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Abstract
Objectives: This study investigated whether radiomic features extracted from radial-
probe endobronchial ultrasound (radial EBUS) images can assist in decision-making
for subsequent clinical management in cases with indeterminate pathologic results.
Methods: A total of 494 patients who underwent radial EBUS biopsy for lung nodules
between January 2017 and December 2018 were allocated to our training set. For the
validation set, 229 patients with radial EBUS biopsy results from January 2019 to April
2020 were used. A multivariate logistic regression analysis was used for feature selec-
tion and prediction modeling.
Results: In the training set, 157 (67 benign and 90 malignant) of 212 patients patho-
logically diagnosed as indeterminate were analyzed. In the validation set, 213 patients
were diagnosed as indeterminate, and 158 patients (63 benign and 95 malignant) were
included in the analysis. The performance of the radiomics-added model, which con-
sidered satellite nodules, linear arc, shape, patency of vessels and bronchi, echogeni-
city, spiculation, C-reactive protein, and minimum histogram, was 0.929 for the
training set and 0.877 for the validation set, whereas the performance of the model
without radiomics was 0.910 and 0.891, respectively.
Conclusion: Although the next diagnostic step for indeterminate lung biopsy results
remains controversial, integrating various factors, including radiomic features from
radial EBUS, might facilitate decision-making for subsequent clinical management.
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INTRODUCTION

Radial-probe endobronchial ultrasound (EBUS) has been
reported to be useful in identifying and taking samples of
peripheral pulmonary lesions, improving the diagnostic sen-
sitivity of advanced bronchoscopic techniques.1,2 However,
when biopsy results are indeterminate, the next diagnostic
step for pathologically indeterminate cases remains
uncertain.3

Several attempts have been made to improve the diag-
nostic yield of radial EBUS, but they were mostly classical
models for calculating the probability of malignancy based
on clinical factors such as age, sex, smoking history, and

malignancy history and semantic radiological features on
chest computed tomography (CT) images.3,4 Recent studies
have shown that those models could be reinforced with
additional features from radial EBUS.5,6 Nevertheless, higher
prediction performance is required for those models to be
applicable in clinical settings, and variables that describe
tumors in more detail are needed to construct a better pre-
diction model.

Radiomics is a rapidly evolving technology for extract-
ing quantitative information from extensive medical
images and has attracted considerable interest in the field
of radiology.7–10 Its application is most promising in oncol-
ogy, and numerous studies have incorporated radiomics

F I G U R E 1 Initial radial EBUS results and final diagnoses for the training and validation sets. Other includes cryptococcosis, sarcoidosis, Toxocara canis,
and mucocele. Radial EBUS, radial probe endobronchial ultrasound.

F I G U R E 2 Method flowchart. The clinical factor model was built using demographic and clinical factors and CT and semantic ultrasound features.
Radiomic features from radial EBUS were additionally considered in the radiomics-based model. The relationships among the variables were analyzed and
models were constructed. For the training and validation sets, the AUC performance of each model was calculated. AUC, area under the curve.
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for diagnostic, prognostic, and predictive purposes.11–13

Those approaches provide a deeper understanding of
tumor biology and behavior and therefore, improve the
performance of prediction models. In this work, we devel-
oped and validated a radiomics-added malignancy predic-
tion model with two independent cohorts to further
classify patients whose lesions were initially diagnosed as
indeterminate. We have demonstrated its predictive perfor-
mance and potential to facilitate decision-making about
subsequent clinical management of patients with indeter-
minate pathologic results.

