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Abstract
Abnormal cerebral oxygenation and vessel structure is a crucial feature of stroke. An imag-

ing method with structural and functional information is necessary for diagnosis of stroke.

This study applies QSM-mMRV (quantitative susceptibility mapping-based microscopic

magnetic resonance venography) for noninvasively detecting small cerebral venous ves-

sels in rat stroke model. First, susceptibility mapping is optimized and calculated from mag-

netic resonance (MR) phase images of a rat brain. Subsequently, QSM-mMRV is used to

simultaneously provide information on microvascular architecture and venous oxygen satu-

ration (SvO2), both of which can be used to evaluate the physiological and functional char-

acteristics of microvascular changes for longitudinally monitoring and therapeutically

evaluating a disease model. Morphologically, the quantification of vessel sizes using QSM-

mMRV was 30% smaller than that of susceptibility-weighted imaging (SWI), which elimi-

nated the overestimation of conventional SWI. Functionally, QSM-mMRV estimated an

average SvO2 ranging from 73% to 85% for healthy rats. Finally, we also applied QSM to

monitor the revascularization of post-stroke vessels from 3 to 10 days after reperfusion.

QSM estimations of SvO2 were comparable to those calculated using the pulse oximeter

standard metric. We conclude that QSM-mMRV is useful for longitudinally monitoring blood

oxygen and might become clinically useful for assessing cerebrovascular diseases.
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Introduction
Stroke is the leading cause of long-term disability, also one of the commonest causes of mortal-
ity in aging countries [1]. Abnormal structure and blood oxygen saturation (SO2) of cerebral
microvessels (diameter:� 100 μm) [2] is a critical feature of stroke. Characterizing unusual
microvascular change and extraordinary SO2 might be useful for the diagnosis and the progno-
sis of stroke [1,3]. Thus, measuring cerebral blood oxygen saturation might be necessary for an
accurate diagnosis, to predict disease outcomes, and to monitor the treatment response in
stroke.

The most commonly used noninvasive methodologies of medical imaging in clinical and
experimental neuroscience for assessing the cerebral microvessels in cerebrovascular diseases
like stroke, glioma, and vascular malformation are computed tomography angiography (CTA)
and magnetic resonance angiography (MRA). Although CTA with a contrast agent can rapidly
and accurately detect the structure of blood vessels [4], it has the potential negative side affect
of ionizing radiation. In contrast, MRA-based techniques, such as time-of-flight (TOF)-MRA
and contrast-enhanced (CE)-MRA, are not radioactive. TOF-MRA is sensitive to the fast-flow-
ing signals in arteries and depends on the motion of water protons [5]. However, TOF-MRA is
limited to measuring small cerebral vessels (venules, arterioles, and capillaries) because of
slow-flowing signals in the cerebral microvessels. CE-MRA uses gadolinium (Gd)-based con-
trast agents to detect these slow-flowing signals [6]. Nonetheless, CE-MRA might not satisfy
the long acquisition time required for high-resolution MRA application because it has a short
intravascular half-life and rapidly redistributes into the extracellular space.

Deoxyhemoglobin, however, provides natural contrast enhancement. Based on this advan-
tage, susceptibility-weighted imaging (SWI) has been proposed for visualizing venous vascular
architecture and has provided structural information for more than a decade [7]. Furthermore,
SWI combines MR magnitude and phase images, and it is more sensitive for detecting mag-
netic substances such as deoxyhemoglobin, hemorrhage, iron, etc. Moreover, SWI is also
widely used clinically to visualize and diagnose venous vascular malformations, stroke, and
traumatic brain injuries. It has also been used to longitudinally assess ischemic vessel size in a
rat stroke model [8]. Although it can characterize vascular structure, SWI cannot provide func-
tional information about blood vessels.

To quantify vascular information, previous studies assessed venous oxygen saturation
(SvO2) with the relaxation time T2

� [9,10]. However, T2
� is not a high-specificity index because

it depends on the measurement conditions of B0 inhomogeneity, on the relaxation time T2

(without the effect of B0 inhomogeneity), and on the properties of blood vessels. Additionally,
T2

� produces inconsistent results under various B0s because of the dependence between T2 and
B0. Conversely, the intrinsic susceptibility of hemoglobin is a potential index for measuring
SvO2. Based on susceptibility measurements, others have shown that MR phase images can be
used to estimate SvO2 in the brain tissue of humans [11–15] and rodents [16,17]. Nevertheless,
using MR phase imaging to quantify SvO2 is vessel-orientation dependent, and MR phase
images show apparent blooming artifacts.

Recently, a novel approach called quantitative susceptibility mapping (QSM), based on MR
phase imaging, is being used to quantify MR images with magnetic susceptibility without
blooming artifacts [18–24]. In addition, QSM has be used to assess the SvO2 in healthy human
brains [20,25–28] and to detect decreases in the SvO2 in patients with cerebral ischemic stroke
[29]. Although the QSM technique has been used quantify to SvO2 in humans, it has not been
used to quantify cerebral SvO2 in rat stroke model. Characterizing the cerebral SvO2 with QSM
in rat stroke model facilitates the understanding of mechanism in brain disorder. Thus, apply-
ing QSM to rat stroke model is crucial for neuroscience research.
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The present study aimed to investigate the feasibility of using QSM for assessing cerebral
SvO2 on stroke in rat. A 3D high-resolution gradient-echo (GRE) image with a spatial resolu-
tion of 100 × 100 × 100 μm3 was used to generate the QSM. QSM processing was optimized
from single-echo GRE images for rat brain venography, which included phase unwrapping,
background field removal, and dipole inversion. The influence of choosing different values of
QSM parameter was investigated. The cerebral microvessels of a healthy rat were visualized
and the SvO2 quantified after QSM reconstruction. To demonstrate the abilities of QSM, we
also compared it with the conventional SWI method. Finally, QSM was used for longitudinal
monitoring of post-stroke revascularization on days 3–10 after reperfusion.

