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Abstract

Background and objective: Moderate exercise contributes to good health. However,
excessive exercise may lead to cardiac fatigue, myocardial damage and even exercise
sudden death. Monitoring the heart health has important implication to prevent exer-
cise sudden death. Diagnosis methods such as electrocardiogram, echocardiogram,
blood pressure and histological analysis have shown that arrhythmia and left ventricu-
lar fibrosis are early warning symptoms of exercise sudden death. Heart sounds (HS)
can reflect the changes of cardiac valve, cardiac blood flow and myocardial function.
Deep learning has drawn wide attention because of its ability to recognize disease.
Therefore, a deep learning method combined with HS was proposed to predict exer-
cise sudden death in New Zealand rabbits. The objective is to develop a method to
predict exercise sudden death in New Zealand rabbits.

Methods: This paper proposed a method to predict exercise sudden death in New
Zealand rabbits based on convolutional neural network (CNN) and gated recurrent unit
(GRU). The weight-bearing exhaustive swimming experiment was conducted to obtain
the HS of exercise sudden death and surviving New Zealand rabbits (n=11/10) at four
different time points. Then, the improved Viola integral method and double threshold
method were employed to segment HS signals. The segmented HS frames at different
time points were taken as the input of a combined CNN and GRU called CNN-GRU
network to complete the prediction of exercise sudden death.

Results: In order to evaluate the performance of proposed network, CNN and GRU
were used for comparison. When the fourth time point segmented HS frames were
taken as input, the result shows that the proposed network has better performance
with an accuracy of 89.57%, a sensitivity of 89.38% and a specificity of 92.20%. In
addition, the segmented HS frames at different time points were input into CNN-GRU
network, and the result shows that with the progress of the experiment, the predic-
tion accuracy of exercise sudden death in New Zealand rabbits increased from 50.98 to
89.57%.

Conclusion: The proposed network shows good performance in classifying HS, which
proves the feasibility of deep learning in exploring exercise sudden death. Further, it
may have important implications in helping humans explore exercise sudden death.
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Background

Exercise sudden death has attracted widespread attentions due to the difficult predic-
tion, short onset time and high mortality [1, 2]. Cardiac function reflects the ability of
the heart to work, and some indicators related to cardiac function such as ejection frac-
tion and systolic blood pressure have been confirmed to alert to sudden death caused
by excessive exercise [3, 4]. Therefore, it is of great significance to pay attention to the
changes of heart function during exercise for guiding people to exercise scientifically
and preventing exercise sudden death.

Exercise sudden death refers to non-traumatic accidental death occurring during exer-
cise or within 24 h after exercise [3]. The temporary decrease in cardiac function caused
by high-intensity, long-term and multi-round exercise is called cardiac fatigue and usu-
ally precedes exercise sudden death [5, 6], where multi-round exercise refers to repeated
exercise. If the state of reduced cardiac function is not restored within 24 to 48 h, it will
lead to a series of abnormalities, such as systolic and diastolic dysfunction, myocardial
contractility reduction, cardiac burden increment, and even exercise sudden death [7].

The pathogenesis of sudden death caused by excessive exercise is still unclear [8].
Unexplained exercise sudden death is of great interest during exercise and competi-
tion [3, 9-11]. Recent theoretical developments have shown that exercise intensity and
duration are important factors [12, 13]. Animal experiments have been widely used to
study the changes of cardiac function during exercise. The experimental subjects mainly
include rats, rabbits, sheep, canine, swine and horses, and the experimental methods are
mostly running or swimming [8, 13—18]. Rabbits are often used to explore various car-
diovascular diseases because their myocardial is similar to human’s in function [18, 19]
and swimming can significantly affect the cardiac function with less emotional involve-
ment [20]. Therefore, it is a way to study the changes of cardiac function during exercise
to establish rabbit model through the exhaustive swimming experiment.

