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The purpose of this study was to identify the biomarkers implicated in the development

of intracranial hemorrhage (ICH) and potential regulatory pathways. In the transcriptomic

data for patients with ICH, we identified DEmiRNAs and DEmRNAs related to hypoxia,

inflammation, and their transcription factors (TFs). An ICH-based miRNA-TF-mRNA

regulatory network was thus constructed, and four biomarkers (TIMP1, PLAUR,

DDIT3, and CD40) were screened for their association with inflammation or hypoxia

by machine learning. Following this, SP3 was found to be a transcription factor

involved in hypoxia and inflammation, which regulates TIMP1 and PLAUR. From the

constructed miRNA-TF-mRNA regulatory network, we identified three axes, hsa-miR-

940/RUNX1/TIMP1, hsa-miR-571/SP3/TIMP1, and hsa-miR-571/SP3/PLAUR, which

may be involved in the development of ICH. Upregulated TIMP1 and PLAUR were

validated in an independent clinical cohort 3 days after ICH onset. According to Gene Set

Enrichment Analysis (GSEA), SP3 was discovered to be important in interleukin signaling

and platelet activation for hemostasis. Transcription factor SP3 associated with hypoxia

or inflammation plays an important role in development of ICH. This study provides

potential targets for monitoring the severity of inflammation and hypoxia in patients

with ICH.
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INTRODUCTION

Intracranial hemorrhage (ICH) is a condition characterized by bleeding from the brain parenchyma
caused by the rupture of blood vessels in the brain, which leads to compression of the surrounding
nerve tissue, disruption of the brain function, and triggering of disorders (1). ICH can be triggered
by various factors, such as trauma, hypertension, and infection (2, 3). ICH accounts for 10–15% of
strokes and is its most lethal subtype (4–8). The formation of a hematoma from ICH can severely
disrupt tracts, leading to various dysfunctions and threatening patients’ lives, which makes ICH
highly disabling and mortal (4). More than 1 million people are affected by ICH each year (9). The
mortality rate for patients with ICH range from 30 to 50% at 1 month and 54% at 1 year (10, 11).
The unprecedented virus (COVID-19) have also been identified as potential risk factors for ICH
(12). Patients with ICH need to be diagnosed and treated early and accurately in order to achieve
the best possible outcome.
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Neuronal apoptosis, inflammation, oxidative stress, edema
formation, and the breakdown of the blood–brain barrier all
contribute to ICH development (13, 14). ICH is not only
pathologically characterized by inflammation, but it also causes
secondary damage to the brain (15, 16). Inflammatory injury
can damage the vascular endothelium and, thus, is involved in
ICH development (17, 18). The infiltrating leukocytes can release
pro-inflammatory factors, which further damage the blood–
brain barrier, thereby worsening the secondary brain injury after
ICH development (19–21). Meanwhile, hypoxia can be activated
through oxidative stress mechanisms, which in turn are involved
in the developmental mechanisms of ICH (14, 22). Therefore,
we hypothesize that inflammation and hypoxia play important
roles in ICH pathogenesis; however, the molecular mechanisms
involved are not yet clear.

Because inflammation is involved in secondary damage after
ICH, the degree of inflammation can be used to predict the
prognosis of patients with ICH (21, 23, 24). Some indicators of
inflammation, such as the neutrophil-to-lymphocyte ratio, have
been shown to be useful in predicting the prognosis of patients
with ICH, and they are predictive of a good outcome (25).
Brain tissue can become hypoxic from ICH, causing irreversible
damage (26). Genes associated with hypoxia or inflammation,
as well as their pathways of action, play an important role in
the development and progression of ICH. ICH development is
involved in the Nrf2/HO-1 signaling pathway, according to the
previous studies (27). KLF6 acts as a transcription factor that
mediates SIRT5 inhibition of the Nrf2/HO-1 signaling pathway,
which in turn exacerbates neuronal apoptosis and oxidative
stress after ICH development (28). KLF6 plays a crucial role in
the inflammatory and hypoxic response (27). Inflammation and
hypoxia dramatically impact the survival and quality of life of
patients with ICH. Thus, identifying the degree of inflammation
and hypoxia in ICH is essential for monitoring the prognosis of
patients with ICH.