MATERIALS AND METHODS

Patients

This study was approved by the Institutional Review Board
of Samsung Medical Center, and informed consent was
waived (IRB No. 2018-03-021) because it was retrospective.
We reviewed the medical records of 494 patients and
229 patients, all of whom underwent radial EBUS biopsy
for lung nodules at Samsung Medical Center between
January 2017 and December 2018 and between January

T A B L E 1 Baseline characteristics of patients in the training and validation sets

Characteristics Training set (n = 157) Validation set (n = 158) p-value

Final diagnosis 0.696

Benign 67 (42.7) 63 (59.9)

Malignant 90 (57.3) 95 (60.1)

Clinical factors

Age, y 66.0 (59.0–73.0) 66.0 (59.0–72.0) 0.877

Sex 0.535

Male 91 (58.0) 98 (62.0)

Female 66 (42.0) 60 (38.0)

Smoking history (yes) 69 (43.9) 86 (54.4) 0.081

History of malignancy (yes) 30 (19.1) 21 (13.3) 0.212

Chest CT findings

Size, mm 27.0 (19.0, 37.0) 26.0 (19.0, 34.0) 0.721

Upper lobe 84 (53.5) 77 (48.7) 0.463

Type 0.189

Solid 110 (70.1) 122 (77.2)

Part-solid 47 (29.9) 36 (22.8)

Spiculation 56 (35.7) 43 (27.2) 0.135

Bronchus sign 48 (30.6) 57 (36.1) 0.359

Satellite nodules 44 (28.0) 44 (27.8) 1.000

Radial EBUS findings

Echogenicity 0.962

Homogeneous 83 (57.3) 92 (58.2)

Heterogeneous 67 (42.7) 66 (41.8)

Attenuation 59 (37.6) 72 (45.6) 0.185

Margin 0.001

Regular 22 (14.0) 47 (29.7)

Irregular 135 (86.0) 111 (70.3)

Shape 0.609

Round/oval 71 (45.2) 77 (48.1)

Complex 86 (54.8) 81 (51.3)

Dots 43 (27.4) 37 (23.4) 0.496

Linear arc 56 (35.7) 64 (40.5) 0.443

Vessels and bronchi 0.047

Patent 28 (17.8) 44 (28.7)

Not patent 129 (82.2) 114 (72.2)

Note: Unless otherwise indicated, data are numbers of patients with percentages in parentheses. Data are median; data in parentheses are the interquartile range.
Abbreviations: CT, computed tomography; radial EBUS, radial probe endobronchial ultrasound.
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2019 and April 2020, respectively. Each patient group was
prepared independently, and they were used as the training
and validation sets (Figure 1). Demographic and clinical
data, such as age, sex, smoking history, malignancy history,
peripheral blood lab data, and final diagnosis, were
retrieved from the medical records. Patients were excluded
if (1) they were lost to follow up or had no definite diagno-
sis; (2) radial EBUS images were missing from the record;
or (3) radial EBUS image quality was inadequate for
analysis.

All patients undergoing radial EBUS were classified as
“positive for malignancy” or “indeterminate,” based on the
biopsy obtained using radial EBUS. “Positive for

malignancy” indicates a primary or metastatic cancer found
in a radial EBUS–guided biopsy. “Indeterminate” results
included atypical cells, granuloma, fibrosis, and inflamma-
tion and did not exclude the possibility of malignancy.
Among those, only patients diagnosed pathologically as
indeterminate through radial EBUS biopsy were included in
this study.

Definitive diagnoses were defined as those (1) pathologi-
cally confirmed as cancerous by endobronchial ultrasound–
guided transbronchial needle aspiration, surgical specimen
analysis, a core needle biopsy, or additional radial EBUS, or
(2) with culture results from sputum or bronchial washing that
showed tuberculosis or atypical mycobacteria with appropriate

T A B L E 2 Baseline characteristics of patients in the training and validation sets by malignancy status

Characteristics

Training set

P-value

Validation set

p-valueBenign (n = 67) Malignant (n = 90) Benign (n = 63) Malignant (n = 95)

Clinical factors

Age, y 66 (58.0, 72.5) 66.5 (59.0, 73.0) 0.756 65.0 (58.0, 70.0) 68 (59.0, 73.0) 0.045

Sex 0.384 0.069

Male 42 (62.7) 49 (54.4) 45 (71.4) 53 (55.8)

