificity (%) NPV (%) MCC

Alamut Consensus 3/4 0 11 14 46 10 70 44 52 77 82 0.28

CADD 0 12 24 36 9 59 33 57 60 80 0.15

DSSP 0 13 19 41 8 67 41 62 68 84 0.27

GeneSplicer 0 14 16 44 7 72 47 67 73 86 0.36

MaxEntScan 0 13 21 39 8 64 38 62 65 83 0.24

NNSPLICE 0 14 17 43 7 70 45 67 72 86 0.35

SpliceAI 0 19 3 57 2 94 86 90 95 97 0.84

SpliceRover 0 15 14 46 6 75 52 71 77 88 0.44

SpliceSiteFinder‐like 0 11 27 33 10 54 29 52 55 77 0.06

Abbreviations: FN, false negatives; FP, false positives; MCC, Mathew's correlation coefficient; NPV, negative predictive value; PPV, positive predictive

value; TN, true negatives; TP, true positives.
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number of splice‐altering and nonsplice‐altering variants. In the

ABCA4 NCSS data set, most variants affected splicing, whereas most

ABCA4 DI variants had no effect on splicing. The MYBPC3 data set

contained about the same number of splice and nonsplice‐altering
variants. Imbalance in the data set influences most classification

metrics. If the positive (splice‐altering) and negative class (nonsplice‐
altering) are interchanged during the calculation of the metric, the

metric changes. The only metric not influenced by class imbalance is

MCC and we regard this as the preferred measure in the current

setting.

Our results are consistent with previous studies that included a

smaller number of splice prediction tools. Wai et al. (2020) compared

Alamut, Human Splicing Finder, and SpliceAI on 257 VUSs (NCSS and

DI) from blood RNA samples showing that SpliceAI outperformed the

other tools with an AUC of 0.951. A second study by Ellingford et al.

(2019) compared SpliceAI, SPIDEX, S‐CAP, CADD, and MaxEntScan

first in a real‐time assessment of 21 variants and then in variant

prioritization of nearly 3000 variants. The real‐time assessment

showed that SpliceAI and MaxEntScan achieved a good performance.

In the variant prioritization of the large cohort only SpliceAI, Spidex,

and CADD are compared. Here, SpliceAI showed the highest AUC

(0.96). Our AUC values for SpliceAI were 0.80 (ABCA4 NCSS), 0.95

(ABCA4 DI), and 0.72 (MYBPC3 NCSS). Especially the AUCs of the

NCSS data sets are lower than the AUC found in the two other

studies. There can be multiple explanations for this. First, our data

sets are smaller, making the right prediction for each individual

variant more important. Second, we used variants located in only one

gene, whereas the abovementioned studies used variants in a variety

of genes. This could indicate that for genes with tissue‐specific ex-

pression the available splice prediction tools are not specialized

enough, for reasons explained above. Third, we evaluated tools based

on functional assessment with midi‐ or minigenes assays, which

currently represent the best medium‐throughput tools. Still, also this

experimental set‐up has limitations since the splice assays were

performed in human kidney cells. This means that tissue‐specific
splicing events may be missed. For ABCA4 it is known that variants

can lead to tissue‐specific pseudo‐exon inclusion (Albert et al., 2018).

Another limitation is that the percentage mutant RNA of the ABCA4

variants is determined based on RT‐PCR products visualized on

agarose gels. RT‐PCR has a bias toward smaller segments, and this

can lead to incorrect classification of the variants. A better alter-

native would be to use RNA‐sequencing, which captures bigger

segments as well as smaller segments.

A general observation made in our benchmark study is that the

prediction of the in silico tools on a set of clinically relevant variants

varies considerably from the performance described in the original

paper. SpliceAI, for instance, achieves an area under the precision‐
recall curve (PR‐AUC) of 0.98 on RNA‐seq data (Jaganathan

et al., 2019). For our data sets, the PR‐AUC is 0.93 for ABCA4 NCSS

variants, 0.91 for ABCA4 DI variants, and 0.74 for MYBPC3 NCSS

variants. The higher performance observed by the authors can be

explained by the use of an RNA‐seq dataset. Large population‐based
RNA‐seq data sets like GTEx (Lonsdale et al., 2013) may contain non‐
pathogenic rare splice‐altering variants (Mertes et al., 2021) and

have an extreme skew toward variants with a neutral effect on

splicing. This may introduce biases that make their results poorly

generalizable to variants encountered in a clinical setting with a

higher prior likelihood for affecting splicing. Moreover, circularity,

that is, incomplete independence of the variants used for training

and testing, may result in overestimation of the performance of the

model (Grimm et al., 2015). This is why it is important to use a truly

independent set of clinically relevant variants to evaluate the per-

formance of the splice prediction tools. Additionally, it is important

to use the right evaluation metrics to compare different algorithms.

As shown for the ABCA4 variants, imbalance in the data set influ-

ences the classification metrics and, therefore, also the comparison.

TABLE 5 Confusion matrix and statistical measures of the MYBPC3 NCSS variants

Tool Missing values TP FP TN FN Accuracy (%) PPV (%) Sensitivity (%) Specificity (%) NPV (%) MCC

Alamut Consensus 3/4 0 23 4 23 11 75 85 68 85 68 0.53

CADD 0 21 8 19 13 66 72 62 70 59 0.32

DSSP 0 22 10 17 12 64 69 65 63 59 0.28

GeneSplicer 0 25 6 21 9 75 81 74 78 70 0.51

MaxEntScan 0 24 6 21 10 74 80 71 78 68 0.48

MMSplice 0 25 6 21 9 75 81 74 78 70 0.51

NNSPLICE 0 23 6 21 11 72 79 68 78 66 0.45

Spidex 3 20 9 18 14 62 69 59 67 56 0.25

SpliceAI 0 22 8 19 12 67 73 65 70 61 0.35

SpliceRover 0 22 9 18 12 66 71 65 67 60 0.31

SpliceSiteFinder‐like 0 25 6 21 9 75 81 74 78 70 0.51

Abbreviations: FN, false negatives; FP, false positives; MCC, Mathew's correlation coefficient; NPV, negative predictive value; PPV, positive predictive

value; TN, true negatives; TP, true positives.
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The precision‐recall curve uses the PPV and sensitivity to calculate

the AUC. The imbalance in the data set has an influence on both

metrics, which makes it difficult to compare highly imbalanced data

sets based on the PR‐AUC.
To conclude, there are a variety of different splice prediction

tools available. It is not easy to choose which tool to use because

different tools may perform better in different contexts. The best‐
performing tools make use of different algorithms, deep learning

(SpliceAI), machine learning (NNSPLICE), and interactions (Max-

EntScan). Deep learning has the possibility to improve splice pre-

diction but is not a guarantee for success: For both ABCA4 datasets

the deep learning tools showed promosing results, while for the

MYBPC3 dataset the more traditional Alamut tools achieved better

results. Only for ABCA4 DI the deep learning tool SpliceAI clearly

outperformed all other tools. In the end, it is always a trade‐off
between knowing the features in traditional machine learning, and

thereby also limiting the complexity and numbers of features, and

the possibility to capture more complex features in deep learning but

having a black‐box algorithm.
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