Recent developments in bioinformatics, including the
availability of considerable RNA sequencing data resources,
have provided a direction for disease diagnosis and treatment
(29–32). Gene expression profiles associated with inflammation
or hypoxia can be obtained from RNA sequencing data. This
study was designed to examine the genes and pathways that are
potentially involved in inflammation during ICH.

METHODS

Data Downloaded From the GEO Database
The GEO database was searched for intracerebral hemorrhage-
related RNA transcriptomic datasets based on the following
keywords: “intracerebral haemorrhage” and “brain
haemorrhage”. Exclusion criteria were set as follows: (1)
transcriptomic data from animal models or knockout animals;
(2) brain hemorrhage caused by vascular malformations,
aneurysms, etc.; and (3) drug experiments designed. A dataset
containing mixed plasma samples from 15 patients with ICH
and eight healthy controls (GSE43618 dataset) was filtered
based on the filtering criteria (33). Peripheral blood mRNA
transcriptomic data were obtained from GSE125512 for 11

patients with ICH at the onset and 3 days after onset (34).
These two datasets were used to identify differentially expressed
miRNAs (DEmiRNAs) and differentially expressed mRNAs
(DEmRNAs). These DEmRNAs were derived from an analysis of
differences between peripheral blood transcriptome expression
profiles 3 days after and at ICH onset. The transcriptome data
were log-2 transformed with different unit formats, and de-
batching between samples was performed. Finally, we collected
peripheral blood samples from 20 patients with an ICH and 17
healthy control volunteers in order to validate the genes related
to inflammation and hypoxia identified by the bioinformatics
analysis. Included patients must meet the following criteria: (1)
experience acute cerebral hemorrhage within 3 days; (2) have
clear diagnostic imaging and laboratory results; (3) have no
vascular malformations, coagulation disorders, or other causes
of bleeding; and (4) be free of malignant tumors and other
serious diseases. Ethics approval for this study was obtained
from the General Hospital of Ningxia Medical University. All the
participants provided written informed consent.

Inflammation or Hypoxia-Associated Gene
Sets
In order to select a broad list of candidate gene sets for
inflammation- and hypoxia-related genes, we searched the
Kyoto Encyclopedia of Genes and Genomes (KEGGs) database
(www.kegg.jp). Furthermore, the PubMed and Web of Science
databases were searched for inflammation- or hypoxia-related
gene complements. Ultimately, a total of 50 hypoxia-related
genes and 200 inflammation-related genes were identified. These
genes are mainly involved in inflammatory or hypoxic response
processes during disease development.

Analysis of Variances
First, the limma R package was used to identify DEGs, including
DEmiRNAs and DEmRNAs, in the occurrence of ICH (35). We
identified mRNAs that are up- and down-regulated in patients
with ICH 3 days after cerebral hemorrhage compared with
those at the onset of cerebral hemorrhage using differential
expression analysis of the peripheral blood transcriptome. DEGs
were filtered using p < 0.05 as the threshold. Data were then
filtered by genes using Perl (https://www.perl.org/) to obtain
dysregulated genes associated with inflammation or with hypoxia
and the corresponding gene expression matrix.

Biological Functional Pathway Analysis
Functional pathway analysis of up- or down-regulated
DEmRNAs using the Kyoto Encyclopedia of Genes and
Genomes (KEGGs) and Gene Ontology (GO). GO terminology
is described in three parts: biological processes (BPs), cellular
components (CCs), and molecular functions (MFs). The
clusterProfiler R package was used to complete GO and KEGG
analysis as previous research (36, 37). Further, GSEA is used to
analyze functional pathways of dysregulated biology involving
key genes (38). Selected functional pathways for differential
analysis are referenced from “c2.cp.v7.2.symbols.gmt [Curated]”
in MSigDB collections (https://www.gsea-msigdb.org/gsea/
msigdb/) gene set. The threshold used to identify dysfunctional
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pathways was set at a false discovery rate of <0.25 and adjusted p
of <0.05.