Female 25 (37.3) 41 (45.6) 18 (28.6) 42 (44.2)

Smoking history (yes) 29 (43.3) 40 (44.4) 1.000 32 (50.8) 54 (56.8) 0.559

History of malignancy (yes) 10 (14.9) 20 (22.2) 0.345 6 (9.5) 15 (15.8) 0.370

Chest CT findings

Size, mm 27 (19.0, 37.5) 27 (20.0, 35.8) 0.960 25 (19.0, 41.0) 26 (19.5, 33.0) 0.710

Upper lobe 28 (41.8) 56 (62.2) 0.017 29 (46.0) 48 (50.5) 0.696

Type 0.108 0.955

Solid 15 (22.4) 32 (35.6) 15 (23.8) 21 (22.1)

Part-solid 52 (77.6) 58 (64.4) 48 (76.2) 74 (77.9)

Spiculation 11 (16.4) 45 (50.0) <0.001 13 (20.6) 30 (31.6) 0.183

Bronchus sign 12 (17.9) 36 (40.0) <0.005 19 (30.2) 38 (40.0) 0.275

Satellite nodule 34 (50.7) 10 (11.1) <0.001 32 (50.8) 12 (12.6) <0.001

Radial EBUS findings

Echogenicity <0.001 <0.001

Homogeneous 52 (77.6) 38 (42.2) 53 (84.1) 39 (41.1)

Heterogeneous 15 (22.4) 52 (57.8) 10 (15.9) 56 (58.9)

Attenuation 18 (26.9) 41 (45.6) 0.026 17 (27.0) 55 (57.9) <0.001

Margin 0.017 0.181

Regular 15 (22.4) 7 (7.8) 23 (36.5) 50 (25.3)

Irregular 52 (77.6) 83 (92.2) 40 (63.5) 71 (74.7)

Shape 0.817 0.948

Round/oval 13 (19.4) 20 (22.2) 30 (47.6) 47 (48.4)

Complex 54 (80.6) 70 (77.8) 33 (52.4) 48 (50.5)

Dots 8 (11.9) 35 (38.9) <0.001 8 (12.7) 29 (30.5) 0.016

Linear arc 9 (13.4) 47 (52.2) <0.001 20 (31.7) 44 (46.3) 0.097

Vessels and bronchi <0.001 <0.001

Patent 23 (34.3) 5 (5.6) 36 (57.1) 8 (8.4)

Not patent 44 (65.7) 85 (94.4) 27 (42.9) 87 (91.6)

Note: Unless otherwise indicated, data are numbers of patients with percentages in parentheses. Data are median; data in parentheses are the interquartile range.
Abbreviations: CT, computed tomography; radial EBUS, radial probe endobronchial ultrasound.
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antibiotic response, or (3) with follow-up chest CT implying
resolved or improved lesions and a reassessment by a radiolo-
gist that confirmed the possibility of benignity. In these cases,
the patients were observed for at least 6 months.14

The CT images were obtained before the radial EBUS
biopsy with the following parameters: detector collimation,
1.25 or 0.625 mm, scans performed at 120 kVp with 150–
200 mA, and a reconstruction interval of 1–2.5 mm.15

Procedure

To evaluate the tracheobronchial tree, bronchoscopic eval-
uation was performed under conscious sedation induced
with midazolam and fentanyl before radial EBUS–guided
biopsy. A 4-mm bronchoscope (BF P260F; Olympus) was
used to approach the sub-subsegmental level closest to the
suspected tumor area after reviewing chest CT or positron
emission tomography-CT images. Then radial EBUS probe
(1.4-mm, 20-MHz, UM S20-17 S; Olympus) was inserted
through the bronchoscope working channel. When the tar-
get mass lesion was found on ultrasonography, the length
of the probe inserted from the tip of the radial EBUS to the
outer level of the working channel was measured. After
removing the probe, a 1.8-mm biopsy forceps was marked
at the same length using tape and inserted through the
working channel for transbronchial lung biopsy. Although
no additional guide sheath or fluoroscopy was used, radial
EBUS probe was administered alternately with biopsy

forceps multiple times, to recheck the lesion that is being
biopsied.16

Imaging and interpretation

Ultrasound images showing the tumors targeted during the
radial EBUS procedure were digitally captured. A region of
interest (ROI) was automatically drawn on all captured
ultrasound images using commercial software (Aview, ver-
sion 1.0.23, 2018; Coreline Soft) to construct a volume of
interest that included the whole target lesion.17 A pulmonol-
ogist made additional manual corrections to each ROI.

