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Enhancers are a class of noncoding DNA elements located near structural genes. In recent years, their identification and
classification have been the focus of research in the field of bioinformatics. However, due to their high free scattering and
position variability, although the performance of the prediction model has been continuously improved, there is still a lot of
room for progress. In this paper, density-based spatial clustering of applications with noise (DBSCAN) was used to screen the
physicochemical properties of dinucleotides to extract dinucleotide-based auto-cross covariance (DACC) features; then, the
features are reduced by feature selection Python toolkit MRMD 2.0. The reduced features are input into the random forest to
identify enhancers. The enhancer classification model was built by word2vec and attention-based Bi-LSTM. Finally, the
accuracies of our enhancer identification and classification models were 77.25% and 73.50%, respectively, and the Matthews’
correlation coefficients (MCCs) were 0.5470 and 0.4881, respectively, which were better than the performance of most predictors.

1. Introduction

Enhancers are short noncoding fragments of DNA
sequences that can greatly enhance the activity of promoters
[1]. After Benerji discovered the first 140 bp enhancer in
SV40DNA in 1981, researchers attempted to find more
enhancers on a genome-wide scale [2]. Among these
attempts, some computer methods have been used to iden-
tify and classify the enhancers [3, 4]. For example, Jia and
He extracted features using high-dimensional eigenvectors
based on double-contour Bayes, nucleotide composition,
and pseudonucleotide composition, realizing the distinction
between enhancers and nonenhancers and strong and weak
enhancers through a support vector machine (SVM) and
developing a web server named EnhancerPred [5].
iEnhancer-2L [6] selected a feature extraction method,
namely, pseudo K tuple nucleotide composition (PseKNC),
and predicted them with SVM. iEnhancer-EL [7] adopted

three feature extraction methods, namely, k-mers, subse-
quence profile, and PseKNC, and utilized SVM as an indi-
vidual classifier for ensemble learning prediction. The
Enhancer-5step [8] applied the word-embedded representa-
tion to biological sequences, specifically by using the Fas-
tText tool to extract the 100-dimensional features and then
using the supervisory method SVM for predictive classifica-
tion. Tan et al. [9] took six types of dinucleotide physical and
chemical properties as input characteristics and employed a
deep recursive neural network-based classifier integration
model, which achieved good results. iEnhancer-ECNN [10]
exploited convolutional neural network (CNN) integration,
combined with one-hot coding and k-mers descriptors as
sequence coding projects, and is an effective computing
strategy. iEnhancer-CNN [11] extracted the features of
enhancers from the original DNA sequence using word2vec
and predicted them using CNN. These models and predic-
tors continuously improve the performance of enhancer
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identification and classification, but the performance is not
good enough in general, and further research is needed,
especially the classification of enhancers.

In this paper, we propose a new model building strategy;
the process is shown in Figure 1. First, we divided the task
into the identification and classification of enhancers. In
enhancer identification, we used the density-based spatial
clustering of applications with noise (DBSCAN) [12] algo-
rithm to cluster the physicochemical properties of the origi-
nal 148 dinucleotides and extract 47 of them, as detailed in
Supplementary Materials (available here). Then, 11,045 ð
47 × 47 × 5Þ dimensional features were obtained by the
dinucleotide-based auto-cross covariance (DACC) [13] fea-
ture extraction method. To prevent overfitting, the dimen-
sion was reduced to 791 using MRMD2.0 [14], a Python
toolkit that combines seven commonly used feature ranking
algorithms with the PageRank strategy. After CNN, RNN,
etc., failed to achieve ideal results, the use of random forest
achieved good results. In the final independent test, an accu-
racy of 77.5% and MCC of 0.552 were achieved. In the pro-
cess of enhancer classification, we used 3-mers to split
sequences and CBOW as word embedding models to trans-
form biological sequences into 198 × 200 dimension word
sequences. Then, we used attention-based bidirectional long
short-term memory (Bi-LSTM) [15] to carry out predictive
classification, and in independent tests, the accuracy was
65%, and the MCC was 0.3824.

Finally, we give a general introduction to the structure
and organization of this work. In Results, we compared
and discussed the prediction performance achieved by the
enhancer identification and classification models proposed
in this paper with existing models or predictors, and sum-
marize the paper. Then, in Discussion, we introduced our
models in detail and discussed the dimensionality reduction
and dimension selection experiment in enhancer identifica-
tion and the word2vec model parameter selection experi-
ment in enhancer classification. Finally, in Material and
Methods, the datasets, DACC feature extraction algorithm,
the selection rules of physicochemical properties using
DBSCAN algorithm, the principle of attention-based Bi-
LSTM, and the model evaluation metrics are described,
respectively.

2. Results

In this study, we proposed different models for enhancer
identification and enhancer classification. In enhancer iden-
tification, the physicochemical properties of dinucleotides
obtained by clustering screening were used for DACC fea-
ture extraction, and then, we performed feature dimension
reduction. Finally, random forest was used for prediction.
In enhancer classification, we used 3-mers and CBOW
models to obtain word vectors and then used attention-
based Bi-LSTM for classification. The model proposed in
this paper finally achieved excellent performance in the
independent test. Specifically, the model had 77.25%,
77.30%, 77.20%, and 0.5470 values for enhancer identifica-
tion, accuracy, sensitivity, specificity, and MCC, respectively.
For the enhancer classification, the performances were

73.50%, 87.00%, 60.00%, and 0.4881, respectively. Table 1
gives a detailed comparison of the performance of the model
presented in this paper and the previous models. In terms of
enhancer identification, we are slightly inferior to Enhancer-
5Step and iEnhancer-CNN but superior to other models.
Although the performance is not absolutely excellent, we
hope that the construction idea of the model has some inspi-
ration to others. In the enhancer classification, the MCC of
the model presented in this paper was significantly higher
than the MCC of other models, with an increase of 0.1201
compared with the highest MCC of 0.3680, and its sensitiv-
ity was also the highest, reaching 87.00%. Both models have
achieved preeminent performance.