Construction of miRNA–TF–mRNA Network
According to the previous study, the miRNA–TF–mRNA
network was constructed (39–42). First, TF–mRNA relationship
pairs were predicted in DEmRNAs using the TRRUST (v2)
database (43), where mRNAs were associated with hypoxia
or inflammation. To explore regulatory relationships between
DEmiRNAs and DEmRNAs (including TFs), miRWalk was
used (http://mirwalk.umm.uni-heidelberg.de/>). R software was
used to match the interrelationships between DEmiRNAs and
DEmRNAs. Among the predicted miRNA–mRNA molecular
pairs, only those with opposite regulatory directions were
subjected to further analysis. Furthermore, Cytoscape was used to
visualize the entire miRNA–TF–mRNA interaction network and
to identify the hub genes in the network based on the number of
connections in each node (44).

Machine Learning
Intelligent machines are converging with advancing
biotechnologies to shape the future of medicine (45). Machine
learning is used to screen genes associated with the progression
of ICH. Support Vector Machine–Recursive Feature Elimination
(SVM–RFE) was used to investigate genes associated with
hypoxia and inflammation (46). SVM is excellent at handling
small datasets and shows good classification performance.
Redundant genes are filtered using the iterative algorithm
of SVM–RFE, resulting in genes highly correlated with the
outcome. Furthermore, the least absolute shrinkage and selection
operator (LASSO) is used for gene screening. As previous
research, LASSO analysis was performed using the “glmnet” R
package (42, 47). ROC curves were used to assess the predictive
ability of core genes to distinguish between patients with ICH
at different progression stages, thereby testing their reliability
for the outcome prediction. Principle component analysis and
t-distributed stochastic neighbor embedding (t-SNE) (48) were
used to demonstrate the ability of screened core genes to classify
patients with ICH at different developmental stages. The R
package “Rtsne” was used to implement the t-SNE algorithm
based on non-linear dimensionality reduction.

Quantitative qRT-PCR
Total RNAwas extracted using TRIzol (TaKaRa Bio, Shiga, Japan)
and reverse-transcribed into cDNA using PrimeScript RTMaster
Mix (TaKaRa Bio, Shiga, Japan). According to the manufacturer’s
instructions, Real-time PCR was performed using SYBR Green
PCR Master Mix (Takara). Using GAPDH as a reference, the
2−11Ct method was applied for the relative quantification of core
gene expression levels and normalized.

Statistical Analysis
All the drawings are performed using the R software (version
4.0.5). The “VennDiagram” R package is used to create a Venn
diagram to present the results of the gene intersection analysis.
Spearman’s correlation test was used to assess the correlation
between key genes, and correlation coefficients of >0.3 were

considered to be co-expression relationships. Differential analysis
of gene expression between the two groups was performed using
theWilcoxon rank-sum test. Unless otherwise indicated, p< 0.05
was considered a statistically significant difference.

RESULTS

Neutrophils Play an Important Role in ICH
Development
To obtain biomarkers and pathways associated with the
occurrence or progression of ICH, we performed a differential
expression analysis. First, 46 DEmiRNAs were identified by
differential analysis between ICH and healthy control (HC)
(Figure 1A). Based on the transcriptomic data obtained from
the peripheral blood of ICH at different development stages,
914 DEmRNAs were identified. Compared to the onset of ICH,
444 genes were upregulated and 470 genes were downregulated
3 days after the onset of ICH (Figure 1B). These up- and
downregulated genes were then subjected to separate functional
pathway analyses. Themain pathways shown to be upregulated in
ICH by GO and KEGG included neutrophil-mediated immunity,
secretory granule lumen, cell adhesion molecule binding, and
regulation of actin cytoskeleton (Figure 1C). In addition, the
pathways enriched by the downregulated genes contained RNA
splicing, nuclear speck, Herpes simplex virus 1 infection, and
condensed chromosome (Figure 1D). These results suggest that
neutrophils play an important role in the development of ICH.