Clinical methods have been widely used to monitor cardiac status during exercise.
Some researchers have found that indexes related to systolic function decline after pro-
longed exercise by echocardiography, electrocardiogram and/or biochemical indicators
[13, 16]. Moreover, the previous studies have shown that intense exercise may lead to
pathological heart remodeling and ultimately to myocardial fibrosis, which affects the
diastolic and systolic function of the heart [7]. As a safe and non-invasive diagnostic
method, heart sounds (HS) can reflect the diastolic and systolic functions of the heart
from the perspective of myocardial inotropism [21]. To date, the research on exercise
sudden death using HS has been rarely reported yet. Therefore, it is necessary to analyze
the HS of rabbits during exercise to find the changes of cardiac function before exercise
sudden death.

Machine learning is an effective tool for heart sound classification and prediction.
Some studies on HS feature extraction and classification using machine learning are
summarized in Appendix: Table 6. The studies of traditional machine learning based on
HS are mostly focused on feature extraction [22-24]. However, feature extraction is a
critical and error-prone step. As a type of machine learning, deep learning methods can
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automatically learn deep features from signals and are widely used in one-dimensional
physiological signals. For instance, the 1D convolutional neural networks (CNN) were
proposed to learn the deep features [25] or hand-crafted features [24] of the HS and
divided HS signals into normal and abnormal directly. Gated recurrent unit (GRU) is
an improved recurrent neural network (RNN) proposed by Chung et al. in 2014 [26],
which has a good performance in the classification and prediction of HS signals [27].
Furthermore, hybrid deep learning networks can combine the spatial features extracted
by the CNN and the temporal features captured by the RNN. In [28, 29], the combi-
nation of CNN and RNN/GRU were reported to classify the HS signals and the hybrid
deep learning network had better performance than the single deep learning network.
Therefore, the hybrid deep learning network provides a method for predicting exercise
sudden death based on HS.

In conclusion, the objectives of this study were to (1) find a suitable deep learning net-
work to identify the HS of exercise sudden death and (2) predict the exercise sudden
death in rabbits based on the process of animal experiments. The contributions of this
study are as following:

1. develop a method of combining HS and deep learning to predict sudden exercise
death in rabbits;

2. propose an effective deep learning network to predict sudden exercise death in rab-
bits.

Results

The aim of this paper is to predict the health status (survival or exercise sudden death)
of rabbits during intermittent exercise based on HS signals. The dataset consisted of the
HS signals from surviving and sudden death rabbits at four different time nodes in the
repeated weight-bearing exhaustive swimming experiment, and named Dataset A, Data-
set B, Dataset C and Dataset D, respectively. In the classification, 80% and 20% of signals
were divided into training set and test set, respectively, and then 20% of the training set
were taken as validation set to monitor whether the network has been fitted. The HS
signal of the same rabbit should not appear in the training set and the test set at the same
time. In performance evaluation, accuracy (Acc), sensitivity (Sens), and specificity (Spec)
were used to evaluation network performance. Figure 1 illustrates the framework of this
paper. The algorithms of preprocessing and classification were implemented in MAT-
LAB (version 9.5 R2018b) and python (version 3.5.4), respectively.

The training for the CNN-GRU network

In general, the optimizer, loss function, and activation function affect network perfor-
mance. The optimizer updates and calculates network parameters by minimizing the loss
function, which represents the gap between prediction and actual. The activation func-
tion improves the processing of complex tasks by performing nonlinear combinations of
weighted inputs. Moreover, the hyperparameters in network affect the final result, such
as learning rate, dropout rate, and training epochs. The learning rate is a hyperparameter
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Fig. 1 The illustration of the workflow in this paper. The CNN-GRU is the proposed network while others are
the networks compared

that guides how the network adjusts the weights by the gradient of the loss function, and
the dropout rate is used to improve the generalization ability of the model.

In this study, the cross-entropy function with L2 norm was selected as the loss func-
tion and the regularization parameter was set to 0.001. AdamOptimizer was chosen as
the optimizer due to its robustness to the choice of hyperparameters [30], ReLU was
picked as the activation function of the convolution layer because it deals well with the
vanishing gradient problem [31], and the learning rate and dropout rate were selected as
0.001 and 0.5, respectively.