Materials and Methods

Susceptibility Calculation Based on Phase Information
The effects of magnetic susceptibility can be observed in the image phase information obtained
using the gradient echo sequence. Denote the obtained image phase map as φ, with k-space
representation φ(k). Similarly, let χ and χ(k) respectively represent the spatial distribution and
Fourier domain representation of the susceptibility map. The relationship between the mea-
sured phase and underlying susceptibility map are expressed as follows [30]:

φðkÞ ¼ �wðkÞ � DðkÞ � TE � g � B0 ð1Þ

where D(k), TE, γ, and B0 are the dipole kernel in the Fourier domain, echo time, gyromagnetic
ratio of 1H, and main magnetic field, respectively. The dipole kernel is denoted as

DðkÞ ¼ 1=3� k2

z=ðk2

x þ k2

y þ k2

zÞ, where kx, ky, and kz respectively represent the vectors of k-
space in the x-, y-, and z-axes. The center of D(k) was set to zero. Theoretically, the susceptibil-
ity map can be obtained from the phase map simply by inverting the dipole kernel D(k):

wðkÞ ¼ �φðkÞ=½DðkÞ � TE � g � B0� ð2Þ

However, D(k) vanishes in the conical surface region along the magic angle (54.7°) defined

by 2k2

z ¼ k2

x þ k2

y [31]. Thus, χ(k) at that conical surface region cannot be determined. In addi-

tion, the non-uniform distribution of D(k) results in noise propagation after this inversion.
Both factors contribute to the well-known streaking artifacts commonly observed in QSM
[19,31].

Regularized Approach for QSM
To obtain a stable solution to this ill-posed problem, several nonlinear L1 regularized methods
have been reported for artifact-free QSM [21,24,32–35]. In this study, we used an L1 regulariza-
tion with magnitude prior, which is similar to the popular method called morphology enabled
dipole inversion (MEDI) [22,24], which improves conventional L1 regularization to eliminate
both the underestimation of the susceptibility value and the streaking artifacts. The L1 regulari-
zation with magnitude prior involves the following minimization:

w� ¼ 1

2
kb� F�1DFwk22 þ l � kWGwk1 with W ¼

Wx

Wy

Wz

2
66664

3
77775
; G ¼

Gx

Gy

Gz

2
66664

3
77775

ð3Þ

where χ� is the regularized susceptibility value, b is the internal field perturbation, F is the 3D
fast Fourier transform operator, λ is the Lagrange parameter, W is the prior information of a
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binary low-gradient mask (edges were set to zeros, and all others were ones) in three dimen-
sions acquired by simple thresholding of the magnitude gradient, and G is the gradient opera-
tor in three dimensions. To solve the minimization problem, the steepest gradient descent
method was applied [36]. For comparison, the conventional L1 method was used by minimiz-

ing w� ¼ 1
2
kb� F�1DFwk22 þ l � kGwk1 with no weighting factor (W).

SvO2 Calculation with Susceptibility
Measuring susceptibility difference from QSMmakes it possible to quantify SvO2 values of
interest based on the relationship between susceptibility difference and SvO2:

Dwvein�tissue ¼ Dwdo �Hct � ð1� SvO2Þ ð4Þ

where Δχvein-tissue is the estimated susceptibility difference between vein and gray matter, Δχdo =
0.18 ppm (cgs) is the susceptibility difference between fully deoxygenated and fully oxygenated
blood [37], and Hct is the hematocrit coefficient, which is 0.4 in the venous vessels of rat brains
[38]. Arteries were assumed to be fully oxygenated with an SO2 of 100% in this study [39].

Ethics Statement
All animal experimental procedures in this study were approved by the Institutional Animal
Care and Use Committee of National Taiwan University and Kaohsiung Chang Gung Memo-
rial Hospital, and were in compliance with the guidelines for animal care and use set forth by
that Committee. These criteria have been established by the Institutional Animal Care and Use
Committee, which recognizes that euthanasia is sometimes necessary prior to the scheduled
end of a study, either because of unanticipated complications, or because of the protocol itself.
Furthermore, the euthanasia is necessary when animal meet one of the criterion, including (1)
weight loss, (2) inappetence, (3) weakness or inability to obtain feed or water, (4) moribund
state, (5) infection, and (6) signs of severe organ system dysfunction and non-responsive to
treatment, or with a poor prognosis as determined by a veterinarian. The rat was euthanized by
100% CO2 at the end of experiment or one of the criterion that described above-mentioned.