Identification of Differentially Expressed
Genes Associated With Inflammation or
Hypoxia
To explore the possible role of inflammation- or hypoxia-
related genes in ICH development, we further screened the
inflammation- and hypoxia-related genes separately in the
DEmRNAs.We identified 15 genes associated with hypoxia; their
relative expression between ICHs is shown in Figure 2A. The
number of genes related to inflammation was 16 (Figure 2B).
The corresponding heat map showed a clear boundary
between hypoxia or inflammation-related DEGs in patients
with different stages of ICH. This suggests that the genes
associated with hypoxia or inflammation play an important role
in ICH development.

PPI Network Shows SP3 as a Hub Gene
and May Be Associated With Hypoxia and
Inflammation
From all the DEmRNAs, eight differentially expressed
transcription factors (DETFs) were identified, which can
regulate some of these genes in DEGs associated with hypoxia
or inflammation. Furthermore, 10 DEmiRNAs were predicted
to potentially act on these DEmRNAs (or DETFs) associated
with hypoxia or inflammation. And the relationship pairs
between these DEmiRNAs and DEmRNAs (including DETFs)
were constructed as an miRNA–TF–mRNA interaction network
(Figure 2C). From this molecular interaction network, SP3
was identified as the hub gene in the network, as it has the
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FIGURE 1 | Biological functional pathways of DEGs. Volcano plot showing DEmiRNAs (A) and DEmRNAs (B). Red represents upregulated genes, and blue

represents downregulated genes. Upregulated (C) and downregulated (D) biological functional pathways enriched by DEGs.

highest number of linkages (Figure 2D). From the constructed
molecular interaction network, we further identified a possible
correlation between SP3 and TIMP1 and PLAUR. TIMP1 is an
inflammation-related gene, while PLAUR is a gene associated
with hypoxia and inflammation. Therefore, the hub gene
SP3 might be a transcription factor associated with hypoxia
and inflammation.

Thirteen Important Genes Obtained From
Machine Learning Screening
To evaluate the genes associated with hypoxia or inflammation
that are closely related to ICH development, SVM–RFE and
LASSO analyses were applied to screen DEGs. SVM–RFE showed
minimal error in outcome prediction when all 31 hypoxia- or
inflammation-related DEmRNAs were selected (Figure 3A). In
a subsequent analysis, the Lasso analysis identified 13 hypoxia-

or inflammation-related genes that were strongly associated
with ICH development (Figure 3B). Figure 3C shows the co-
expression network of these 13 genes, and TIMP1 and PLAUR
were found to be co-expressed with several genes. Moreover,
PCA and tSNE visualizations demonstrate that these 13 genes
can be used to distinguish patients with ICH at different stages
(Figures 3D,E).

Venn Analysis Identified Four DEGs
Associated With Inflammation or Hypoxia
An intersection analysis of hypoxia- or inflammation-
related DEGs obtained from machine learning and PPI
networks was performed, and four core inflammation-
or hypoxia-related DEGs (TIMP1, PLAUR, DDIT3, and
CD40) were identified (Figure 4A). The relative expression
profiles of these four core genes in patients with ICH are
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FIGURE 2 | Construction of molecular interactions networks. Heat map showing hypoxia- (A) and inflammation-related (B) DEGs in patients with ICH. The depth of

the color was used to indicate the intensity of gene expression. (C) The constructed miRNA–TF–mRNA network. Each node represents a gene and each edge

represents a gene interaction. Triangle represents transcription factors, parallelogram represents miRNAs, ellipse represents hypoxia-related genes, and the round

rectangle represents inflammation-related genes. (D) Number of junctions between individual genes in this miRNA–TF–mRNA network.

shown in Figure 4B. The ROC curves for PLAUR (AUC
= 0.777), DDIT3 (AUC = 0.669), CD40 (AUC = 0.727),
and TIMP1 (AUC = 0.719) for the different stages of ICH
development are shown in Figures 4C–F, respectively,
indicating their moderate predictive power. PCA and tSNE
visualization showed that patients with different stages of
ICH can be distinguished based on these four genes (TIMP1,

PLAUR, DDIT3, and CD40) (Figures 4G,H). Therefore,

four biomarkers (TIMP1, PLAUR, DDIT3, and CD40) were

screened for their association with inflammation or hypoxia by

machine learning.