The whole network was trained for 50 epochs with the batch size of 64. Here, early
stopping was adopted to avoid overfitting by detecting loss values, which means first
preset a number of epochs, and if the network loss value does not decrease in 10 con-
secutive epochs, then the network stops training. Figure 2 shows the improvement of
CNN-GRU network performance with the increase of the epochs during training. The
CNN-GRU network gradually converged form the 25th epoch, the accuracy and loss of
the validation set gradually close to the training set, and the network stopped training
at the 39th epoch, which indicates that the training epoch is preset to 50 is sufficient to
make the algorithm converge.

The performance comparison of different networks

Three different networks were used for the classification of the Dataset D. By evaluat-
ing the proposed network, CNN-GRU network got an average accuracy of 89.57%, a
sensitivity of 89.38%, a specificity of 92.20%, which were 2.92%, 5.54% and 2.7% higher
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Fig. 2 The training and validation performance of the CNN-GRU network at 50 epochs: a accuracy; b loss

than CNN employed by grid search method, respectively. Moreover, the accuracy, sen-
sitivity and specificity of the proposed network were 16.02%, 14.97% and 19.85% higher
than GRU network searched by grid search method, respectively. Table 1 summarizes
the performance of the three networks.

The impact of time nodes on classification results

The HS signals at four different time nodes were fed into the CNN-GRU network to
explore the law of HS changes during excessive exercise and found the time point signal
that can reflect the final state. The results are shown in Table 2 and Fig. 3 describes the
trend of the results. It can be found that as the experiment went on, the classification
accuracy of HS gradually enhanced. Especially, when 24 h after the second exhaustion
swimming (Dataset C), the network was able to recognize two classes of HS in rabbits.

Discussion

The comparison of different convolution kernel shapes and different numbers of layers

In order to compare the effects of different convolutional kernel shapes and different
network layers on the performance of CNN-GRU, the Dataset D was used as the input

Table 1 The performance comparison of different networks

Networks Acc (%) Sens (%) Spec (%)
CNN 86.65 83.84 89.50
GRU 73.55 7441 72.35
Proposed network 89.57 89.38 92.20

Acc accuracy, Sens sensitivity, Spec specificity

Table 2 The performance of proposed network with four different time nodes

Dataset Acc (%) Sens (%) Spec (%)
Dataset A 50.98 60.59 4240
Dataset B 64.34 74.97 64.36
Dataset C 85.41 84.18 79.34
Dataset D 89.57 89.38 92.20

Dataset A to Dataset D, respectively, represent the HS signals at different time points in the experiment
Acc accuracy, Sens sensitivity, Spec specificity
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Fig. 3 The classification results of HS signals at different time points by CNN-GRU network. When Dataset D
is used as input, the CNN-GRU achieves the best performance

Table 3 Results of the different convolution kernel shapes and different numbers of convolution

layers

Different layers Convolution kernel Acc (%) Sens (%) Spec (%)
size

4 layers 10 72.71 80.71 74.25
20 75.33 78.16 70.72
30 65.77 72.15 51.38

6 layers 10 7345 77.02 79.90
20 7748 79.58 7735
30 75.03 86.97 73.05

8 layers 10 85.35 8791 84.75
20 89.57 89.38 92.20
30 85.72 88.29 8742

The best result is highlighted in bold

Acc accuracy, Sens sensitivity, Spec specificity

of the network with convolutional kernel sizes varies in {10, 20, 30} and network layers
range in {4, 6, 8} to compare its performance. Four-layer CNN-GRU network consists
of a convolutional layer, a pooling layer, a GRU layer and dense layer, and the six-layer
CNN-GRU network is formed by stacking a convolutional layer and a pooling layer on
the four-layer CNN-GRU. The structure of the eight-layer CNN-GRU network with a
convolutional kernel size of 20 is the proposed network which shown in “Methods” sec-
tion. The experimental results are shown in Table 3. The results show that the best per-
formance is obtained when the convolution kernel is chosen to be 20 and the number of
network layers is chosen to be 8.

The comparison of different units
We also compared the impact of the number of units on the performance of CNN-GRU

network. Using the structure of proposed network as a basis, the number of units varies
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in {8, 16, 32, 64, 128, 256} and the results are depicted in Fig. 4, it is found that the best
performance is obtained when the units are 128.

