ORIGINAL RESEARCH

Revised: 16 August 2023

WILEY

The prevalence and risk factors of irritable bowel syndrome (PRIBS study) among adults in low- and middle-income countries: A multicenter cross-sectional study

Ahmad Y. Arnaout¹ | Yaman Nerabani¹ | Zain Douba² | Luma H. Kassem¹ | Khaled Arnaout¹ | Muhammad B. Shabouk¹ | Hussein Zayat¹ | Wafik Mayo¹ | | Ibrahim Arnaout¹ | Ahmad Yousef¹ | Mohamed B. Zeina³ | Yamen Bezo¹ Ziad Aliarad⁴ **PRIBS Study Team**

¹Faculty of Medicine, University of Aleppo, Aleppo, Syrian Arab Republic

²Department of Hematology, Syrian Arab Republic Ministry of Health, Aleppo, Syrian Arab Republic

³Department of Mathematical Statistics, Faculty of Science, University of Aleppo, Aleppo, Syrian Arab Republic

⁴University of Aleppo, Aleppo, Syrian Arab Republic

Correspondence

Yaman Nerabani, Faculty of Medicine. University of Aleppo, Aleppo, Syrian Arab Republic.

Email: Yamanne.com@gmail.com

Abstract

Background and Aims: Because of the plenty and abundance of risk factors and the expected increase in the prevalence of irritable bowel syndrome (IBS) in the world in general and in low- and middle-income countries in particular, this international cross-sectional study was conducted in 15 low- and middle-income countries according to our previous protocol, NCT05340400.

Methods: Participants were recruited in the period from April 22, 2022 to June 14, 2022. The diagnosis of IBS was according to ROME IV. We determined the physical activity, daily stress, and fatigue of the participants. A large number of collaborators were chosen from different regions and institutions within each country to achieve diversity within the sample and reduce the probability of bias.

Results: The prevalence of IBS appears to be higher in low- and middle-income countries (mean = 25.2%, range [6.2%-44.2%]) than in high-income countries, with a higher prevalence among Africans than Caucasians and Asians. The prevalence of IBS increased in the fourth decade by 32.1% and in the fifth decade by 31.1% (p-value < 0.001). In addition to the previously known risk factors for IBS such as female sex, smoking, psychological stress, and chronic fatigue, other risk factors were discovered such as chronic diseases, including high blood pressure and diabetes, allergies to some substances, previous infection with COVID-19, and the participant having a first-degree relative with a patient. There are also some other modifiable risk factors, such as an abnormal body mass index (whether high or low), smoking, a protein- or fat-rich diet, drinking caffeine-containing beverages, and poor physical activity.

PRIBS Study Team: Co-authors participated in data collection and National Lead.

_____ This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. © 2023 The Authors. Health Science Reports published by Wiley Periodicals LLC.

Conclusions: Highlighting the prevalence and increasing risk factors of IBS in developing countries should draw the attention of those responsible for health care in these countries and reduce the risk factors.

KEYWORDS

international cross-sectional study, irritable bowel syndrome, prevalence, risk factors

1 | INTRODUCTION

The spread of chronic digestive diseases in the world has led to a poor quality of life, especially in low and middle-income countries. In those countries, many suffer from chronic digestive diseases, in particular irritable bowel syndrome (IBS). IBS is a chronic functional disorder of the gastrointestinal tract that is widespread and common all over the world.¹

In general, patients present to clinicians with different symptoms, but there are four that dominate overall: abdominal discomfort, pain, diarrhea, constipation, and bloating. However, patients may present with other symptoms such as postprandial upper abdominal discomfort, fullness, nausea, heartburn, and, less commonly, vomiting. Based on the idea of symptom diversity, IBS was classified into several subtypes according to the predominant stool pattern.¹

IBS prevalence ranges between 9% and 23% of the population across the world.² Since the 1980s, methods for diagnosing IBS have varied; since 2016, ROME IV criteria have been shown to be the standard methods for diagnosing IBS, in addition to excluding other digestive disorders.³

Because of the plenty and abundance of risk factors and the expected increase in the prevalence of IBS in the world in general and in low and middle-income countries in particular, our study was established with the aim of assessing and detecting latent potential and apparent risk factors, especially since risk factors and diagnostic criteria are constantly changing and evolving, in addition to updating the prevalence data in different societies and determining whether race has an effect.