From the ROIs, 34 quantitative ultrasound radiomic fea-
tures characterizing the tumor margin were extracted. The
features were classified into three categories: (1) histogram
features after applying Laplace of Gaussian (LoG) filters;
(2) gray level co-occurrence matrix (GLCM) features; and
(3) gray level size zone matrix (GLSZM) features. The histo-
gram features represent the range and frequency of the
tumor pixel values within the defined lesion ROI. The LoG
requires the use of a Gaussian smoothing filter to reduce
noise in the CT and then a Laplacian filter is applied to
highlight regions of rapid intensity change. As the texture-
based feature, two feature sets, GLCM and GLSZL were used
as follows: GLCM describes the second-order joint probabil-
ity function of an image region and considers the association
between neighboring voxels, and GLSZM quantifies gray
level zones, defined as the number of connected voxels that

T A B L E 3 Comparison of predictive performance between the clinical factor model and radiomics-added model

Prediction
models

Selected variables in
model

Univariate analysis
OR (95% CI)

Multivariate analysis
OR (95% CI)

Performance in
training set (AUC)

Performance in
validation set (AUC)

Clinical factor
modela

Spiculation 5.09 (2.43, 11.40) 3.57 (1.32, 10.42) 0.910 0.891

Satellite nodule 0.12 (0.05, 0.27) 0.05 (0.01, 0.14)

Upper lobe 2.29 (1.21, 4.41) 3.17 (1.25, 8.54)

Echogenicity 4.74 (2.37, 9.90) 5.41 (1.90, 17.20)

Vessels and bronchi
(not patent)

8.89 (3.40, 27.91) 10.00 (2.79, 44.16)

Dots 0.12 (0.05, 0.27) 2.88 (0.87, 10.77)

Radiomics-
added
modelb

Spiculation 5.09 (2.43, 11.40) 3.77 (1.28, 12.29) 0.929 0.877

Satellite nodule 0.12 (0.05, 0.27) 0.05 (0.01, 0.16)

Echogenicity 4.74 (2.37, 9.90) 5.54 (1.77, 20.29)

Vessels and bronchi
(not patent)

8.89 (3.40, 27.91) 4.65 (1.14, 22.05)

Shape, polygonal 0.03 (0.00, 0.13) 0.06 (0.00, 0.45)

Shape, lobulated or
complex

3.19 (1.62, 6.40) 1.07 (0.32, 3.35)

CRP 0.55 (0.29, 0.83) 0.63 (0.26, 0.96)

Arc 7.04 (3.24, 16.78) 2.39 (0.70, 9.14)

Min-HIST 1.05 (1.01, 1.09) 1.03 (0.99, 1.10)

Note: In clinical factor model, multivariate analysis OR (95% CI) (in bold).
Abbreviations: AUC, area under curve; CI, confidence interval; CRP, C-reactive protein; CT, computed tomography; Min-HIST, minimum histogram; OR, odds ratio;
US, ultrasonography.
aClinical factor model is based on clinical demographics, CT, and US findings.
bRadiomics-added model is based on radiomics from US images as well as demographics, clinical factors, CT, and US findings.
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share the same gray level intensity. The radiomics features
were automatically extracted for all given ROIs for each
patient using the PyRadiomics package implemented in
Python (https://pyradiomics.readthedocs.io/en/latest/).18