The comparison of different learning rate and dropout rate

To obtain enhanced results, based on the proposed CNN-GRU network, we tested the
effects of different learning rates and dropout rates on network performance, respec-
tively, and plotted them in Fig. 5, which shows that CNN-GRU has better performance
when the learning rate is 0.001 and dropout rate is 0.5.

The distinctions of HS characteristics between survival rabbit and exercise sudden death
rabbit

Cardiac reserve indicators are often used to assess the state of cardiac function can be
extracted from the HS, which is mainly composed of the first HS, the second HS. The
systolic duration is the duration from the start of the first HS to the start of the second
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HS in a cycle, and the diastolic duration is the duration from the start of the second HS
to the start of the first HS in the next cycle. The heart rate (HR) and the ratio of diastolic
to systolic duration (D/S) between survival group and exercise sudden death group at
different time nodes were extracted during processing, and the ¢-test was performed on
SPSS (version 22.0). The results are shown in Fig. 6, and P values are less than 0.05 were
considered significant.

Moderate exercise can improve cardiac function and reduce HR [18], and irregular HR
can be a factor in screening for sudden death [32]. The exercise sudden death group had
a higher HR than survival group at 24 h after the second exhausting swimming as shown
in Fig. 6a. In the survival group, the HR showed a downward trend, indicating that regu-
lar physical exercise could reduce the HR, which was consistent with [18].

In addition, D/S can reflect whether cardiac muscle perfusion time during diastole is
sufficient or not [33]. It has been reported that exercise-overload can proliferate collagen
fibers, which limits the elongation and shortening of cardiomyocytes and increases myo-
cardial stiffness, as a result, cardiac diastolic and systolic functions are decreased [34].
D/S in exercise sudden death group lower than in survival group at dataset D as shown
in Fig. 6b, which denotes that the survival group can supply more nutrients and oxygen
for systolic work because of the longer diastolic period.

The advantages and limitations of the proposed method

The main advantages of the method proposed in this paper is that it is the first time to
study exercise sudden death in rabbits using deep learning method combined with HS.
The changes of cardiac function during exercise still need to be further explored, and
most studies have explored the changes in cardiac function during exercise by extract-
ing specific indicators through echocardiography, electrocardiography, blood samples,
etc. In this case, the successful practice of the deep learning hybrid network proposed
in this paper to predict sudden exercise death by automatically extracting depth fea-
tures provides a new way to study the occurrence of sudden exercise death. However,
this study has the following three limitations: (1) due to the small amount of data and
the lack of database, there is no additional data available to improve the performance
of the proposed method and evaluate the generalization ability of the network and pre-
trained deep architecture can be considered to further handle this problem; (2) since the

-survlval group a I survival group . b

350 | -exerclse sudden death group 1.4 |- [l exercise sudden death group
* *
¥
300 - 12}
@ %)
250 * 210t i
200 08

Dataset A Dataset B Dataset C Dataset D Datalset A Datalset B Data‘set C Datalsel D
Fig. 6 The variation of HR and D/S between survival and exercise sudden death group in different datasets: a
shows that the HR values of Dataset C and Dataset D are different between the two groups; b shows that the
D/S between the two groups of rabbits is different in Dataset D. *P < 0.05
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HS signals in the animal experiment is not continuously monitored, the HS of several
rabbits that died suddenly were not collected at the moment of death, but the HS of the
closest time node to the time of death were selected for follow-up work; (3) depth fea-
tures lack the physical meaning that certain indicators extracted from echocardiography,
electrocardiography, blood samples can express.