Middle Cerebral Artery Occlusion (MCAO)
To study post-stroke rehabilitation, QSM was used in a rat model of middle cerebral artery
occlusion (MCAO) stroke. The detailed procedures of middle cerebral artery (MCA) reperfu-
sion are described elsewhere [40]. Male Sprague-Dawley rats 7–9 weeks old were intraperitone-
ally injected with sodium pentobarbital anesthetic (50 mg/kg-bw [body weight]). The right
eye-to-ear area was then shaved, and the rats were placed in a prone position on a warming
pad at 37°C and incubated with positive-pressure ventilation (0.2 mL/sec) with oxygen using a
small animal ventilator (SAR-830/A; CWE, Ardmore, PA, USA). A 1.5-cm incision was made
on the scalps of the anesthetized rats, at the midpoint between the right eye and right ear. The
temporalis muscle was separated to expose the zygoma and squamosal bones. A dental drill
was used to make a 2-mm2 burr hole 1 mm rostral to the anterior junction of the zygoma and
the squamosal bones. The dura mater was carefully pierced with a microsurgical needle. The
exposed MCA was carefully isolated and ligated for 60 min using 10.0 surgical sutures (Johnson
& Johnson Medical, Somerville, NJ, USA) to induce ischemic stroke in the cortex of the right
hemisphere. Isoflurane (2%) was on hand in case the rats woke up during surgery. When the
MCA ligation was complete, the common carotid arteries (CCAs) on both sides were ligated
using aneurysm clips. The ligations on both the CCAs and the MCA were loosened after 60
min. All procedures were completed in two h. All of animals were treated carprofen as
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analgesic with the dosage of 5 mg/Kg (s.c., BID) after the post-operative of MCAO. The brain
was dissected and incubated with triphenyl tetrazolium chloride (TTC) to determine the ische-
mic infarct area. For immunohistochemistry, the brains were obtained and then equilibrated in
20% sucrose at 4°C after they had been reperfused with 4% paraformaldehyde in PBS.

Calculating the Ischemic Infarct Area Using TTC Staining
We used TTC staining to determine the infarct area in the brain tissue sections of the Stroke
group (MCA-ligated) rats. Three or 10 days after the MCA had been reperfused, the rats were
euthanized with isoflurane (100% CO2) and their brains were removed. The brains were dis-
sected and collected, frozen at −20°C for 5 min, cut into 2-mm coronal sections, and then
stained with 2% TTC (T8877; Sigma-Aldrich, St. Louis, MO, USA) in PBS for 8 min at 37°C.
The stained sections were transferred to 4% paraformaldehyde for immersion fixation for 24 h,
dehydrated in 30% sucrose, and then photographed.

Measuring the Pulse Oxygen Saturation (SpO2) in the Infarcted and
Non-Infarcted Areas of the Brain Tissue Sections of the Stroke Rat
The SpO2 was measured with a pulse oximeter system (Radical; Masimo Corp., Irvine, CA, USA).
After the rats had been anesthetized with 1.5–2% isoflurane gas mixture (20% O2; 80% N2), they
were placed on the animal holder, and the sensor was placed above the infarct and normal areas of
the rat brain, respectively. The SpO2 was recorded at 30-s intervals for 5 min. The SpO2 measure-
ment used here was to examine the trend of the oxygenation level over time in the Stroke group.

MRData Acquisition for Control Rats
The Sprague-Dawley rats (n = 6; male; 8–10 weeks old; weight: 303 ± 4.2 g) were anesthetized
with 2% isoflurane flowing in a gas mixture (O2, 20%; N2, 80%). Their respiration rate was
monitored and maintained at 50 breaths per min (bpm) with a monitoring and gating system
(SA Instruments, Stony Brook, NY, USA). Rectal temperatures (36 ± 0.5°C) were maintained
using a warm-water circulation system. The MR experiments were done using a 7-T animal
MRI scanner (BioSpin 70/30; Bruker GmbH, Ettlingen, Germany). A 7-cm linear birdcage vol-
ume coil was used for signal excitation, and a 4-channel phased array was used for signal recep-
tion. T2

�-WI was acquired using a 3D-GRE first-order flow compensation sequence that
prevents signal dephasing of the laminar flow of blood in vessels. The imaging parameters were
FOV = 38.4 × 25.6 × 12.8 mm3, MTX = 384 × 256 × 128, voxel size = 100 × 100 × 100 μm3, TR/
TE = 65.5/15 ms, bandwidth = 25 kHz, and scan time = 36 min. To obtain an acceptable phase
contrast between veins and surrounding tissue, the TE was set as the T2

� value of the deoxygen-
ated vessel [41]. The flip angle was set at about 15°-20° to obtain the optimal phase contrast
between the grey and white matter [39]. The large-scale B0 inhomogeneity was minimized by
region of interest (ROI)-based shimming (provided with the system).

MRData Acquisition for the MCAO Rat Stroke Model
A 9.4-T animal MRI scanner (BioSpin 94/20; Bruker) was used to visualize the brain tissue sec-
tions of the Sprague-Dawley rats in the Stroke (n = 6) and the Control groups. A 7-cm quadra-
ture birdcage volume coil was used for signal excitation, and a 4-channel phased array was
used for signal reception. T2

�-WI was acquired using a 3D-GRE sequence with first-order flow
compensation. The imaging parameters were FOV = 38.4 × 25.6 × 12.8 mm3, MTX = 384 ×
256 × 128, voxel size = 100 × 100 × 100 μm3, TR/TE = 50/12 ms, bandwidth = 23 kHz, and
scan time = 28 min.