In addition to radial EBUS–derived radiomics variables,
semantic variables extracted from chest CT images and
ultrasound images were also included in our model. All CT
image findings were analyzed for the following features:
consolidation size of tumor, location (upper lobe), type
(solid or partial-solid), nodule shape (round, polygonal, lob-
ulated or complex), spiculation, bronchus sign, and presence
of satellite nodules. All radial EBUS image findings were
analyzed for the following features: echogenicity (homoge-
neous or heterogeneous), attenuation (maintenance of echo-
genicity supposing midline as a fiducial line), margin
(regular or irregular), shape (round or complex), presence of
dots or a linear arc, and patency of vessels and bronchi,
along with the extracted ultrasound radiomic features.14

Statistical analysis

The χ2 test was used to compare categorical variables, and
the nonparametric Mann–Whitney U test was used to com-
pare continuous variables between the training set and vali-
dation set and between the benign and malignant groups in
the training and validation sets.

For the clinical factor model, demographic, clinical fac-
tors, CT imaging features, and radial EBUS imaging features
were used as inputs. Variables with p < 0.1 in the univariate
logistic regression were selected, and a backward selection
multivariate logistic regression analysis was conducted to
compare the potential predictors. For the radiomics-added
model, demographic, clinical factors, CT imaging features,

and both the semantic and radiomic radial EBUS imaging
features were used as inputs. Variables were selected through
extreme gradient boosting, and a backward selection multi-
variate logistic regression was conducted to compare potential
predictors. To assess the performances of the prediction
models, the area under the curve (AUC) values were calcu-
lated. The overall research flow is shown in Figure 2.

All statistical analyses were performed using R software
(version 4.0.4; R Foundation for Statistical Computing). All
reported p values are two-sided, and p < 0.05 was considered
statistically significant.

RESULTS

Among the 494 patients from 2017 to 2018, 282 patients
were positive for malignancy, and 212 patients were patho-
logically diagnosed as indeterminate (Figure 1). Forty-seven
patients were lost to follow up, and eight patients were
excluded because of radial EBUS image loss or poor radial
EBUS image quality. Therefore, 157 patients (67 benign and
90 malignant) were analyzed for the training set. Among the
229 patients from 2019 to 2020, 213 patients were diagnosed
as indeterminate and 55 patients were excluded because of a
lack of follow-up information or image quality. Conse-
quently, 158 patients (63 benign and 95 malignant) were
analyzed.

Table 1 describes the demographic characteristics and
CT and radial EBUS image features of the training and vali-
dation sets. The two sets did not differ significantly in final
diagnosis, demographic characteristics, or chest CT findings.
The factors that showed significant differences in the radial
EBUS findings were tumor margin (p = 0.001) and patency
of the vessels and bronchi (p = 0.047). Table 2 subdivides

F I G U R E 3 Representative lung CT images (left) and radial EBUS images (right) of two patients are shown in (a). Patient 1 was pathologically diagnosed as
benign, and patient 2 was diagnosed as malignant. The variables in the radiomics-added model and individual patient data are listed in (b). Factors indicating
malignancy, such as spiculation, lobulated or complex shape, absence of satellite nodules, heterogeneous echogenicity, presence of linear arc, and no patency of
vessels and bronchi are observable in patient 2. A relatively low CRP value and high value of minimum histogram are also observed in patient 2, which is consistent
with the results of the radiomics-added model. CT, computed tomography; radial EBUS, radial probe endobronchial ultrasound; CRP, C-reactive protein.
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each set to compare the characteristics of patients with
benign and malignant lesions. There was a borderline signif-
icant difference in age between the groups in the validation
set (p = 0.045). Upper lobe, spiculation, bronchus sign, and
satellite nodules in the chest CT findings differed signifi-
cantly between the groups in the training set, whereas upper
lobe (p = 0.696), spiculation (p = 0.183), and bronchus sign
(p = 0.275) did not differ significantly in the validation set.
The echogenicity in the radial EBUS findings differed signif-
icantly between the groups with benign and malignant
lesions in both sets (p < 0.001).