Conclusion

Study of cardiac fatigue is important to prevent exercise sudden death caused by exces-
sive exercise. Firstly, the exhaustive swimming experiment was used to collect the HS
of rabbits during exercise. Secondly, the CNN-GRU network is proposed to identify
survival signals and exercise sudden death signals. On this basis, two classes of HS at
different time nodes were input into the network, the result shows that the 24 h after
the second exhaustion swimming (Dataset C) can well reflect the final state of rabbits.
Hence, we speculate that this time node may be able to predict the occurrence of exer-
cise sudden death in rabbits. In the future work, we may combine biochemical indicators
and cell analysis to further explore the pathogenesis of cardiac fatigue to exercise sud-
den death, and explain its changes more scientifically. In addition, we will obtain more
experimental data to validate the effectiveness of the network proposed in this paper and
extend the applicability of the network in cardiovascular diseases. Furthermore, we may
conduct a study on human cardiac fatigue according to the findings in this paper.

Methods

The experimental data/signals at four different time nodes were obtained through the
exhaustive swimming experiment with New Zealand white rabbits, and then preproc-
essed it. After that, the preprocessed signals at each time node as the input of the CNN—
GRU network to complete the classification and prediction of sudden exercise death.

Animal experiments and dataset

A total of 21 New Zealand white rabbits weighing 1.7 to 2.3 kg and aged 3 to 4 months
were tested in a repeated weight-bearing exhaustive swimming experiment. All pro-
cedures for experimental animals were in accordance with the National Institutes of
Health guide for the care and use of Laboratory animals. This study was approved by the
ethics committee of the Third Military Medical University.

The specific repeated weight-bearing exhaustive swimming experimental procedures
[19] were as following. Firstly, the adaptive training for 1 week was conducted on rabbits,
and then, the first exhaustive swimming experiment was performed, the second exhaus-
tive swimming experiment was conducted 48 h after the first exhaustive swimming
experiment, and finally, after 24 h rest, the third exhaustive swimming experiment was
carried out. Figure 7 shows the experimental process in detail. The definition of exhaus-
tive swimming experiment is that each rabbit swims with a load (50 g/kg) for 30 s, then
resting for 3 min, and then cycling to the exhaustion state, in which the rabbit’s head
sinks into the water for 2 s without coming to the surface. It is worth noting that the rab-
bits swam in an inflatable pool with the size of 700 cm x 500 cm x 70 cm, the pool was
regularly watered and cleaned, and the water temperature was kept at 27 to 29 °C when

swimming.
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Fig. 7 The experimental procedures of repeated weight-bearing exhaustive swimming: the left is the overall
experiment process, and the right is the exhaustive swimming experiment

The HS signals were collected from 10 living rabbits and 11 dead rabbits. A heart
sound sensor was placed at the apex of the heart for 5 min to collect heart sounds. The
dataset consisted of the signals that acquired at four different time nodes of the living
sample and exercise sudden death sample. According to the experimental procedures
and the definition of exercise sudden death, the four different time nodes were com-
posed of before the experiment, 24 h after the first exhaustive swimming, 24 h after
the second exhaustive swimming, and 96 h after the third exhaustive swimming. If the
rabbits died suddenly in the experiment, the signals included the signals at these time
points before death and the signals of sudden death. In addition, since some rabbits did
not collect HS at the time of sudden death, the HS closest to the time of sudden death
is selected. Table 4 provides a detailed description of the HS dataset. All data used in
this study were obtained from a multi-channel physiological signal acquisition system
RM6240BD with XJ-102 heart sound transducer at a sampling frequency of 100 kHz and
band-pass filtering frequency of 1 Hz to 10 kHz.

Preprocessing

Resampling

Since the high original sampling frequency may lead to an increase in computational
costs, resampling according to Nyquist Sampling Theorem is an effective method. Using
the theorem requires specifying the frequency range of HS in New Zealand rabbits.
Fourier transform is a method for frequency domain analysis of time domain signals,
which converts time domain signals into frequency domains. The fast Fourier transform
reduces computation by using the butterfly operation to combine some terms of the
discrete Fourier transform, a commonly used method in computers to analyze signals.
Furthermore, short-time Fourier transform (STFT) [35, 36] is a commonly used method
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Table 4 The HS dataset collected from different time nodes

Dataset Time node Description

Dataset A Pre-test signal 2482 recording form 10 survival samples and
1955 recording form 11 exercise sudden death
samples

Dataset B 24 h after the first exhaustive swimming 2245 recording form 10 survival samples and
2049 recording form 10 exercise sudden death
samples