QSM-mMRV in Rat Stroke Model
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MRData Processing
Multichannel MR raw data were reconstructed using MATLAB (The MathWorks, Natick, MA,
USA), and then separated into magnitude and phase images. The magnitude images of the
individual channels of the coil array were combined using the sum-of-squares method [42]
(Figure AA in S1 File), and the phase images were assembled using complex summation [43]
(Figure AB in S1 File). Subsequently, the combined magnitude and phase images were used for
QSM and SWI reconstruction.

Fig 1 shows an outline of the procedures of QSM reconstruction. First, phase aliasing is
resolved using a phase-unwrapping algorithm. Phase wrapping appears commonly in high-

Fig 1. The steps used in the QSM process. (A) Phase image, (B) unwrapped phase image, (C) internal field map, and (D) QSM in rat brain region. (E-G)
The steps used in the extraction of prior information frommagnitude images.

doi:10.1371/journal.pone.0149602.g001
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field imaging when large off-resonance is present and when TE is relatively long. Two phase-
unwrapping methods, path-based in a spatial domain [44,45] and Laplacian-based in a Fourier
domain [32], have been proposed to resolve phase wrap around 2π. Although the Laplacian-
based method is fast, it results significant errors in the vicinity of the vessels. Hence, the best
3D path-based method was used for QSM-mMRV [45]. Second, the unwrapped phase φ (Fig
1B) was normalized to field perturbation ΔB = Δφ/(γ�TE�B0). The magnitude images of the rat
brains were manually segmented using MRIcro [46] to generate a brain mask applied to ΔB.
Third, a background field induced by air-tissue susceptibility differences and imperfect shim-
ming was then removed to obtain the internal field b (Fig 1C) using sophisticated harmonic
artifact reduction for phase data (SHARP) [47]. The advantage of the SHARP method over
conventional high-pass filtering is that it can preserve the low-frequency component of the
local phase. The optimal local field using SHARP filtering was accomplished using truncated
singular value decomposition with a radius of 3 voxels (300 μm), a shell thickness of 1 voxel
(100 μm), and a truncation value of 0.05 as described elsewhere [47]. The radius was deter-
mined by examining the line profile from the reconstructed QSM (L1 regularization with λ =
10−3) and varying the value from 1 to 9 voxels in steps of 2 (Fig 2). A radius of 3 voxels was
used in this study. Because SHARP filtering cannot be computed for voxels that are less than a
radius away from the ROI border, the local field is available only on a modified ROI that is
smaller than the original ROI. In addition, using a radius of 1 voxel caused over-filtering.
Moreover, the truncation value was determined empirically by varying the value from 0.025 to
0.15 in steps of 0.025 and visually inspecting the resultant local field distribution. Finally, the
QSM (Fig 1D) was calculated from b by minimizing the magnitude prior L1 method as Eq (3)
with steepest gradient decent algorithm of 10 iterations. The Lagrange multiplier λ determines

the smoothness term (kWGχk1 or kGχk1) and data consistency term (1
2
kb� F�1DFwk22) of the

reconstructed susceptibility map such that larger values of λ yield smoother image results than
do smaller ones. In this study, the λ = 10−1.2 was selected for the optimal QSM according to the
L-curve criterion [48] by varying the λ logarithmically between 10−4 and 100.6 (Figure B in S1
File). The binary weighting mask was derived from the magnitude gradient in three directions
(threshold was set to 0.03). For comparison, the conventional L1 regularization QSM was also
optimized using the L-curve criterion (Figure C in S1 File).

For a comparison of vein detection, SWI was reconstructed using the same 3D-GRE data
with a Hann (Hanning) window size of 64 [7] (Fig 3).

Image Registration and Statistical Analysis of MRI Data
To quantitatively compare the susceptibility differences of cerebral veins between rats, the sus-
ceptibility value of the cortex was selected as a reference [49]. Subsequently, the brain regions
were registered to a Sprague-Dawley rat brain atlas [50] using the linear registration algorithm
in FSL FLIRT software with affine transformations [51,52]. First, the veins were extracted
(threshold was set to χ> 0.05 ppm). Subsequently, the susceptibility values were measured
using an average intensity projection (AIP) of a 25-slice QSM (2.5-mm effective coverage).
Seven ROIs of veins, including the intracortical penetrating venule, middle internal frontal
vein (MIF), longitudinal hippocampal vein (LHIV), medial collicular vein (MCOLV), thala-
mostriate vein (THSV), the great cerebral vein (GCV) of Galen, and straight sinus (STS) were
manually drawn and extracted. All measured data are mean ± standard deviation (SD). A coro-
nal slice of cortical brain was selected to compare the differences in measured vessel sizes
between SWI and QSM. In studying post-stroke revascularization, a 2.5-mm-thick SWI mini-
mum intensity projection (mIP) and 2.5-mm-thick QSMMIP were used to compare. Signifi-
cance was set at p< 0.05 (two-tailed t test).