The contribution of this paper is to use the DBSCAN
clustering algorithm to select representative physical and
chemical properties, and then extracted DACC features,
which avoids overfitting to a certain extent. And we experi-
mentally compared the effects of word2vec model parame-
ters and different types of LSTM on performance. The
ideas of model construction can also be applied to other bio-
informatics datasets or computational biology directions
[16–22] such as enhancer-promoter interaction identifica-
tion [23, 24], disease biomarker mining [25–31], and drug
discovery [32–34].

In the future research, we will try to optimize the
DBSCAN algorithm in terms of adaptive selection of param-
eters to improve its processing of different density datasets.
And deep learning can indeed achieve better results than
ordinary machine learning algorithms in enhancer classifica-
tion. We will try hot deep learning technologies such as
graph neural networks to further improve prediction
performance.

3. Discussion

3.1. Enhancer Identification. Feature extraction is a vital link
in building an excellent classification model. In this paper, to
obtain DACC feature vectors, we use iLearn [35] to extract
them. A total of 148 dinucleotide physicochemical proper-
ties were provided by iLearn [35]. If the DACC in the form
of all physicochemical properties is adopted, a total of
109,520 dimensions of features will be obtained, but the
sample size is relatively small, and overfitting is easily gener-
ated. Therefore, in this study, our solution was to use
DBSCAN to conduct cluster screening for physical and
chemical property indexes.

DBSCAN is a commonly used density-based clustering
method. Compared with K-means, the DBSCAN algorithm
does not need to predefine the number of clusters and
DBSCAN can find clusters of arbitrary shapes. In addition,
DBSCAN can also identify “outliers”, and the “outliers” are
the special physical and chemical properties we want to find.
At present, many studies have improved DBSCAN to enable
it to process large datasets at a high speed.

In this paper, clustering and processing of physicochem-
ical dinucleotide indexes are carried out. After the treatment,
we obtained 47 kinds of physical and chemical property
indexes. Then, feature extraction was carried out through
DACC. After executing the iLearn [35] command line, 47
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× 47 × 5 (11,045) feature dimensions were obtained: python
iLearn-nucleotide-acc.py –file data. txt –method DACC
–type DNA –lag 5.

Considering that there are still more features in
11,045 dimensions, we tried to use MRMD2.0 [36–38]
for feature dimension reduction. MRMD2.0 integrates
rich feature selection algorithms and feature ranking

algorithms and is superior to the single feature selection
algorithm. We conducted dimension reduction three times,
and the fivefold cross-validation results before and after each
dimension reduction are shown in Table 2. After the dimen-
sion reduction, enhancer recognition effect is obviously seen
to be improved, but as the number of dimension reductions
increases, performance is not getting better and better. Instead,
the performance is the best when the dimension is reduced to
791 for the first time; therefore, we finally chose 791 dimen-
sional features as the input of the classifier.

After adopting CNN, LSTM, and autoencoder for feature
extraction, we failed to achieve ideal results. Since random
forest is good at processing high-dimensional data and has
strong anti-interference ability, we tried to use it for classifi-
cation and finally achieved relatively ideal results. In the
independent test, the model achieved an accuracy of 77.5%
and MCC of 0.552.

3.2. Enhancer Classification. Since the model construction
method of identifying enhancers is not ideal when applied
to classifying enhancers, we considered introducing a new
scheme. In terms of feature representation, k-mers are used
to segment biological sequences in this paper, and after 3-
mers, the 200 long strong and weak enhancer sequences will
be converted to 198 words. For example, the sequence
“TACATTCA” after 3-mers is divided into 6 words “TAC
ACA CAT ATT TTC TCA”.

Then, the word2vec model is used to generate words into
vectors to represent the relationships between words. word2-
vec relies on two training modes: continuous bag of words
(CBOW) and skip-gram [39]. To achieve better results, we
tried to use CBOW and skip-gram models with different
parameters and compared their performance. In the experi-
ment, parameters were adjusted from three aspects: the
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Figure 1: The main flow chart of the research process in this paper.

Table 1: The independent test performance comparison of this
model with other models.

Method ACC (%) SN (%) SP (%) MCC

Enhancer identification

EnhancerPred 74.00 73.50 74.50 0.4800

iEnhancer-2L 73.00 71.00 75.00 0.4604

iEnhancer-EL 74.75 71.00 78.50 0.4964

Enhancer-5Step 79.00 82.00 76.00 0.5800

Tan et al. 75.50 75.50 76.00 0.5100

iEnhancer-ECNN 76.90 78.50 75.20 0.5370

iEnhancer-CNN 77.50 78.25 79.00 0.5850

Our method 77.25 77.30 77.20 0.5470

Enhancer classification

EnhancerPred 55.00 45.00 65.00 0.1021

iEnhancer-2L 60.50 47.00 74.00 0.2181

iEnhancer-EL 78.03 54.00 68.00 0.2222

Enhancer-5Step 63.50 74.00 53.00 0.2800

Tan et al. 68.49 83.15 45.61 0.3120

iEnhancer-ECNN 67.80 79.10 56.40 0.3680

iEnhancer-CNN 75.00 65.25 76.10 0.3232

Our method 73.50 87.00 60.00 0.4881
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optimization method of the model training mechanism
(negative sampling (NS)/hierarchical softmax (HS)), the
minimum word frequency of the word vector (Min_count),
and the maximum context distance of the word vector
(Window). As shown in Table 3, when the CBOW model
and HS, Min_count, and Window were set at 5 and 5,
respectively, the ACC reached 67.57%, and the MCC was
0.3529, showing the best effect. Then, LSTM, which is a var-
iant of RNN, is used for training. In this paper, the 5-fold
cross-validation performance of LSTM, Bi-LSTM, and
attention-based Bi-LSTM is compared. As shown in
Table 4, the attention-based Bi-LSTM model performs bet-
ter. An MCC of 0.4881 with an accuracy of 73.5% was
achieved in an independent test.