Transcription Factors and Corresponding
miRNAs That Regulate TIMP1
In the regulatory network, we discover that RUNX1 and SP3 may
act as transcriptional regulators of TIMP1 (Figure 2C). RUNX1
is regulated by hsa-miR-940, and SP3 is regulated by hsa-miR-
571 (which has the most junctions). The magnitudes of the fold
change values for hsa-miR-940 and hsa-miR-571 are shown in
Figure 5A. The relative ranking of the fold change values for
TIMP1, PLAUR, DDIT3, and CD40 are shown in Figure 5B.
Further correlation analysis showed a positive correlation
between RUNX1 and TIMP1 (r= 0.24, Figure 5C) and a negative
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FIGURE 3 | SVM–RFE and LASSO regression analysis results. (A) On a line graph the prediction accuracy of each variable included in the model is displayed. And the

SVM–RFE screening process showed the smallest errors were obtained when all 31 genes were included in the model. (B) The LASSO analysis resulted in a final

screening of 13 genes. (C) Correlation linkage maps of hypoxia- and inflammation-related genes using machine learning. (D) PCA shows that the visualization of data

based on PC1 and PC2 can be clearly distinguish between patients with ICH at different stages. (E) Visualizes the ability to distinguish patients with ICH at different

stages of development by tSNE method.
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FIGURE 4 | Four key genes obtained from the cross-tabulation analysis. (A) The Venn diagram shows that four core genes are shared in the PPI network, SVM–RFE,

and LASSO. (B) Relative expression profiles of these four core genes in all the patients. (C) PALUR, (D) DDIT3, (E) CD40, and (F) the ability of TIMP1 to differentiate

between patients with ICH at different development stages. (G) PCA and (H) tSNE visualization showing the ability to discriminate between patients with ICH at

different development stages.
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FIGURE 5 | Results of co-expression analysis of four core genes. DEmiRNAs (A) DEmRNAs (B) are arranged by log2 (Fold Change). (C) Correlation analysis between

RUNX1 and the inflammation-associated gene TIMP1. (D) Correlation analysis between SP3 and the inflammation-associated gene TIMP1. (E) PCR showed

differential expression of TIMP1 and PLAUR between the HC and ICH groups. (F) Correlation analysis between FOS and PLAUR. (G) Correlation analysis between

SP3 and PLAUR.

correlation between SP3 and TIMP1 (r = −0.381, Figure 5D).
Although there was no statistically significant difference, more
cellular research are needed. Therefore, we further predicted
two miRNA–TF–mRNA axes around the inflammation-related

gene TIMP1, namely, hsa-miR-940/RUNX1/TIMP1 and hsa-

miR-571/SP3/TIMP1 (Figure 2C). Validation in an independent
clinical cohort showed statistically significant differences in

TIMP1 expression between ICH and HC (p < 0.01, Figure 5E).

Transcription Factors and Corresponding
miRNAs That Regulate PLAUR
In the molecular interaction network (Figure 2C), the
transcription factors of the hypoxia-related gene PLAUR
were SP3 and FOS. SP3 also exhibited a regulatory effect on
the inflammation-related gene TIMP3. Based on a condition
of >0.3 correlation coefficient, we found no co-expression
between FOS and PLAUR (r = 0.08, p = 0.282, Figure 5F), while
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there was some negative correlation between SP3 and PLAUR
(r = −0.348, Figure 5G). Therefore, we identified SP3 as a
key hypoxia- and inflammation-related transcription factor. In
addition, hsa-miR-571/SP3/PLAUR was constructed around SP3
and PLAUR as an axis miRNA-TF-mRNA (Figure 2C). There
was a significant difference in PLAUR expression between ICH
and HC based on the data from an independent clinical cohort
(p < 0.01, Figure 5E).