QSM-mMRV in Rat Stroke Model
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Results

Path-Based and Laplacian-Based Unwrapping Algorithms Compared
Fig 4 compares the 3D path-based unwrapping and the Laplacian-based unwrapping algorithm
as well as the local field images and susceptibility maps (under-regularized L1 QSM with λ =

Fig 2. Selection of the radius of the sophisticated harmonic artifact reduction for phase data (SHARP) filtering. (A) Local fields and (B) QSMs (L1
regularization with λ = 10−3) calculated by varying the radius of SHARP filtering from 1 to 9 in 2-voxel steps. (C) Difference in line profile of reconstructed
QSM among various radii. In this figure, path-based phase unwrapping is used. (D) The enlargement of the rectangular (dotted line) in (C).

doi:10.1371/journal.pone.0149602.g002
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10−3) from the unwrapped phase images. The “Difference” images of the Unwrapped phase
(Fig 4C), Local field (Fig 4F), and susceptibility (Fig 4I) maps appear visible difference close to
the THSV, LHIV, and TRS vessels. The Laplacian-based unwrapping method yielded an
underestimation of the susceptibility in vessels (p< 0.001) over the path-based unwrapping
(Fig 4K). In addition, the accuracy of the local field acquired by the two unwrapping methods
was confirmed and compared using numerical simulations (Figure C in S2 File).

Influence of the Selection of the Lagrange Parameter λ
The magnitude prior L1 and conventional L1 regularizations were both optimized using the
L-curve criterion (Figures B and C in S1 File), and the Lagrange parameters were selected as
10−1.2 and 10−1.6 for the magnitude prior L1 and the L1 regularized QSM, respectively. Fig 5

Fig 3. Flowcharts of processing steps of susceptibility-weighted images (SWI). SWI combines both magnitude and a filtered phase map with a
multiplicative relationship to enhance image contrast.

doi:10.1371/journal.pone.0149602.g003
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illustrates the effect of the Lagrange parameter on the susceptibility value from the recon-
structed QSM in the vein. Fig 5A and 5B compare the optimal L1 QSM (λ = 10−1.6), which
yielded an underestimation in susceptibility of 0.147 ppm relative to 0.155 ppm using the opti-
mal magnitude prior L1 algorithm (λ = 10−1.2).

Fig 4. Comparison of quantitative susceptibility map (QSM) based on path-based and Laplacian-based phase unwrapping. Images computed using
3D path-based and Laplacian-based phase unwrapping are presented in the first and second columns from the left. The third column depicts the difference in
the images in the first two columns. (A-C) Comparison of the unwrapped phase images with path-based and Laplacian-based algorithms. (D-F) Comparison
of the local field (SHARP filtering with radius of 3 voxels). (G-I) Comparison of reconstructed QSM (L1 regularization with λ = 10−3). The arrows point to
regions where significant differences between the images in the left and middle columns were observed. (K) Comparison of the measured susceptibility
values in vessels from (J) the region-of-interest (ROI) (***p < 0.001).

doi:10.1371/journal.pone.0149602.g004

QSM-mMRV in Rat Stroke Model

PLOS ONE | DOI:10.1371/journal.pone.0149602 March 14, 2016 10 / 22



Using QSM to Quantitatively Visualize Veins
The 3D high-resolution QSM was reconstructed from a T2

�-WI using the optimized regular-
ized approach. Fig 6 shows the maximum intensity projection (MIP) of QSM calculated from a
2.5-mm-thick brain slice and reveals various veins and venules in each of the three orthogonal

Fig 5. Influence of the Selection of the Lagrange parameter λ. Plot of the measured susceptibility value
from region-of-interest (E) across various λ by (A) L1 regularization and (B) L1 regularization with magnitude
prior. At optimal weighting of λ = 10−1.6, L1 regularization resulted in 0.147 ppm. In contrast, at optimal
weighting of λ = 10−1.2, L1 regularization with magnitude prior resulted in 0.155 ppm.

doi:10.1371/journal.pone.0149602.g005
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planes. These veins were validated and identified using the cerebral vascular atlas [53]: the
great cerebral vein (GCV) of Galen, intracortical penetrating venule, inferior sagittal sinus
(ISS), longitudinal hippocampal vein (LHIV), medial collicular vein (MCOLV), superior olfac-
tory sinus (SOS), superior sagittal sinus (SSS), straight sinus (STS), thalamostriate vein
(THSV), transverse sinus (TRS), middle internal frontal vein (MIF), anterior striate vein
(ASTR), posterior striate vein (PSTR), medial striate vein (MSTR), and rostral rhinal vein
(RRHV). The average susceptibilities of seven major veins (intracortical penetrating venule,
MIF, LHIV, MCOLV, THSV, GCV, and STS) were measured from AIP of QSM, and their
SvO2 levels were calculated (Table 1). The in vivo SvO2 levels in veins ranged from
82.38 ± 3.51% to 90.82 ± 0.75%. QSM allowed (1) microvessels to be visualized at a resolution
of 100 × 100 × 100 μm3 and (2) SvO2 to be quantified.