A noteworthy problem is that this model and existing
methods such as Enhancer-5Step and iEnhancer-ECNN
have higher SN in the enhancer classification results, while
SP is lower, at least 20% lower than SN. This shows that
the model has a better ability to identify strong enhancers,
while the ability to identify weak enhancers is weak. The
potential reasons are roughly divided into two aspects: fea-
ture extraction and model construction. When the
extracted features cannot distinguish weak enhancer sam-
ples that are similar to strong enhancer samples, it is iden-
tified as a strong enhancer. The second is model building.
There are also great differences in the discriminative abil-
ity of different computational models for the same dataset.
In this regard, we can try more feature extraction algo-
rithms and classification algorithms in the future to
improve this problem.

4. Material and Methods

4.1. Benchmark Dataset. In our study, a benchmark dataset
was derived from Liu et al. [6]. This dataset is widely used
in enhancer classification studies such as EnhancerPred
and iEnhancer-EL. The dataset consists of 200 bp DNA
sequences, and then in order to avoid redundancy, CD-
HIT software [40] was used to delete pairwise sequences
(sequences with similarity greater than 20%). Finally, we
obtained the training set and independent set used by for-
mer researchers, in which the training set included 2,968
samples, and the ratio of nonenhancers, strong enhancers,
and weak enhancers was 2 : 1 : 1. The independent test
group is composed of 400 samples. Their number ratio
is also 2 : 1 : 1.

4.2. Dinucleotide-Based Auto-Cross Covariance (DACC). our
research, we integrate the global sequence-order informa-
tion into the model by using a feature extraction method
based on DACC. It is formed by the combination of
dinucleotide-based auto covariance (DAC) and
dinucleotide-based cross covariance (DCC). In this combi-
nation, the DAC code calculates the correlation of dinucle-
otides along a lag distance between sequences with the
same physical and chemical properties. The calculation
form is as follows:

DAC φ, lagð Þ = 〠
L−lag−1

i=1

Pφ RiRi+1ð Þ − Pφ

� �
Pφ Ri+lagRi+lag+1
� �

− Pφ

� �
L − lag − 1

 !
,

Pφ = 〠
L−1

i=1
Pφ

RiRi+1
L − 1

,

ð1Þ

where L denotes the sequence length; Ri represents the
nucleic acid residue located at the ith position; Pφ is a
physical and chemical property and φ is a physical and

Table 2: In enhancer identification. The performance comparison
of the 5-fold cross-validation before and after each feature
dimensionality reduction.

Dimension ACC (%) MCC

11025 74.87 0.498

791 75.47 0.510

721 75.37 0.508

699 75.40 0.508

Table 3: The performance comparison of different parameters in
the word2vec model in the enhancer classification in the 5-fold
cross-validation.

HS/NS Min_count, Window ACC (%) MCC

CBOW

HS

3, 3 65.10 0.3123

3, 5 66.22 0.3412

5, 3 65.20 0.3119

5, 5 67.57 0.3529

NS

3, 3 61.82 0.2365

3, 5 66.89 0.3381

5, 3 63.76 0.2761

5, 5 63.85 0.2908

Skip-gram

HS

3, 3 66.22 0.3258

3, 5 65.54 0.3113

5, 3 66.89 0.3379

5, 5 65.20 0.3178

NS

3, 3 66.44 0.3414

3, 5 63.76 0.2768

5, 3 64.09 0.2833

5, 5 63.18 0.2754

Table 4: The performance comparison of LSTM, Bi-LSTM, and
attention-based Bi-LSTM in the enhancer classification in the 5-
fold cross-validation.

ACC (%) MCC

LSTM 64.21 0.2879

Bi-LSTM 61.41 0.2356

Attention-based Bi-LSTM 67.57 0.3529
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chemical property index; PφðRiRi+1Þ on behalf of the posi-
tion i dinucleotide RiRi+1 values correspond to the physical
and chemical properties Pφ; Pφ is the numerical mean
value of dinucleotides corresponding to physicochemical
properties in the whole DNA sequence.

For example, a DNA sequence with a length of 8 is
“TACATTCA”, and the corresponding dinucleotide value
under the “Shift” physicochemical property is shown in the

Table 5. Then,

Pφ =
Pφ TAð Þ + Pφ ACð Þ + Pφ CAð Þ + Pφ ATð Þ + Pφ TTð Þ + Pφ TCð Þ + Pφ CAð Þ

7

=
−2:243 + 0:126 − 0:861 − 1:019 + 1:587 + 0:126 − 0:861

7
≈ −0:449:

ð2Þ

When lag is 5 (as shown in Figure 2),

So, the DAC eigenvalue of the sequence “TACATTCA”
is about -0.634 under the physicochemical property of
“Shift” and when lag is 5.

The dimension of the feature vector is N × LAG after
DAC, where N is the number of physicochemical properties
and LAG is the maximum of lag (lag = 1, 2,⋯, LAG). In this
paper, LAG is 5.