Dataset C 24 h after the second exhausting swimming 2246 recording form 10 survival samples and 1317
recording form 5 exercise sudden death samples

Dataset D 96 h after the third exhausting swimming and 2037 recording form 10 survival samples and
exercise sudden death during experiment 1251 recording from 11 exercise sudden death
samples
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Fig. 8 The time—frequency information of a resting New Zealand rabbit: a HS of a resting New Zealand
Rabbit; b fast Fourier transform of HS; ¢ short-time Fourier transform of HS

for time—frequency analysis, which characterizes the signal at a certain time by a time
window. In this study, we used the fast Fourier transform and STFT to analyze the time—
frequency domain of rabbit HS, and found that the frequencies of HS and major com-
ponents in New Zealand rabbits were within 1000 Hz. In STFT, the Hanning window
was used as the window function, the window width was 2048, and the overlap points
were 1024. Figure 8 shows the time—frequency information of heart sounds in a resting
New Zealand rabbit. Therefore, the signals were resampled to 2000 Hz according to the
Nyquist Sampling Theorem.

Segmentation

In order to ensure that each signal had the same length, we employed Viola integral
method [37] and the normalized Shannon energy method [38] to extract envelope, and
then selected the double threshold [39] method to locate and segment the HS signal.
In contrast to the currently widely used logistic regression-based hidden semi-Markov
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model [40], this method can mark the HS time domain features without reference to
electrocardiogram and the steps were as follows:

1. set the time scale:
Lt =0.5 x s x Fs, (1)

where s is the minimum duration of S1 and Fs is the sampling frequency, which were
set as 0.02 and 2000, respectively.
2. obtain the signal mean sequence:

- m+Lt
Xeom = 50— 2. Xk, 2)

wherem = L1,Lt +1,...,M — 1 — L1, M is the length of original HS signal.
3. calculate the characteristic envelope of the Viola integral waveform:

m+Lt

> Xt = Xrom]™ 3)

=WI—LT

Er(m) =

2LT+1k

4. calculate the mean Shannon entropy and normalize it according [38].

5. locate the S1 onsets by the double threshold method, in which the larger threshold
was H = M X a, and the smaller one was L = M x b, where M is the mean value of
envelope, the value of a varies from 0.6 to 1.1, and the value of b varies from 0.01 to
0.03, which can be adjusted according to the specific situation of the signal.

In this work, the S1 onsets were taken as the starting point of segmentation, and then a
0.5 s signal was selected for segmentation, the S1 onset marking and segmentation strat-
egies can be seen in Fig. 9. Finally, 4437, 4294, 3563 and 3288 recordings from four time
points in the rabbit experiment were obtained, which, respectively, constituted dataset
A, B, Cand D, and are summarized in Table 4.

The proposed network

Generally, the hybrid network of deep learning has better performance in classification
and prediction because they can combine the strengths of different deep learning net-
works [28, 41, 42]. Therefore, a CNN—GRU deep learning network was proposed by grid
search method in this study. Figure 10 describes the structure of the network and the
detailed information is shown in Table 5. The first six layers of the CNN-GRU network
were the cross-connected convolutional layers and the max pooling layers, and the sev-
enth layer was a single GRU layer with 128 units, followed by the dense layer for classifi-
cation. When HS signals of 1001 x 1 were fed into CNN—-GRU, the detailed classification
process is as follows:

« layer 1: a convolutional layer with kernels size of 20, number of filters is 9 and stride
of 1 with valid padding. Output shape is (982, 9);

« layer 2: a max pooling layer with pool size of 4 and stride of 4. Output shape is (245,
9
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Fig. 9 The location and segmentation of HS in a rabbit at four different time points: a before the experiment;
b 24 h after the first exhaustive swimming; ¢ 24 h after the second exhaustive swimming; d 96 h after the
third exhaustive swimming. The blue and magenta dashed lines indicate the start and end of segmentation,
respectively

layer 3: a convolutional layer with kernels size of 20, number of filters is 9 and

stride of 1 with valid padding. Output shape is (226, 9);

layer 4: a max pooling layer with pool size of 4 and stride of 4. Output shape is (56,