QSM and SWI Compared
The images obtained using QSM and SWI were compared using the same 3D-GRE data. Fig
7A and 7B show the respective QSM and SWI results for the same axial 2.5-mm-thick slice.
The microvessels of the dorsal and lateral cortical areas were identified using both angiographic
techniques because both used the same signal source: deoxyhemoglobin. However, SWI lacks

Fig 6. Quantitative visualization of QSM of a normal rat brain in three orthogonal views. Veins in the cortical and internal brain are indicated. (A) A
2.5-mm-thick maximum intensity projection (MIP) in coronal view, (B) axial view, and (C) sagittal view. The major veins are labeled, including the great
cerebral vein (GCV) of Galen, intracortical penetrating venule, inferior sagittal sinus (ISS), longitudinal hippocampal vein (LHIV), medial collicular vein
(MCOLV), superior olfactory sinus (SOS), superior sagittal sinus (SSS), straight sinus (STS), thalamostriate vein (THSV), transverse sinus (TRS), middle
internal frontal vein (MIF), anterior striate vein (ASTR), posterior striate vein (PSTR), medial striate vein (MSTR), and rostral rhinal vein (RRHV).

doi:10.1371/journal.pone.0149602.g006
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quantitative information about the microvessels, but QSM provides the SvO2 of the cerebral
vessels. Moreover, the QSM technique eliminates both the blooming artifacts and overestima-
tion of vessel size, while QSM deconvolved the dipole kernel from the phase image (Fig 7C and
7D).

SWI and QSM images of a coronal slice in the cortical region-show that the distribution of
the intracortical vessels revealed by the two methods are consistent, no significant difference
(p> 0.05) in vessel density between SWI (0.0036 ± 0.0011 pixel/mm2) and QSM
(0.0031 ± 0.0008 pixel/mm2), and that the vessels appeared smaller in the QSM image (Fig 8A
and 8B). Fig 8C and 8D show enlargements of the white-lined boxes in Fig 8A, 8B and 8E
shows quantified vessel cross sectional areas. Quantitative analysis of intracortical venules
shows that SWI estimated that the vessels were significantly (p< 0.05)—1.4 times—larger than
estimated by QSM.

Using QSM to Study Post-Stroke Rehabilitation
QSM and SWI were used to study post-stroke rehabilitation in a Stroke group rat 3, 7, and 10
days after the MCAO had been reperfused. TTC staining shows that the infarcted cortical area
shrank from day 3 to day 10 (Fig 9A). A 2.5-mm-thick axial view of mIP using SWI (Fig 9B)
and QSM-estimated SvO2 maps (Fig 9D) clearly show variations in the cortical venules. The
SvO2 estimations of the ipsilateral and contralateral vessels from day 3 to day 10 are shown in
Fig 9E. The SvO2 level of the vessel on the ipsilateral-cortex was significantly lower than that of
the vessel on the contralateral-cortex on day 3 (p< 0.05). After the reperfusion, however, the
SvO2 level of the ipsilateral-cortex climbed, which indicated that the oxyhemoglobin had
reached a plateau on day 7 and 10. This result was comparable with the SpO2 levels calculated
using the pulse oximeter (Fig 9F).

Discussion
In the present study, we applied QSM to assess cerebral SvO2 in rat stroke model. The magni-
tude prior L1-regularized QSMmethod was also optimized to provide an accurate estimation
of susceptibility values and to suppress streaking artifacts. Relative to SWI, QSM-mMRV elimi-
nates the blooming artifacts from the phase image, which reduces overestimations of vessel size
and makes it easy to distinguish intracortical vessels. When used to longitudinally monitor
rehabilitation, the proposed method showed the SvO2 changes in microvessels 3, 7, and 10

Table 1. Estimated SvO2 of seven regions of interest from seven Control group rats (%).

B0 7-T 9.4-T

Vein Rat 1 Rat 2 Rat 3 Rat 4 Rat 5 Rat 6 Rat 7 Mean Across Subjects

Intracortical venule 90.53 91.01 92.50 90.95 90.04 90.35 90.38 90.82 ± 0.75

MIF 88.82 90.26 90.79 90.58 90.93 88.61 89.02 89.86 ± 0.93

LHIV 83.78 85.48 88.14 84.75 83.36 83.45 83.86 84.69 ± 1.57

MCOLV 84.66 88.25 88.55 85.47 85.38 88.38 88.53 87.03 ± 1.63

THSV 85.62 88.01 90.09 86.25 86.35 87.76 87.28 87.34 ± 1.38

GCV 84.12 85.64 88.02 84.35 85.59 86.77 88.18 86.10 ± 1.51

STS 82.92 85.62 87.06 82.95 76.54 78.16 83.41 82.38 ± 3.51

MIF, middle internal frontal vein; LHIV, longitudinal hippocampal vein; MCOLV, medial collicular vein; THSV, thalamostriate vein; GCV, the great cerebral

vein of Galen; STS, straight sinus.

doi:10.1371/journal.pone.0149602.t001
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days post-stroke, which was comparable with the SpO2 measures using the pulse oximeter
standard metric.

The path-based unwrapping algorithm was more reliable for QSM-mMRV than the Lapla-
cian-based method. We found that the measured susceptibility in veins of the reconstructed
QSM from the unwrapped phase using path-based unwrapping was significantly higher than
the Laplacian-based unwrapping (Fig 4K). The numerical simulation also verified that the
path-based unwrapping algorithm presented the true unwrapped phase in the spatial domain
(Figure C in S2 File). Although studies [32,54–57] have reported using Laplacian-based
unwrapping to successfully reconstruct QSM, it might cause an incorrect calculation near the
vessels [32,54,55].