SP3 Is Involved in Leukocyte- and
Platelet-Related Physiological Processes
We performed GSEA analysis of the transcription factors SP3
and RUNX1 to explore the pathways in which they might
be involved. GSEA showed that the signaling by interleukins,
hemostasis, platelet activation signaling and aggregation, and
mitotic prometaphase pathways were upregulated in patients
with ICH with SP3 downregulation (Figure 6A). In patients with
ICH with elevated RUNX1 expression, elastic fiber formation
was downregulated, while the transcriptional regulation of
the granulopoiesis pathway was upregulated (Figure 6B). The
aforementioned results indicate that SP3 may be involved in
interleukin signaling and platelet activation for hemostasis, while
RUNX1 may be involved in granulopoiesis after ICH onset.

TIMP1 Is Associated With Platelets and
Angiogenesis
In patients with ICH with PLAUR upregulation, mitotic
prometaphase and cell cycle checkpoints were downregulated,
while interferon signaling and hippoyap signaling pathway
were upregulated (Figure 6C). In patients with ICH with
elevated expression of TIMP1, the platelet activation signaling
and aggregation, insulin signaling pathway, and angiogenesis
pathways were upregulated (Figure 6D). PLAUR and TIMP1
were both upregulated 3 days after ICH onset. Therefore, it is
hypothesized that PLAUR, a hypoxia and inflammation-related
gene, may be involved in upregulating the interferon signaling
pathway and hippo pathway, while TIMP1 may be involved in
platelet activation and aggregation, activating insulin signaling
pathways, and promoting angiogenesis.

DISCUSSION

Four hypoxia- or inflammation-related biomarkers (TIMP1,
PLAUR, DDIT3, and CD40) were identified in this study.
Among them, SP3 might act as a transcriptional regulator
for TIMP1 and PLAUR. A bioinformatics approach was
used to predict the possible roles of the three hypoxia-
and inflammation-related miRNA–TF–mRNA axes (hsa-miR-
940/RUNX1/TIMP1, hsa-miR-571/SP3/TIMP1, and hsa-miR-
571/SP3/PLAUR) in ICH development. Independent clinical
cohort studies have validated upregulation of TIMP1 and
PLAUR expression after the onset of ICH. In addition, GSEA
was used to analyze the functions of SP3, RUNX1, TIMP1,
and PLAUR.

TIMP1 and PLAUR have been identified in the previous
studies as involved in the progression of ICH. Matrix

metalloproteinases (MMPs) are the most important degrading
enzymes in the pathogenesis of ICH (49), during extracellular
matrix reconstruction and blood–brain barrier disruption (50).
TIMP1 is amajor endogenous inhibitor ofMMP-9 andwas found
to be significantly more expressed in the serum of patients with
ICH than in normal controls in a study of the Chinese Han
patients with ICH (51). TIMP-1 expression is also associated with
early mortality in ICH as its potential biomarker for predicting
mortality (52). The urokinase-type fibrinogen activator encoded
by the PLAUR gene plays an important role in the development
of cortical neural circuits and in brain tissue remodeling after
brain injury (53, 54). Thus, PLAUR can be related to the prognosis
of patients with ICH. In this study, TIMP1 and PLAUR were
upregulated 3 days after the onset of ICH compared with that
before the onset. Previous studies have found that TIMP1 is
associated with primary sarcopenia, colon cancer progression
and metastasis, and some infectious diseases (55–57). We found
that TIMP1 is involved in platelet activation and aggregation,
insulin signaling pathway activation, and angiogenesis. The
upregulation of TIMP1 can therefore affect recovery, regression,
and progression of the patients with ICH by affecting both
platelet function and angiogenesis. And PLAUR is associated as
an inflammation-related gene with diseases or processes, such
as asthma, myocardial infarction, and reduced lung function
(58–60). TIMP1 and PLAUR are involved in inflammation and
hypoxia-related progression in ICH. MMP-9 is expressed in
inflamed tissues and is involved in the inflammatory process
(61). TIMP-1 is a natural inhibitor of MMP-9 (62). Thus, TIMP-
1 might play a role in the inflammatory response by inhibiting
MMP-9. After inflammation occurs, PLAUR binds to PLAU and
activates plasminogen to plasmin, promoting inflammatory cell
migration and activation and matrix metallopeptidase (MMP)
activation, thereby participating in the inflammatory response
(60, 63–65). In addition, PLAUR can be regulated by the hypoxia-
inducible factor HIF-1 to play a role in the hypoxia-related
mechanisms of the disease (66). In this study, TIMP1 and
PLAUR upregulation in ICH was validated in an independent
cohort, which confirms the involvement of TIMP1 and PLAUR
in ICH development.