Selected variables and model performances

Six variables were selected for the clinical factor model: three
variables from the CT image findings (upper lobe, spicula-
tion, and satellite nodules) and three from the radial EBUS
findings (echogenicity, dots, and patency of the vessels and
bronchi). The malignancy prediction performance for the
clinical model, calculated as the AUC, was 0.910 in the
training set and 0.891 in the validation set (Table 3).

For the radiomics-added model, nine variables were
selected: four from the CT image findings (satellite nodule,
spiculation, polygonal shape, and lobulated or complex
shape), three from the radial EBUS findings (patency of ves-
sels and bronchi, echogenicity, and linear arc), one from the
peripheral blood lab data (CRP), and one radiomics feature
from the radial EBUS image (minimum histogram). Exam-
ples of CT and ultrasound images from patients with benign
and malignant lesions and their individual features in the
radiomics-added model are shown in Figure 3. The perfor-
mance of the radiomics-added model was 0.929 in the train-
ing set and 0.877 in the validation set. The malignancy
prediction performance of the radiomics-added model was
therefore, slightly higher than that of the clinical factor
model in the training set and comparable to that of the clini-
cal factor model in the validation set (p = 0.45). The
receiver operating characteristic (ROC) curves for these
models are shown in Figure 4.

DISCUSSION

The diagnosis of peripheral pulmonary lesions remains a
challenge in clinical practice. The main challenges include
approaching the targeted lesions and recognizing where to
take biopsies. Technological advances such as radial EBUS
help clinicians by providing real-time procedural feedback
about target lesion locations.19 However, because the tis-
sue samples are necessarily small, the results of radial
EBUS are not always enough to make a final diagnosis,
which complicates subsequent patient management. In a
meta-analysis conducted in 2017, the overall diagnostic
yield for radial EBUS was reported to be 70.6%.20 How-
ever, in real-world data, the diagnostic yield has been sug-
gested to be even lower, �57%.21 Indeed, when we
included only cases pathologically confirmed for final
diagnosis using radial EBUS alone, our cohort showed a
diagnostic yield of 57% as well.

To diagnose the indeterminate cases, several attempts
have been made to extract additional information from
radial EBUS images. Zheng et al.22 built a predictive model
with semantic features from radial EBUS images (size,
shape, echogenicity, margin, blood vessel, and linear-
discrete air bronchogram), and achieved an accuracy of
82.76%. Bradiei et al.23 analyzed radial EBUS images using
customized software and computed grayscale statistics
(maximum, mean, standard deviation, and entropy) to pre-
dict malignancy and achieved accuracy up to 85%. Our
radiomics-added model uses demographics, clinical factors,
chest CT image findings, and semantic and radiomic fea-
tures from radial EBUS images and achieved a perfor-
mance of 92.9% in the training set and 87.7% in the
validation set.

In this study, we selected nine variables for our radiomics-
added model. The four variables from the chest CT findings
are known to be associated with malignancy. Satellite nodules
are usually defined as small discrete shadows located near the
main lesion24 and are frequently seen in benign nodules in
tuberculosis-endemic areas.25 Spiculation is associated with
the radial extension of malignant cells and is known to have a

F I G U R E 4 The ROC curves for
the clinical-only model, clinical +
CT model, clinical + CT + US
model (clinical factor model),
radiomics-only model, and
radiomics-based model (radiomics-
added model) in the training and
validation sets. The prediction
performance of the radiomics-added
model and clinical + CT + US
model is superior to that of the other
models in the validation set, but they
do not differ significantly from each
other. ROC, receiver operating
characteristic; CT, computed
tomography; US, ultrasonography.
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high predictive value for malignancy.26 A lobulated or com-
plex tumor shape is more likely to be associated with malig-
nancy than a round or polygonal shape.27

Three variables were derived from the radial EBUS image
findings. Echogenicity on radial EBUS images is closely related
to the arrangement of cells and quantity of fibrous stroma.28