One challenge of QSM reconstruction is to select an appropriate value of the Lagrange mul-
tiplier (λ) and the prior information. In conventional L1 regularization, λ controls the fidelity
of the reconstructed QSM. A large λ enforces minimization of the L1 norm term, which elimi-
nates noise. In contrast, a small λ enforces data fidelity at the cost of streaking artifacts. λ is
usually determined according to the L-curve criterion for the optimal QSM [48]. However, L1
regularization is usually underestimated [21,23,26,56]. In the present study, the magnitude
prior L1 approach allows us to simultaneously suppress streaking artifacts and to prevent an
over-smoothing QSM. In addition, the chosen prior information also influences the accuracy

Fig 7. Comparison of QSM and susceptibility-weighted imaging (SWI). (A) A 2.5-mm-thick MIP of QSM in axial view. The cortex in dorsal and lateral
brain are marked by the rectangles and magnified in (C). (B) A 2.5-mm-thick minimum intensity projection (mIP) of SWI with identical ROIs. (D) In the mIP of
SWI, the vein has blooming artifacts and is difficult to identify. The arrows point to the significant difference between QSM and SWI.

doi:10.1371/journal.pone.0149602.g007
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in reconstructed QSM [23,34,35]. Herein, the estimated susceptibility values were measured by
varying the threshold of the magnitude gradient from 0 to 1 in the step of 0.01 (Fig 10). There
were no significant differences between these QSMs (Fig 10C). However, the measured suscep-
tibility declined with a larger threshold value (Fig 10D).

We found that, at baseline, the SvO2 in several major veins (MIF, LHIV, MCOLV, THSV,
GCV, and STS) had a mean of 86.23%, which was higher than other SvO2 measurements of
~70% [17,58]. The overestimation of SvO2 (i.e., underestimation of susceptibility value) may be
caused by partial volume effects. To date, the weighted L1 regularization was the most appro-
priate method of QSM reconstruction [1]. However, the partial volume effect resulted in an
18.6–33.8% underestimation of susceptibility (i.e., 10–16.6% relative overestimation of SvO2)
according to our simulation (Table A in S3 File). Most of the quantified susceptibility values
(~0.2 ppm) were about 33% lower than the true value (0.3 ppm) (Table A in S3 File). Thus, a
correction factor of approximately 1.5 could be obtained for adjusting the SvO2 quantification
in this study. Note that the quantified values depend on the size and the geometry of object, as
well as TE. These critical factors should be considered carefully for future applications. Table 1
shows the 1-SvO2 ranged from roughly 10% to 18%. If the 1-SvO2 multiplies a correct factor of
1.5, the resultant 1-SvO2 were about 15–27%, which lead to oxygen level of 73–85%. This result
after multiplying a correction factor is close to the SvO2 of ~70% reported by previous works
[17,58]. The error due to partial volume effect could be improved by a recent method [59].

Furthermore, SvO2 estimates were calculated based on the association between the suscepti-
bility differences of fully oxygenated and fully deoxygenated blood (Δχdo) (Eq 4). We used
Δχdo = 0.18 ppm (cgs), which has been used in other studies [11,13,37,60]. Conversely, Δχdo =

Fig 8. Illustration of differences in the intracortical penetrating vessels between SWI and QSM. (A) A coronal slice from SWI. (B) A coronal slice from
QSM. (C) Magnified view of a 3.5 × 3.5-mm2 region of SWI marked by red rectangle in A. The bright signal represents the through-plane cortical vessels. (D)
Fewer and smaller bright signals in QSM. (E) Quantification of vessel size using the two methods. (*p < 0.05).

doi:10.1371/journal.pone.0149602.g008
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0.27 ppm (cgs) was reported by Spees et al. [61], which has been used as the SvO2 value in
other human brain experiments [62,63]. When Δχdo = 0.27 ppm (cgs) was used in our analysis,
the SvO2 results were from 88% to 93%, which are much higher than the normal SvO2 observed
using MRI [17,58]. In addition, the quantified susceptibility value in this work was about

Fig 9. Detection of the rehabilitation of intracortical venules in the rat brain after stroke. (A) Triphenyl tetrazolium chloride (TTC)-stained slice for
infarcted cortical area confirmation over time. (B) Representative of 2.5-mm-thick minimum intensity projection (mIP) of SWI over time. (C) Representative of
2.5-mm-thick average intensity projection (AIP) of QSM over time. (D) Representative of 2.5-mm-thick SvO2 map over time. The second figure in the first row
illustrates the ROI selections on the contralateral (left) and ipsilateral (right) cortices. The arrows indicate angiogenesis at 7 and 10 days post-reperfusion. (E)
(F) Comparison of SvO2 estimates and SpO2 measures on a post-stroke rat. (E) SvO2 estimates by QSM-mMRV and (F) SpO2 measures using the pulse
oximeter on contralateral and ipsilateral cortices. (Mean and SD cross subjects are presented; *p < 0.05; **p < 0.01; ***p < 0.001).

doi:10.1371/journal.pone.0149602.g009
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0.15 ppm as shown in Figs 3–5. After multiplying a correction factor of 1.5 as above mention,
the resultant susceptibility was 0.22 ppm. If the Δχdo = 0.27 ppm (cgs) was used, the resultant
SvO2 become ~84%, which was in agreement with the values (i.e., 73–85%) discussed previ-
ously. Another error of this method is the choice of hematocrit value. We always assumed that
Hct = 0.4 [38] in the present study. However, hematocrit varies between individuals (0.35–0.5)
[13] and also depends upon vessel size [64].