DCC encoding was used to calculate the correlation of
dinucleotides along a lag distance between sequences with
different physical and chemical properties, and the calcula-
tion form was as follows:

DCC φ1, φ2, lagð Þ

= 〠
L−lag−1

i=1

Pφ1
RiRi+1ð Þ − Pφ1

� �
Pφ2

Ri+lagRi+lag+1
� �

− Pφ2

� �
L − lag − 1ð Þ ,

ð4Þ

where L denotes the sequence length; Pφ1
and Pφ2

are the two

different physicochemical properties; Pφa
ðRiRi+1Þ on behalf of

the position i dinucleotide RiRi+1 correspond to the physical
and chemical properties of Pφa

, a = 1, 2; Pφa
is the numerical

mean value of dinucleotide corresponding to physicochemical
properties of Pφa

(a = 1, 2) in the whole DNA sequence.
Similarly, take the sequence “TACATTCA” as an exam-

ple; φ1 is the physicochemical property of “Shift” and φ2 is
the physicochemical property of “Slide”, and their corre-
sponding dinucleotide values are shown in Table 5. It is
known that Pφ1

= −0:449; then,

Pφ2
=
Pφ2

TAð Þ + Pφ2
ACð Þ + Pφ2

CAð Þ + Pφ2
ATð Þ + Pφ2

TTð Þ + Pφ2
TCð Þ

7

=
−1:511 + 1:289 − 0:623 + 2:513 + 0:111 − 0:394 − 0:623

7
≈ 0:109:

ð5Þ

When lag is 5 (as shown in Figure 2),

Table 5: Under the physical and chemical properties of “Shift” and “Slide”, the corresponding dinucleotide values are involved in the
sequence “TACATTCA”.

TA AC CA AT TT TC

Shift -2.243 0.126 -0.861 -1.019 1.587 0.126

Slide -1.511 1.289 -0.623 2.513 0.111 -0.394

DAC φ = Shift, lag = 5ð Þ = Pφ R1R2ð Þ − Pφ

� �
Pφ R6R7ð Þ − Pφ

� �
+ Pφ R2R3ð Þ − Pφ

� ��
Pφ R7R8ð Þ − Pφ

� ��
L − lag − 1

=
Pφ TAð Þ − Pφ

� �
Pφ TCð Þ − Pφ

� �
+ Pφ ACð Þ − Pφ

� �
Pφ CAð Þ − Pφ

� �
L − lag − 1

=
−2:243 + 0:449ð Þ 0:126 + 0:449ð Þ + 0:126 + 0:449ð Þ −0:861 + 0:449ð Þ

2
≈ −0:634:

ð3Þ

DCC φ1 = shift, φ2 = slide, lag = 5ð Þ =
Pφ1

R1R2ð Þ − Pφ1

� �
Pφ2

R6R7ð Þ − Pφ2

� �
+ Pφ1

R2R3ð Þ − Pφ1

� �
Pφ2

R7R8ð Þ − Pφ2

� �
L − lag − 1ð Þ

=
Pφ1

TAð Þ − Pφ1

� �
Pφ2

TCð Þ − Pφ2

� �
+ Pφ1

ACð Þ − Pφ1

� �
Pφ2

CAð Þ − Pφ2

� �
L − lag − 1

=
−2:243 + 0:449ð Þ −0:394 − 0:109ð Þ + 0:126 + 0:449ð Þ −0:623 − 0:109ð Þ

2
≈ 0:241:

ð6Þ
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So, the DCC eigenvalue of the sequence “TACATTCA”
is about 0.241 under the physicochemical property of “Shift”
and “Slide” and when lag is 5.

The dimension of the feature vector isN × ðN − 1Þ × LAG
after DCC, whereN is the number of physicochemical proper-
ties and LAG is the maximum of lag (lag = 1, 2,⋯, LAG). In

φ

lag = 5

DAC (φ, R1R2, R6R7)

φ1 φ2
lag = 5

DCC (φ1 (R1R2), φ2 (R6R7))

R1 R2 R3 R6 R7 R8 RL

R1 R2 R3 R6 R7 R8 RL

DAC (φ, R2R3, R7R8)

DCC (φ1 (R2R3), φ2 (R7R8))

Figure 2: The process of generating DAC and DCC feature vectors of sequence “R1R2,⋯, RL”.

Input: N,data,
Pm_list = {eps, minPts}

Iterate (Pm_list)
Clus = DBSCAN (data)
Clus: (clus_1…clus_n)

M < = N and M > 0

Y

M > N and
M < = 6⁎N

Y

N

Randomly select
N pieces in clus_i

Select M pieces
in clus_i

N

All Pm_list have
been iterated?

Y

Randomly select
2N pieces in clus_i

N

Data = clus_i

All clus have
been processed ?

M = COUNT (clus_i)

N

Y
End

Figure 3: The process of screening physical and chemical properties by DBSCAN clustering.
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this paper, LAG is 5. Therefore, the final dimension of the
eigenvector of DACC is N ×N × LAG.

4.3. Density-Based Spatial Clustering of Applications with
Noise (DBSCAN). DBSCAN can find clusters of any shape
and can identify noise, which can achieve a better clustering
effect for physical and chemical property data [12, 41]. The
clusters are customized according to the parameters, respec-
tively, “eps” (e-neighborhood with data point as center and
eps as radius) and “minPts” (minimum number of data
points in e-neighborhood). The steps of the DBSCAN algo-
rithm are listed in Supplementary Materials.

In this paper, DBSCAN was used to screen the physico-
chemical properties of dinucleotides. Our DBSCAN cluster-
ing process of data points is shown in Figure 3. First, to
avoid overfitting, one of the equivalent physicochemical
property indexes was randomly selected, and 141 kinds were
obtained. Then, we input four sets of parameter values,
which make the clustering algorithm increasingly strict. By
observing the results of the first round of clustering in
Figure 4, it can be found that except for the large number
of data in the first cluster, the number of data in other clus-
ters is between 4 and 13. In order to select an appropriate
amount of physical and chemical properties from the clus-
ters, we set the data threshold N as 5. According to the rules
we made, we filter the clusters after each DBSCAN until all
the clusters are processed. The number of data points
obtained by each clustering is counted as M. The screening
rule is that when M is between 0 and N , all physicochemical
properties are selected. When M is between N and 6 ∗N , N
pieces of data are randomly selected. When M is greater

than 6 ∗N , the next set of parameters is used to recluster
the cluster. If all parameters have been tried and M are still
greater than 6 ∗N , 2 ∗N data will be randomly selected.