Therefore, the loss of normal tissue and irregular tumor growth
with central fibrosis and necrosis causes heterogeneous features
to appear on EBUS images.6 The patency of the vessels and
bronchi on radial EBUS images is understood to reflect the
degree of anatomic structure preservation in the lung paren-
chyma because that structure usually becomes distorted as
tumor volume increases.29 A linear arc denotes irregular hyper-
echoic patterns within lesions in radial EBUS images, and it
corresponds to residual air in the alveoli, which is indicative of
well-differentiated adenocarcinoma.6 Among the demographic
and peripheral blood lab data, CRP showed statistical signifi-
cance and was included. CRP is a classical acute-phase protein
indicating inflammation, but it is also moderately elevated dur-
ing chronic inflammatory disease and cancer.30

In addition, we hypothesized that adding radiomics vari-
ables would improve our prediction model. Radiomics can
be applied to various conditions, but it is most promising in
the field of oncology. Whereas current radiological practice
is generally qualitative and measures tumor size only via a
one-dimensional or two-dimensional axis diameter, tumor
characterization based on radiomics can reflect the complex-
ity of tumor morphology or tumor texture, which implicate
tumor behavior and changes.31 Multiple studies using radio-
mics have shown that it can improve the characterization of
tumor biology phenotypes, prediction of tumor prognosis,
and assessment of the tumor treatment response.32–35

We reviewed the radiomics features available in radial
EBUS and chose minimum histogram, a radiomic feature
that shows the lowest echogenic tumor pixel intensity within
the defined lesion ROI36,37 and can therefore, reflect micro-
scopic necrosis or a less-viable area within the tumor that
cannot be seen by the naked eye. Tumor necrosis usually
manifests as coagulative necrosis caused by chronic ischemia
or hypoxia.38,39 Moreover, the most common types of
benign pulmonary necrotic lesions are lung abscesses and
tuberculosis, and they are usually caused by an inflamma-
tory response to a microbial infection.40 Necrotic tissues
from lung abscesses mainly contain highly viscous pus,40

and tuberculosis exhibits caseous necrosis with rich lipid
content.38 Therefore, their different biological traits could be
reflected in pixel distribution of ultrasound images and dis-
criminated sensitively by our radiomic variable.41

In the past, one of the main challenges of radiomics was
the manual delineation of each datapoint, which is time con-
suming and prone to high inter-observer variability.42 How-
ever, many powerful open-source and commercial platforms
have recently become available to process and extract fea-
tures from medical images, making radiomics-based ana-
lyses easier and more accessible.43 Our radiomics-based
approach could improve prediction performance without
much effort, which gives our study high practical usability
in clinical settings.

Nonetheless, our study has several limitations. First, it
was a single-center retrospective study with a small number
of patients, which could limit its generalizability. However, to
maintain the independence of the test sets, we constructed
two separate cohorts recruited in different time periods to
validate our model. Second, we selected minimum histogram
as a radiomic variable for our radiomics-added model based
on its clinical implications and statistical significance in the
univariate analysis (p < 0.01), but our radiomics-added model
is only superior to the clinical factor model in training set; it
does not show superiority in validation set. Radial EBUS itself
is a procedure that is highly dependent on operator factors,
and the quality of the captured images can have high inter-
observer variability. To obtain quality radial EBUS image, it
requires the skills of the clinicians to precisely detect the
lesion of the interest and reproduce the same radial EBUS
image. In addition, radial EBUS image may not fully convey
the characteristics of the lesion. For instance, if lesions coexist
with atelectatic proportion, radiologic features from radial
EBUS may have been distorted. This might have lowered the
prediction performance of our radiomics variable. Further
studies with a bigger sample size are needed.

In conclusion, we demonstrated a radiomics-added, malig-
nancy prediction model that can categorize lesions with non-
diagnostic lung biopsy results. With ongoing studies and
appropriate validation, this model could potentially facilitate
decision-making for subsequent clinical management.
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