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Abstract

Defence against predators is usually accompanied by declining rates of growth or development. The classical growth/
predation risk tradeoff assumes reduced activity as the cause of these declines. However, in many cases these costs cannot
be explained by reduced foraging effort or enhanced allocation to defensive structures under predation risk. Here, we
tested for a physiological origin of defence costs by measuring oxygen consumption in tadpoles (Rana temporaria) exposed
to predation risk over short and long periods of time. The short term reaction was an increase in oxygen consumption,
consistent with the ‘‘fight-or-flight’’ response observed in many organisms. The long term reaction showed the opposite
pattern: tadpoles reduced oxygen consumption after three weeks exposure to predators, which would act to reduce the
growth cost of predator defence. The results point to an instantaneous and reversible stress response to predation risk. This
suggests that the tradeoff between avoiding predators and growing rapidly is not caused by changes in metabolic rate, and
must be sought in other behavioural or physiological processes.
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Introduction

Organisms protect themselves against predators using a range of

defence mechanisms, many of which are plastic and expressed

only under predation risk [1]. In animals, most attention has been

given to predator-induced changes in external morphology,

behaviour, and life history, while underlying physiological

responses remain little explored [2,3]. The traditional view of

induced behavioural defences is that predation risk leads to

reduced activity of prey individuals, in turn reducing their

encounter rate with, and detection by, predators [4]. However,

reduced activity carries a cost, because less active animals spend

less time searching for food and feeding. This leads to the so-called

growth/predation risk tradeoff, which arises because the survival

benefits of defence can only be obtained at the cost of reduced

growth or development [3–5]. A similar argument applies to

morphological defences, because resources invested in defensive

morphologies are unavailable for growth [5,6].

Recent work suggests that this traditional view is too simplistic; a

more complex interplay between multiple interacting responses

determines the effects of predators on traits such as growth, age,

and size at metamorphosis. Although many studies confirm that

predation risk causes reduced activity or increased refuge use [7,8],

and such reduced activity lowers predation rates [9,10], these

behavioural changes are often not directly associated with reduced

growth or development [3,11–15]. Consistent evidence of growth

costs is also lacking for some well-studied morphological defences

[1,16,17]. Two resolutions of this problem have been proposed.

One is that decreased activity need not cause decreased food

consumption, and therefore a growth or development cost is not

an inevitable consequence of the behavioural response to

predators [3,13]. The second possibility is that, even if consump-

tion is reduced in the presence of predators, compensatory

physiological mechanisms can decouple growth rate from food

consumption [3,11,15]. Physiological plasticity could occur in

digestion and energy storage or in metabolism and respiration

[15,18,19]. Data available so far suggest that digestive explana-

tions cannot always explain the decoupling of behaviour and

growth. For example, Steiner [13] discovered that amphibian

larvae exposed to predators ingested the same amount of food with

less feeding effort, and digested food more efficiently, compared to

non-exposed individuals. Steiner therefore expected predator

exposed tadpoles to grow or develop faster, but they did not.

There is somewhat better support for the metabolic explanation,

because brief exposure to predator cues causes increased

ventilation, high heart beat rates, or high respiration rates in

Daphnia [20], mussels [21], and fish [22,23]. Thus, the growth/

predation risk tradeoff may arise not only because prey reduce

activity in dangerous situations, but also because predator-induced

defences are associated with a costly increase in metabolic rate

[24–26].

Our study focused on the metabolic explanation for the tradeoff

between predator avoidance and growth or development. We

tested whether the increase in oxygen consumption observed

under short-term exposure to predators in other organisms occurs

also in an amphibian larva, and whether that same metabolic

response is maintained under more realistic conditions of chronic

exposure over several weeks. Increased oxygen consumption –

indicative of an increased metabolic rate – could explain growth
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and development costs of responding to predators despite no

reduction in food consumption or digestion efficiency. Identifying

physiological mechanisms that help shape the growth/predation

risk tradeoff is important for understanding the costs and benefits

of phenotypic plasticity and how they influence species distribu-

tions with respect to predators [2,3,27,28].

Results

Conditioned tadpoles (reared with predators) were smaller than

naı̈ve tadpoles on average (mass6SE: 466621 mg versus

579625 mg; F1,19 = 21.54, p,0.0002; based on 6 individuals

per pool sampled at age 28 days). Mass after conditioning is a

direct measure of growth rate, because sizes of randomly-assigned

tadpoles did not differ at the onset of the experiment. This

confirms many previous studies showing reduced growth of

predator-exposed tadpoles [29].

Oxygen consumption, corrected for body mass, was reduced

10.0% in conditioned tadpoles (0.28760.02 mg/min per 100 mg

mass) compared to naı̈ve tadpoles (0.31960.01 mg/min per

100 mg mass; Fig. 1, Table 1). Oxygen consumption increased

16.8% when tadpoles were measured in kairomone water (water

containing predator cues; 0.31260.01 mg/min per 100 mg mass)

compared to blank water (water lacking predator cues;

0.26760.01 mg/min per 100 mg mass). Kairomones are chemical

cues emitted by predators that have fed upon prey [30]. There was

no interaction between rearing and measuring environments.