Figure 4 shows the number of clusters and the physico-
chemical properties number in each cluster after each clus-
ter. Then, select the data in the cluster and a total of 47
dinucleotide physicochemical properties of 9 cluster types
were finally obtained. The most representative physicochem-
ical dinucleotide indexes were selected as much as possible,
as detailed in Supplementary Materials.

4.4. Attention-Based Bi-LSTM. LSTM is a kind of time recur-
rent neural network that solves the long-term dependence
problem of RNNs [42–45]. We can see the principal struc-
ture of LSTM in Figure 5(b), and its important components
are the input gate, forgetting gate, and output gate. Ct is the
cell state, which carries the memorized information and
stores the information obtained through varied “gate” pro-
cessing. Ct is similar to a kind of “long-term memory”, and
Ct−1 is the cell state of the previous stage. ht is similar to a
kind of “short-term memory”.

The first step in LSTM is to remove some information by
working with the forgetting gate. The forgetting gate reads
ht−1, xt and passes through the sigmoid neural layer. The ele-
ment value range of the output vector is 0~1, which repre-
sents the probability of information retention. The point-
by-point multiplication operation updates the information
to the cell state.

f t = sigmod Wf ∙ ht−1, xt½ � + bf
� �

: ð7Þ

Eps=2, minPts = 5

Eps =2, minPts = 3

Eps =1, minPts = 5

Eps =1, minPts = 3

141

87 10 13 11 6 54

84 3 5 5 5 5 4 5

84

84

10 clus_1

clus_2 clus_3 clus_4 clus_5 clus_6 clus_7 clus_8

Set Param

148

Duplicate removal

Physicochemical properties 

DBSCAN clustering
Random selection
or direct selection

Figure 4: The specific situation after each clustering and the screening process of physical and chemical properties.
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The second step is to add new information from the
input gate. The second step is divided into three steps: first,
let the sigmoid layer of the input gate determine which parts
of the information need to be updated, then let the tanh
layer generate alternative updates, and finally, combine the
two parts to add the information to the cell state.

it = sigmoid Wi∙ ht−1, xt½ � + bið Þ,
fCt = tanh WC∙ ht−1, xt½ � + bCð Þ:

ð8Þ

The last step is to calculate and output the “short-term
memory” state ht by the output gate. First, let the sigmoid
layer of the output gate decide the information part that

needs to be updated; then, the tanh layer processes the cell
state that has been updated and finally multiplies the two
parts together to obtain ht .

ot = sigmoid Wo∙ ht−1, xt½ � + boð Þ,
ht = ot∙tanh Ctð Þ:

ð9Þ

Therefore, the most special feature of LSTM is that it can
forget unwanted information, add needed information, and
obtain “short-term memory” according to “long-term mem-
ory” processing.

Bi-LSTM can better capture bidirectional semantic
dependencies. Figure 5(a)shows the Bi-LSTM structure in
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Figure 5: (a) The structure of attention-based Bi-LSTM. (b) The structure of LSTM in (a).
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this article. After mapping, each word xi obtains the word

vector ei. After LSTM, the forward output is hi
!
, while the

backward output is hi
 
. After Bi-LSTM, the vector obtained

is hi = ½hi
!

+ hi
 �, where “+” represents the sum of corre-

sponding elements. We can see in Figure 5(a) the Bi-
LSTM layer.

Attention-based Bi-LSTM was first proposed by Zhou
et al. in 2016 [46, 47]. Bi-LSTM with an attention mecha-
nism avoids complicated feature engineering in traditional
work. The attention mechanism allocates attention to each
word in the process of learning the current information to
make the model more focused on learning and thus improve
learning efficiency [48]. The model has various variants, and
self-attention [49] is adopted in this paper. Attention values
can be calculated in three steps. Above all, we calculate the
similarity between query (Q) and each key (K) by f ðQ, KÞ
to obtain weights. Then, the softmax function is used to nor-
malize these weights. Finally, the weighted sum of the
weights and the corresponding key value (V) is carried out
to obtain the final attention value. In the self-attention
model, query, key, and value are the same, that is, the input
sentence sequence information hi shown in Figure 5(a)
which is the attention layer.

4.5. Model Evaluation. For evaluating and optimizing model
performance, four evaluation indexes were used in this
paper: ACC, SN, SP, representing accuracy, sensitivity, spec-
ificity, respectively, and MCC [38, 50–61]. Their mathemat-
ical formula is as follows:

Accuracy ACCð Þ = TN + TP
TN + TP + FN + FP

,

Sensitivity SNð Þ = TP
TP + FN

,

Specificity SPð Þ = TN
TN + FP

,

MCC =
TN × TP − FN × FPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TN + FNð Þ TP + FNð Þ TN + FPð Þp ,

ð10Þ

where TP, TN, FP, and FN represent the true positive, true
negative, false positive, and false negative values,
respectively.

Data Availability

The data covered in this article can be found in Supplemen-
tary Materials.

Consent

Consent is not applicable.

Conflicts of Interest

No potential conflict of interest was reported by the authors.

Authors’ Contributions

S.Z. designed the experiments and participated in coding the
experiments. Q.Z. and L.S. conceived the study and partici-
pated in designing the study. Y.J., X.S., and Q.P. participated
in performing the statistical analysis and coding the experi-
ments and drafting the manuscript. All authors read and
approved the final manuscript. Shulin Zhao and Qingfeng
Pan contributed equally to this work.