In this study, we found that both TIMP1 and PLAUR are
regulated by SP3, a transcription factor associated with both
hypoxia and inflammation. Hypoxia has long been found to
downregulate SP3 (67). The SP transcription factor family can
be involved in the regulation of hypoxic gene expression in
the hippocampus through a mechanism mediated by oxidative
stress during hypoxia (68). In addition, SP3 is involved in the
molecular regulatory mechanism of hypoxia-inducible factor
1α (69). Following inflammatory stimuli, SP3 and NF–κB
interact to regulate inflammatory gene expression (70). SP3
is also involved in LPS-induced cellular inflammation (71).
In patients with concomitant SP3 downregulation, signaling
by interleukins, hemostasis, platelet activation signaling
and aggregation, and mitotic prometaphase pathways were
upregulated. These pathways suggest that downregulated SP3
is involved in interleukin signaling, platelet activation, and
hemostasis. Therefore, SP3 downregulation might influence the
progression and regression of ICH by affecting the degree of
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FIGURE 6 | Gene set enrichment analysis. (A) GSEA shows altered pathways in samples with downregulated SP3. (B) GSEA shows altered pathways in samples

with upregulated RUNX1. (C) GSEA shows altered pathways in samples upregulated by PLAUR. (D) GSEA shows altered pathways in samples with TIMP1

upregulation. The upward peaks of the curve represent the upward adjustment pathway, while the downward peaks represent the downward adjustment pathway.

platelet activation as well as the level of inflammation, ultimately
affecting the prognosis and quality of life of patients.

The miRNA–TF–mRNA network identified hsa-miR-571 as
the pivotal miRNA regulating SP3. Previous studies have found
that miR-571 functions in DNA replication and genomic stability
(72). miR-571 is involved in the inflammatory process in cirrhosis
(73), and can regulate the activation of human stem stellate cells

(74) by mediating the Notch3 signaling pathway (75). However,
there is a lack of studies on the relationship between miR-571
and SP3. In this study, we found the first evidence suggesting
that hsa-miR-571 regulated the level of inflammation and platelet
activation in ICH by regulating SP3 translation. And hsa-miR-
571/SP3/TIMP1 and hsa-miR-571/SP3/PLAUR are two miRNA-
TF-mRNAs involved in ICH development.
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TIMP1 and PLAUR were differentially expressed in ICH
and were upregulated 3 days after the onset of ICH. The
upregulation of TIMP1 might have influenced the outcome
of patients with ICH by affecting the platelet function and
angiogenesis. PLAUR, in turn, was involved in the upregulation
of the interferon signaling pathway and the hippo pathway.
The hypoxia- and inflammation-related transcription factor SP3
was involved in the regulation of TIMP1 and PLAUR. SP3
might have influenced the progression of ICH by affecting the
degree of platelet activation and the inflammation level. These
findings provide potential targets for the diagnosis, treatment,
and regression of ICH in order to monitor the severity of
inflammation and hypoxia in patients with ICH. Although
clinical samples were used for validating the study results,
the number of clinical samples was small and the strength of
validation needs improvement. Bioinformatic findings will need
to be validated in the relevant cell lines as well as ICH animal
models in the future. In addition to investigate the relationship
between SP3 and its counterparts hsa-miR-571, TIMP1, and
PLAUR, more research is needed to identify the role of SP3
in ICH.

CONCLUSION

The hsa-miR-940/RUNX1/TIMP1, hsa-miR-571/SP3/TIMP1,
and hsa-miR-571/SP3/PLAUR play important roles in
ICH development. The hypoxia- and inflammation-related
transcription factor SP3 might be involved in platelet activation
in ICH through the regulation of TIMP1/PLAUR, as well as in
inflammatory regulation.
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