9);

layer 5: a convolutional layer with kernels size of 20, number of filters is 9 and

stride of 1 with valid padding. Output shape is (37, 9);

layer 6: a max pooling layer with pool size of 4 and stride of 4. Output shape is (9,

9
layer 7: a GRU layer of 128 units with dropout of 0.5. Output shape is (128);
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input preprocessed HS signal (1001 x 1)

|
! ] CNN-GRU network
1D conv(982 x 9) 1D conv(37 x 9)
1D max pooling (245 x 9) 1D max pooling(9 x 9)
1D conv(226 x 9) GRU(128 units / neurons)
1D max pooling(56 x 9) Dense layer(2 units / neurons)
L] |
v
classication

Fig. 10 The structure of the proposed network

Table 5 The detailed information of the proposed network

Layers Layers types Output size Kernel/ Filter Stride Activation function

pool size numbers

o N Oy AN — O

Input 1001 x 1 - - - -

1D conv 982 x 9 20 9 1 RelLU

1D max pooling 245x9 4 - 4 -

1D conv 226 x9 20 9 1 RelLU

1D max pooling 56 %9 4 - 4 -

1D conv 37x9 20 9 1 RelLU

1D max pooling 9%x9 4 - 4 -

GRU 128 - - - dropout=0.5
dense 2 - - - softmax

« layer 8: a dense layer of 2 output units with softmax activation function. Output shape is

(2). 2 classification classes of HS signals in rabbits of survival or exercise sudden death.

Performance

In this paper, fivefold cross-validation was used to evaluate network and the performance

of each fold was evaluated based on Acc, Sens and Spec. These indices can be calculated as

follows:
TP+ TN
Acc = ’ (4)
TP + TN + FP + EN

S P 5

ens = ——,
*T TP EN ®)
S N 6

ec= —,
PEC= TN T PP ©)
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where TP is the true positive, TN is the true negative, FP is the false positive, and FN is
the false negative.

Appendix
See Table 6.

Table 6 Studies for HS feature extraction and classification using machine learning

Year Author Dataset Feature Classifier Results
extraction
methods Sens (%) Spec (%) Acc (%)
2015 Zhengetal. [23] 88 normalheart MF-DFA, MESE,  HMM 82.95 79.68 81.58
sounds, 64 EMD BP-ANN 8523 8281 8421
abnormal
heart sounds LS-SYM 96.59 93.75 95.39
2016 Thomae et al. PhysioNet 1D CNN Bidirectional 96 83 -
[29] GRU
2016 Potesetal.[43]  PhysioNet LR-HMMS, MFCC  AdaBoost 70 88 -
Frequency CNN 79 86 -
bands decom-
position
2019 Lietal. [25] 2532 recordings  DAE 1D CNN - - 97.85
from healthy  \pcc 1D CNN - - 91.02
subjects, 664
recordings
from patients
2020 Lietal [24] PhysioNet Eight domains ~ CNN 87 86.6 86.8
2020 Gaoetal. [27] 1286 normal - SVM - - 87.62
'record» FCN _ - 94,65
ings form
PhysioNet, LSTM - - 96.29
108 abnormal GRU - - 98.82
heart sounds
from patients
2020 Dengetal.[28]  PhysioNet MFCC CRNN 98.66 98.01 9834
PRCNN 97.33 97.33 97.34

MF-DFA multifractal detrended fluctuation analysis, MESE maximum entropy spectra estimation, EMD empirical mode
decomposition, CNN convolutional neural network, 1D CNN one-dimensional convolutional neural network, DAE denoising
autoencoder, MFCC Mel-frequency cepstrum coefficient, HMM hidden Markov model, LR-HSMM logistic regression-based
hidden semi-Markov model, BP-ANN back-propagation artificial neural network, LS-SVM least square support vector machine,
GRU gated recurrent unit, FCN Fully Convolutional Network, LSTM long-short term memory network, CRNN convolutional
recurrent neural networks, PRCNN paralleling recurrent convolutional neural network
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