Acknowledgments

The work was supported by the National Natural Science
Foundation of China (No. 61922020 and No. 62072385),
the Special Science Foundation of Quzhou (2021D004),
and the Sichuan Provincial Science Fund for Distinguished
Young Scholars (2021JDJQ0025).

Supplementary Materials

The “S_47 physicochemical properties.txt” file is 47 of the
148 dinucleotides extracted after DBSCAN clustering of
the physical and chemical properties. The “S_DBSCAN
algorithm.docx” file is the DBSCAN algorithm framework.
The “Training set.txt” file is the sequence samples in the
training set. The “Independent testing set.txt” file is the
sequence samples in the independent test set.
(Supplementary Materials)

References

[1] L. Liu, L. R. Zhang, F. Y. Dao, Y. C. Yang, and H. Lin, “A com-
putational framework for identifying the transcription factors
involved in enhancer-promoter loop formation,” Molecular
Therapy–Nucleic Acids, vol. 23, pp. 347–354, 2021.

[2] L. W. K. Lim, H. H. Chung, Y. L. Chong, and N. K. Lee, “A sur-
vey of recently emerged genome-wide computational
enhancer predictor tools,” Computational Biology and Chemis-
try, vol. 74, pp. 132–141, 2018.

[3] T. Zhang, R. Wang, Q. Jiang, and Y. Wang, “An information
gain-based method for evaluating the classification power of
features towards identifying enhancers,” Current Bioinformat-
ics, vol. 15, no. 6, pp. 574–580, 2020.

[4] X. Yu, J. Zhou, M. Zhao et al., “Exploiting XG boost for pre-
dicting enhancer-promoter interactions,” Current Bioinfor-
matics, vol. 15, no. 9, pp. 1036–1045, 2021.

[5] C. Jia and W. He, “EnhancerPred: a predictor for discovering
enhancers based on the combination and selection of multiple
features,” Scientific Reports, vol. 6, no. 1, 2016.

[6] B. Liu, L. Fang, R. Long, X. Lan, and K. C. Chou, “iEnhancer-
2L: a two-layer predictor for identifying enhancers and their
strength by pseudo k-tuple nucleotide composition,” Bioinfor-
matics, vol. 32, no. 3, pp. 362–369, 2016.

[7] B. Liu, K. Li, D. S. Huang, and K. C. Chou, “iEnhancer-EL:
identifying enhancers and their strength with ensemble learn-
ing approach,” Bioinformatics, vol. 34, no. 22, pp. 3835–3842,
2018.

[8] Y. E. K. Le NQ, Q. T. Ho, N. Nagasundaram, Y. Y. Ou, and
H. Y. Yeh, “iEnhancer-5Step: identifying enhancers using hid-
den information of DNA sequences via Chou’s 5-step rule and

9Computational and Mathematical Methods in Medicine

https://downloads.hindawi.com/journals/cmmm/2022/7518779.f1.zip


word embedding,” Analytical Biochemistry, vol. 571, pp. 53–
61, 2019.

[9] K. K. Tan, N. Q. K. Le, H. Y. Yeh, and M. C. H. Chua, “Ensem-
ble of deep recurrent neural networks for identifying
enhancers via dinucleotide physicochemical properties,” Cell,
vol. 8, no. 7, p. 767, 2019.

[10] Q. H. Nguyen, T. H. Nguyen-Vo, N. Q. K. le, T. T. T. Do,
S. Rahardja, and B. P. Nguyen, “iEnhancer-ECNN: identify-
ing enhancers and their strength using ensembles of convo-
lutional neural networks,” BMC Genomics, vol. 20, no. S9,
p. 951, 2019.

[11] J. Khanal, H. Tayara, and K. T. Chong, “Identifying enhancers
and their strength by the integration of word embedding and
convolution neural network,” IEEE Access, vol. 8, pp. 58369–
58376, 2020.

[12] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu,
“DBSCAN revisited, revisited,” ACM Transactions on Data-
base Systems, vol. 42, no. 3, pp. 1–21, 2017.

[13] B. Liu, Y. Liu, X. Jin, X. Wang, and B. Liu, “iRSpot-DACC: a
computational predictor for recombination hot/cold spots
identification based on dinucleotide-based auto-cross covari-
ance,” Scientific Reports, vol. 6, no. 1, 2016.

[14] S. D. He, F. Guo, Q. Zou, and HuiDing, “MRMD2.0: a python
tool for machine learning with feature ranking and reduc-
tion,” Current Bioinformatics, vol. 15, no. 10, pp. 1213–
1221, 2021.

[15] Q. He, W. Liu, and Z. Cai, “B&Anet: combining bidirectional
LSTM and self-attention for end-to-end learning of task-
oriented dialogue system,” Speech Communication, vol. 125,
pp. 15–23, 2020.

[16] R. Su, J. Hu, Q. Zou, B. Manavalan, and L. Wei, “Empirical
comparison and analysis of web-based cell-penetrating pep-
tide prediction tools,” Briefings in Bioinformatics, vol. 21,
no. 2, pp. 408–420, 2020.

[17] R. Su, X. Liu, L. Wei, and Q. Zou, “Deep-Resp-Forest: a deep
forest model to predict anti-cancer drug response,” Methods,
vol. 166, pp. 91–102, 2019.

[18] R. Su, X. Liu, G. Xiao, and L. Wei, “Meta-GDBP: a high-level
stacked regression model to improve anticancer drug response
prediction,” Briefings in Bioinformatics, vol. 21, no. 3, pp. 996–
1005, 2020.

[19] R. Su, H. Wu, B. Xu, X. Liu, and L. Wei, “Developing a multi-
dose computational model for drug-induced hepatotoxicity
prediction based on toxicogenomics data,” IEEE-ACM Trans-
actions on Computational Biology and Bioinformatics, vol. 16,
no. 4, pp. 1231–1239, 2019.