Time of day did not influence oxygen consumption, but

temperature had a significant positive effect (Table 1; increase

by 0.021160.0059 mg/min per uC for 100 mg mass).

Discussion

We found that physiological responses to predation risk were

highly plastic, and depended on the time scale of exposure to risk.

Tadpole oxygen consumption increased during short term

exposure to predation risk but declined after long term exposure.

Our interpretation of these results assumes that oxygen consump-

tion is correlated with metabolic rate [31,32]; metabolism reflects

energetic demand, which in turn links to our interest in the

growth/predation risk tradeoff. Although our study does not

reveal the origin of this tradeoff, it adds to our understanding of its

underlying physiological mechanisms.

Increased oxygen consumption by naı̈ve tadpoles under short-

term exposure to predators parallels similar findings in other

organisms [20–23]. This reaction is interpreted as a component of

the ‘‘fight-or-flight’’ response, in which release of stress hormones

triggers (among other things) increased respiration and heart rate,

redirection of energy to locomotory structures, and an enhanced

ability to escape predators [19,33]. Naı̈ve tadpoles might be

expected to show a particularly strong response to short-term

predator exposure, because kairomones represented a novel threat

to them. This was not observed. The change in oxygen consumption

caused by short-term exposure was roughly the same for both kinds

of tadpoles; that is, naı̈ve tadpoles increased their oxygen

consumption when faced with kairomones by about the same

amount as conditioned tadpoles reduced oxygen consumption when

suddenly released from predation risk. The physiological response

to predation risk is therefore nearly instantaneous, which implies a

rapid and accurate assessment of the chemical environment. This

result also shows that oxygen consumption is not closely linked to

behaviour, because tadpoles released from predation risk do not

show an immediate change in feeding or swimming activity to

match the novel predator-free environment [29,34,35].

Our discovery that tadpoles decreased oxygen consumption

after long term exposure to predators is unexpected in light of the

short-term response to kairomones. But this result is supported by

other work showing that vertebrates can have distinct short-term

and long-term physiological responses to stress. While metabolic

rate typically increases under sudden exposure to stress [20,22,33],

it can decline over long-term stress [36] or long-term implantation

of stress hormones such as corticosterone [37]. Thus, the

conditioned tadpoles in our study reacted as other vertebrates do

when they experience extended exposure to stress hormones.

Figure 1. Relationship between oxygen consumption and
tadpole mass for conditioned and naı̈ve tadpoles measured
in environments with and without kairomones. Each point is the
average of three tadpoles measured during three 4-minute intervals.
doi:10.1371/journal.pone.0006160.g001

Table 1. Mixed-effects model testing for the influence of
body mass, temperature, time of day, rearing environment,
and measuring environment on oxygen consumption of
tadpoles.

Source Estimate61 SE Test statistic P-value

Fixed effects

Body mass 7.34360.822 8.932 0.0001

Temperature 1.21060.313 3.862 0.0005

Time of measurement 25.97463.278 21.823 0.0778

Rearing environment 23.03060.697 24.348 0.0001

Measuring environment 22.83860.745 23.806 0.0006

Rearing* Measuring 1.08260.623 1.739 0.0917

Random effect

Rearing pool 1.354 5.134 0.0189

The model included the rearing pool as random factor. Estimates and test
statistics are the coefficient and t-value for fixed effects, and the variance
component and LR statistic for the random effect. Significance of fixed effects
was judged from 10,000 Markov chain Monte Carlo samples drawn from the
posterior distribution of the parameters in a Bayesian version of the model.
doi:10.1371/journal.pone.0006160.t001
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What are the consequences of these short- and long-term

physiological responses for the growth/predation risk tradeoff?

Over short time periods, there are potentially costly reactions at

the physiological level (oxygen consumption is increased [20–23,

this study]) and the behavioural level (feeding is curtailed [8,38]).

The physiological reaction diverts energy from growth or storage

into metabolism [24–26] and the behavioural reaction affects food

intake [7,8]. But the impact of these events on individual growth

rate will be small if the fight-or-flight response lasts for a relatively

short time. Our study was not designed to detect the duration of

the short-term metabolic response, but reversibility of various

predator-induced responses suggests that the impact might not be

long lasting [34]. Over the long-term, there is acclimation to

predation risk at both physiological and behavioural levels, such

that oxygen consumption declines (this study) and food intake

rebounds to that observed in low-risk situations [3,13]. Thus,

allocation theory suggests that long-term changes in metabolism

and food consumption cannot explain the growth costs of

responding to predators found in this study. In fact, a plausible

interpretation of our results is that the metabolic response has

evolved to minimize costs of anti-predator defence. However,

those costs that remain must originate elsewhere.