QSM-mMRV was used to demonstrate its ability to longitudinally monitor the rehabilita-
tion of a post-stroke rat. At 3 days after reperfusion, the SvO2 value of the ipsilateral cortex had
significantly declined relative to the contralateral cortex, which agreed with a prior study [29].
At 7 and 10 days post reperfusion, the SvO2 value of ipsilateral cortex had gradually risen to
the level of the contralateral cortex (p> 0.05), which indicated that the physiology of the post-
stroke rat brain had almost recovered. These results are similar to those of a study [65] that
used MRI to quantitatively observe the angiogenesis of a post-stroke rat brain. Moreover, we
compared our SvO2 results with SpO2 measurements. Both of the blood oxygen values had
gradually climbed after reperfusion. Relative to pulse oximeter, QSM-mMRV provided high
spatial resolution and better penetration depth when measuring blood oxygen. In addition, we
also found, in immunohistochemistry (IHC) staining of vessel cells, that the angiogenesis of

Fig 10. Influence of the selection of the prior informationW. (A) Illustrations of the binary weighting in three dimensions across different thresholds from 0
to 0.15 (Wx: weighting factor in x dimension; Wy: weighting factor in y dimension; Wz: weighting factor in z dimension;). (C) The reconstructed QSMs across
different thresholds. (D) The susceptibility values measured from the region-of-interest (B) are the same as in Fig 4(J).

doi:10.1371/journal.pone.0149602.g010
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the ipsilateral cortex area was greater 7 and 10 days after reperfusion (image not shown), and
that the tendency of variation in angiogenesis was consistent with the QSM-mMRV and SvO2

measurements. Thus, we concluded that QSM-mMRV showed promise as a potential noninva-
sive observation tool for clinical applications.

The benefit of QSM-mMRV is using an intrinsic contrast agent (e.g., deoxy-hemoglobin) to
detect the structural and quantitative information of venous vessels, and it is useful for longitudi-
nal studies of vascular disease models. Many studies have investigated the microvascular struc-
ture and function using MRAmethods: time-of-flight (TOF)-, phase-contrast (PC)-, ΔR2-, and
ΔR2

�-MRA [5,66–68]. TOF-MRA is widely used to visualize major arteries [5]. PC-MRA, based
on calculating the phase shift, enables the visualization of arteries and veins [66]. Although both
TOF- and PC-MRA provide structural and flow information, their ability to visualize microves-
sels is limited. ΔR2-MRA has been proposed to detect microvascular arterioles and venules and
obtain cerebral blood volume (CBV) [67]. Nevertheless, iron-based contrast agents are problem-
atic because of their availability, cost, and safety. Recent methods based on ΔR2

�-MRA use blood
oxygen-level-dependent (BOLD) contrast to detect venules and regional CBV [68]. Nonetheless,
by acquiring two sets of 3D-GRE images under different inhalation conditions, ΔR2

�-MRA is
limited by its lengthy scan time (~76-min for an MR scan with two inhalation conditions) and
difficult to use clinically.

QSM-mMRV simultaneously depicts vein architecture and provides quantitative informa-
tion on SvO2. It does, however, have one limitation. QSM-mMRV based on a GRE sequence
magnifies vessel size because of intravascular and extravascular dephasing. Park et al. [69]
reported that the intracortical vessels (diameter: � 80 μm) can be observed using 3D-GRE
images. Ogawa and Lee [70] reported that the susceptibility effect caused the visual vessels to
look twice their normal size in GRE images. This magnification in the magnitude of GRE
images is caused by the extravascular dephasing component that depends on TE, field strength,
vessel orientation, and voxel size. Relative to the magnitude of GRE images, recent studies on
intracerebral microbleeds [71] and stroke [72] report that the visualized size from QSM is inde-
pendent of TE.

Conclusions
We have described a QSM-based microscopic MRV combined with QSM reconstruction for in
vivo quantitative visualization of the architecture of small venous vessels in rat stroke model.
The QSM corrects the nonlocal effects observed in SWI. Corrected by simulation results, the
SvO2 estimated by QSM is ranged from 73% to 85% for healthy rats. The approach simulta-
neously offers cerebral in vivomicrovascular structure and SvO2 measures, which can be used
to evaluate the physiological and functional characteristics of microvascular changes over time.
This technique might be further applied to monitor animal models or clinical patients with
cerebrovascular disease.

Supporting Information
S1 File. QSM reconstruction. Figure A. Combined images from multichannel magnetic reso-
nance data. Figure B. L-curve for magnitude prior L1-regularized quantitative susceptibility
map (QSM) for a rat brain. Figure C. L-curve for L1-regularized quantitative susceptibility
map (QSM) for an animal.
(PDF)

S2 File. Comparison of the accuracy of the local fields acquired by path-based and Lapla-
cian-based phase unwrapping was evaluated using numerical simulation. Figure A. Scheme
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of generating a simulation model. Figure B. Illustrations of the simulated field maps. Figure C.
Comparison of the SHARP filtering method for Path- and Laplacian-based phase uwrapping
algorithms.
(PDF)

S3 File. Systematic error of the choice of the QSMmethod was estimated using a numerical
simulation. Figures A–E. No partial volume effect (perpendicular to B0). Figures F–J. No par-
tial volume effect (parallel to B0). Figures K–O. With partial volume effect (perpendicular to
B0). Figures P–T. With partial volume effect (parallel to B0). Table A. Quantified results from
simulation images at three different echo times and two orientations.
(PDF)
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