[20] J. Li, Y. Pu, J. Tang, Q. Zou, and F. Guo, “DeepATT: a hybrid
category attention neural network for identifying functional
effects of DNA sequences,” Briefings in Bioinformatics,
vol. 22, no. 3, pp. 1–1, 2021.

[21] J. Li, Y. Pu, J. Tang, Q. Zou, and F. Guo, “DeepAVP: a dual-
channel deep neural network for identifying variable-length
antiviral peptides,” IEEE Journal of Biomedical and Health
Informatics, vol. 24, no. 10, pp. 3012–3019, 2020.

[22] Y. Shang, L. Gao, Q. Zou, and L. Yu, “Prediction of drug-target
interactions based on multi-layer network representation
learning,” Neurocomputing, vol. 434, pp. 80–89, 2021.

[23] Z. Hong, X. Zeng, L. Wei, and X. Liu, “Identifying enhancer–
promoter interactions with neural network based on pre-
trained DNA vectors and attention mechanism,” Bioinformat-
ics, vol. 36, no. 4, pp. 1037–1043, 2020.

[24] X. Min, C. Ye, X. Liu, and X. Zeng, “Predicting enhancer-
promoter interactions by deep learning and matching heuris-
tic,” Briefings in Bioinformatics, vol. 22, no. 4, 2021.

[25] X. Zeng, Y. Zhong, W. Lin, and Q. Zou, “Predicting disease-
associated circular RNAs using deep forests combined with
positive-unlabeled learning methods,” Briefings in Bioinfor-
matics, vol. 21, no. 4, pp. 1425–1436, 2020.

[26] X. Zhang, Q. Zou, A. Rodriguez-Paton, and X. Zeng, “Meta-
path methods for prioritizing candidate disease miRNAs,”
IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, vol. 16, no. 1, pp. 283–291, 2019.

[27] Y. Liu, X. Zeng, Z. He, and Q. Zou, “Inferring microRNA-
disease associations by random walk on a heterogeneous net-
work with multiple data sources,” IEEE/ACM Transactions
on Computational Biology and Bioinformatics, vol. 14, no. 4,
pp. 905–915, 2017.

[28] X. Zeng, Y. Liao, Y. Liu, and Q. Zou, “Prediction and validation
of disease genes using HeteSim scores,” IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics, vol. 14,
no. 3, pp. 687–695, 2017.

[29] Y. Hu, J. Y. Sun, Y. Zhang et al., “rs1990622 variant associates
with Alzheimer’s disease and regulates TMEM106B expression
in human brain tissues,” BMCMedicine, vol. 19, no. 1, p. 11, 2021.

[30] Y. Hu, H. Zhang, B. Liu et al., “rs34331204 regulates TSPAN13
expression and contributes to Alzheimer’s disease with sex dif-
ferences,” Brain, vol. 143, no. 11, article e95, 2020.

[31] Y. Hu, S. Qiu, and L. Cheng, “Integration of multiple-omics
data to analyze the population-specific differences for coro-
nary artery disease,” Computational and Mathematical
Methods in Medicine, vol. 2021, Article ID 7036592, 2021.

[32] X. Lin, Z. Quan, Z. J. Wang, H. Huang, and X. Zeng, “A novel
molecular representation with BiGRU neural networks for
learning atom,” Briefings in Bioinformatics, vol. 21, no. 6,
pp. 2099–2111, 2020.

[33] X. Fu, L. Cai, X. Zeng, and Q. Zou, “StackCPPred: a stacking
and pairwise energy content-based prediction of cell-
penetrating peptides and their uptake efficiency,” Bioinformat-
ics, vol. 36, no. 10, pp. 3028–3034, 2020.

[34] L. Yu, M. Wang, Y. Yang et al., “Predicting therapeutic drugs
for hepatocellular carcinoma based on tissue-specific path-
ways,” PLoS Computational Biology, vol. 17, no. 2, article
e1008696, 2021.

[35] Z. Chen, P. Zhao, F. Li et al., “iLearn: an integrated platform
and meta-learner for feature engineering, machine-learning
analysis and modeling of DNA, RNA and protein sequence
data,” Briefings in Bioinformatics, vol. 21, no. 3, pp. 1047–
1057, 2020.

[36] X. Gu, Z. Chen, and D. Wang, “Prediction of G protein-
coupled receptors with CTDC extraction and MRMD2.0
dimension-reduction methods,” Frontiers in Bioengineering
and Biotechnology, vol. 8, 2020.

[37] Z. Tao, Y. Li, Z. Teng, and Y. Zhao, “A method for identifying
vesicle transport proteins based on LibSVM and MRMD,”
Computational and Mathematical Methods in Medicine,
vol. 2020, Article ID 8926750, 2020.

[38] Y. Zhai, Y. Chen, Z. Teng, and Y. Zhao, “Identifying antioxi-
dant proteins by using amino acid composition and protein-
protein interactions,” Frontiers in Cell and Development Biol-
ogy, vol. 8, article 591487, 2020.

[39] A. Khatua, A. Khatua, and E. Cambria, “A tale of two epi-
demics: contextual Word2Vec for classifying twitter streams

10 Computational and Mathematical Methods in Medicine



during outbreaks,” Information Processing & Management,
vol. 56, no. 1, pp. 247–257, 2019.

[40] W. Z. Li and A. Godzik, “Cd-hit: a fast program for clustering
and comparing large sets of protein or nucleotide sequences,”
Bioinformatics, vol. 22, no. 13, pp. 1658-1659, 2006.

[41] K. Indira andM. K. K. Devi, “Multi cloud based service recom-
mendation system using DBSCAN algorithm,” Wireless Per-
sonal Communications, vol. 115, no. 2, pp. 1019–1034, 2020.