This conclusion may at first seem discouraging, but we prefer to

emphasize that a physiological approach to inducible defences

holds much promise for understanding the growth/predation risk

tradeoff. For instance, the short term response observed here and

in previous studies demonstrates a highly accurate and rapid

assessment of the environment, enabling instantaneous and

reversible plasticity. Recent studies of anurans and other taxa

likewise illustrate complex interactions among predation risk,

behaviour, metabolism, and enzyme physiology [13,15,19,20, this

study]. Many more induced physiological mechanisms surely await

discovery.

Materials and Methods

Tadpoles of Rana temporaria Linnaeus, 1758, react to predators

by decreasing feeding and swimming activity and increasing the

depth of their tail fins, both of which reduce vulnerability to

predation [9,39]. Predators also cause reductions in growth and

development rates, which are usually construed as costs of defence

[12,29,40]. We first reared tadpoles for three weeks with and

without non-lethal predators (termed conditioned and naı̈ve

tadpoles), and then tested the oxygen consumption of both types

of tadpole in the presence and absence of predator kairomones.

Our experiment had a two-by-two factorial design, with long-term

conditioning environment crossed with testing environment.

Rearing of conditioned and naı̈ve tadpoles
Tadpoles were reared outdoors in 20 plastic pools (0.28 m2, 80

litres volume), giving 10 replicates each of two treatments (with

and without predators). The pools were filled with aged tap water,

covered with shade cloth to prevent colonization by predators, and

stocked with zooplankton, 5 g of rabbit food, and 60 g of dried leaf

litter. We arranged pools in a field at the University of Zürich,

Switzerland, and assigned treatments at random. The predator

pools contained a floating cage (,1 litre volume) containing one

final instar dragonfly larva (Aeshna cyanea Müller, 1764). Through-

out the rearing period the predators were fed 300 mg of R.

temporaria tadpoles three times a week and were rotated to equalize

any possible differences between individual dragonfly larvae. Pools

without predators contained empty cages, which were also rotated

to control for effects of disturbance. Tadpoles were derived from

three clutches collected on the university campus; each pool

received 15 (five from each clutch) randomly assigned, six day old

tadpoles on 5 April 2004.

Oxygen consumption
We measured oxygen consumption over three consecutive days

(27–29 April 2004) using an intermittently closed respirometer in

which a measuring period alternated with a flow-through period

[41,42]. The respirometer consisted of an aquarium pump, a

sequencing valve system, a stirring chamber with a HQ20 LDO

sensor (Hach-Lange GmbH, Hegnau, Switzerland), and two

experimental chambers (each 125 ml volume), all immersed in a

120 L aquarium. We conducted 20 trials comprising 40 groups in

all. Each trial included two groups of three tadpoles, each of which

was randomly assigned to one of the two experimental chambers. In

each trial one group originated from a rearing pool with predators

(conditioned tadpoles), while the other group originated from a pool

without predators (naı̈ve tadpoles). Trials lasted for 30 minutes,

during which 5-min intervals of flow-through were alternated with

five minutes of measuring. While one chamber was measured the

other was flushed. The oxygen sensor made recordings every 30 sec.

Immediately after a chamber switched from flow-through to

measurement, there was a brief period during which the remaining

water in the hoses and stirring chamber mixed with the water from

the measurement chamber. We therefore discarded data from the

first minute of each measuring period. For logistical reasons we

could not randomize the sequence of exposure to water with

kairomones and blank water (without kairomones). Thus, we started

each day with trials in blank water and thereafter added 200 ml of

water containing kairomones (from three A. cyanea larvae each held

in 200 ml water and fed 300 mg R. temporaria tadpoles two days

earlier). We allowed the kairomones to mix for 15 minutes before

initiating trials under kairomone conditions. Each evening the

aquarium and respirometer were cleaned and refilled for the

following day’s trials.

After each trial the wet mass of both groups of three tadpoles was

recorded. The temperature in the blank environment

(18.1760.20uC) was lower than that in the kairomone environment

(19.3960.17uC). We analyzed the data using a mixed effect model

with average oxygen consumption across the three 4-min measuring

periods (mg/min) as the response variable, rearing pool as a random

factor, mass, temperature, time of measurement, and measuring

environment, as fixed effects measured at the level of the group, and

the rearing treatment as a fixed effect at the level of the pool. Time

was included to account for changes in metabolic rate during the

day [43,44], because trials in blank water were performed prior to

the trials in kairomone water. We judged the significance of fixed

effects from 10,000 Markov chain Monte Carlo samples drawn

from the posterior distribution of the parameters in a Bayesian

version of the model [45]. Analyses were done using the lmer

function in R [46]. One group of tadpoles was discarded because

their experimental chamber opened prematurely.
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