[42] P. Ma, B. Jiang, Z. Lu, N. Li, and Z. Jiang, “Cybersecurity
named entity recognition using bidirectional long short-term
memory with conditional random fields,” Tsinghua Science
and Technology, vol. 26, no. 3, pp. 259–265, 2021.

[43] H. Lv, F. Y. Dao, Z. X. Guan, H. Yang, Y. W. Li, and H. Lin,
“Deep-Kcr: accurate detection of lysine crotonylation sites
using deep learning method,” Briefings in Bioinformatics,
vol. 22, no. 4, 2021.

[44] W. Ying, L. Zhang, and H. Deng, “Sichuan dialect speech rec-
ognition with deep LSTM network,” Frontiers of Computer Sci-
ence, vol. 14, no. 2, pp. 378–387, 2020.

[45] J. Chen, J. Li, and Q. Zou, “DeepM6ASeq-EL: prediction of
human N6-methyladenosine (m6A) sites with LSTM and
ensemble learning,” Frontiers of Computer Science, vol. 16,
no. 2, pp. 1–7, 2022.

[46] P. Zhou, W. Shi, J. Tian et al., “Attention-based bidirectional
long short-term memory networks for relation classification,”
in Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics, pp. 207–212, Berlin, Germany,
2016.

[47] X. Zheng andW. Chen, “An attention-based Bi-LSTMmethod
for visual object classification via EEG,” Biomedical Signal Pro-
cessing and Control, vol. 63, p. 102174, 2021.

[48] D. Wang, Z. Zhang, Y. Jiang et al., “DM3Loc: multi-label
mRNA subcellular localization prediction and analysis based
on multi-head self-attention mechanism,” Nucleic Acids
Research, vol. 49, no. 8, p. e46, 2021.

[49] P. Bhuvaneshwari, A. N. Rao, and Y. H. Robinson, “Spam
review detection using self attention based CNN and bi-
directional LSTM,” Multimedia Tools and Applications,
vol. 80, no. 12, pp. 18107–18124, 2021.

[50] D. Chicco, N. Totsch, and G. Jurman, “The Matthews correla-
tion coefficient (MCC) is more reliable than balanced accu-
racy, bookmaker informedness, and markedness in two-class
confusion matrix evaluation,” Biodata Mining, vol. 14, no. 1,
p. 13, 2021.

[51] L. Wei, H. Chen, and R. Su, “M6APred-EL: a sequence-based
predictor for identifying N6-methyladenosine sites using
ensemble learning,” Molecular Therapy–Nucleic Acids,
vol. 12, pp. 635–644, 2018.

[52] L. Wei, Y. Ding, R. Su, J. Tang, and Q. Zou, “Prediction of
human protein subcellular localization using deep learning,”
Journal of Parallel and Distributed Computing, vol. 117,
pp. 212–217, 2018.

[53] L. Wei, M. Liao, Y. Gao, R. Ji, Z. He, and Q. Zou, “Improved
and promising identification of human microRNAs by incor-
porating a high-quality negative set,” IEEE/ACM Transactions
on Computational Biology and Bioinformatics, vol. 11, no. 1,
pp. 192–201, 2014.

[54] L. Wei, C. Zhou, H. Chen, J. Song, and R. Su, “ACPred-FL: a
sequence-based predictor using effective feature representa-
tion to improve the prediction of anti-cancer peptides,” Bioin-
formatics, vol. 34, no. 23, pp. 4007–4016, 2018.

[55] H. Wang, Y. Ding, J. Tang, and F. Guo, “Identification of
membrane protein types via multivariate information fusion
with Hilbert-Schmidt Independence Criterion,” Neurocom-
puting, vol. 383, pp. 257–269, 2020.

[56] Y. T. Ding, J. Tang, and F. Guo, “Identification of drug-target
interactions via dual Laplacian regularized least squares with
multiple kernel fusion,” Knowledge-Based Systems, vol. 204,
p. 106254, 2020.

[57] Y. Ding, J. Tang, and F. Guo, “Identification of drug-target
interactions via fuzzy bipartite local model,” Neural Comput-
ing & Applications, vol. 32, no. 14, pp. 10303–10319, 2020.

[58] L. Yu, D. Zhou, L. Gao, and Y. Zha, “Prediction of drug
response in multilayer networks based on fusion of multiomics
data,” Methods, vol. 192, pp. 85–92, 2021.

[59] B. Małysiak-Mrozek, T. Baron, and D. Mrozek, “Spark-IDPP:
high-throughput and scalable prediction of intrinsically disor-
dered protein regions with Spark clusters on the Cloud,” Clus-
ter Computing, vol. 22, no. 2, pp. 487–508, 2019.

[60] X. Wang, Y. Yang, J. Liu, and G.Wang, “The stacking strategy-
based hybrid framework for identifying non-coding RNAs,”
Briefings in Bioinformatics, vol. 22, no. 5, 2021.

[61] X. Zhao, Q. Jiao, H. Li et al., “ECFS-DEA: an ensemble
classifier-based feature selection for differential expression
analysis on expression profiles,” BMC Bioinformatics, vol. 21,
no. 1, p. 43, 2020.

11Computational and Mathematical Methods in Medicine


	Identifying and Classifying Enhancers by Dinucleotide-Based Auto-Cross Covariance and Attention-Based Bi-LSTM
	1. Introduction
	2. Results
	3. Discussion
	3.1. Enhancer Identification
	3.2. Enhancer Classification

	4. Material and Methods
	4.1. Benchmark Dataset
	4.2. Dinucleotide-Based Auto-Cross Covariance (DACC)
	4.3. Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
	4.4. Attention-Based Bi-LSTM
	4.5. Model Evaluation

	Data Availability
	Consent
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