2 | METHODS

2.1 | Study design

The international cross-sectional study was conducted in 15 low- and middle-income countries according to our previously published protocol NCT05340400 and the Strengthening the Reporting of Observational Studies in Epidemiology guidelines for cross-sectional studies.⁴ Participants were recruited in the period from April 22, 2022 to June 14, 2022.

2.2 | Patient and public involvement

The inclusion criteria were adults willing to participate in this survey who were 18 years of age or older. Exclusion criteria were:

Key points

What is already known on this topic

The criteria for diagnosing irritable bowel syndrome (IBS) have evolved over time, and the disease, when diagnosed based on previous criteria such as ROME II and ROME III, has been associated with many risk factors, such as female gender, psychological distress, and chronic fatigue. The prevalence in many countries was calculated in previous studies. But so far, no study has reported the prevalence and risk factors for IBS in middle- and low-income countries, according to ROME IV.

What this study adds

The prevalence of IBS was greater in middle- and lowincome countries than in high-income countries, with a higher prevalence in African ethnicity compared to Caucasian and Asian countries. In addition to the well-known risk factors that were also confirmed by our study, which are psychological distress, chronic fatigue, female sex, and a protein- or fat-rich diet, we found many other risk factors, which are not doing enough physical activity, smoking, chronic diseases, especially hypertension and diabetes, allergy to some substances, previous infection with COVID 19 within 12 months, abnormal weight (either high or low), and sleep less than 6 h.

How this study might affect research, practice, or policy The lack of attention paid to chronic digestive diseases in developing countries has led to their spread and poor quality of life. Therefore, highlighting their prevalence and increasing risk factors, more attention must be drawn to those responsible for health care in these countries, and the modifiable risk factors must be reduced.

any participant who was diagnosed with poorly controlled hyperthyroidism, poorly controlled hypothyroidism, poorly controlled hyperparathyroidism, paralysis, or parasitic diseases. Moreover, any presence (or suspicion) of liver disease, celiac disease, inflammatory bowel disease (Crohn's disease or Ulcerative colitis), lactose intolerance, or cancer or tumor in the digestive tract in

-WILEY-

their clinical history. No formal sample size was calculated for this study.

The total number of participants in the study was 5506, from 15 low- and middle-income countries. The number of participants from Syria was 2909, followed by Egypt (536), Sudan (536), Pakistan (380), Libya (222), Algeria (222), Jordan (176), Iraq (125), India (102), Yemen (72), Palestine (69), and the rest from Morocco, Serbia, Bangladesh, and Saudi Arabia. With the participation of 148 data collectors from different cities and institutions in the participating countries. The participants volunteered to participate by agreeing to the investigation and filling out their data.

2.3 | Variables and measurement

The data were collected using a validated, structured questionnaire. The first part collected sociodemographic characteristics such as age, gender, body mass index (BMI), educational level, work, and marital state. Participants were also categorized into five grades based on their health status using the American Society of Anesthesiologists physical status (ASA) classification.⁵ Participants were also asked about their comorbidities.

The diagnosis of IBS was made by identifying the presence of abdominal pain at least once a week in the last 3 months, in addition to at least two of the following: abdominal pain related to defecation, change in stool frequency, or shape. In addition to classifying patients according to their symptoms into IBS with constipation (IBS-C), IBS with diarrhea (IBS-D), or IBS with both (IBS-M).³

We determined the physical activity of the participants according to the Global Physical Activity Score of the World Health Organization (WHO). This score consists of three parts: the amount of effort spent at work (vigorous or moderate-intensity activity), traveling from one place to another, and sports intensity (vigorous or moderate-intensity activity) on a typical day. And then classified the participants according to whether physical activity is required or not.⁶

Daily stress was evaluated with the Perceived Stress Scale (PSS), the most widely used measure of global perceived stress and a robust predictor of health and disease. The total score is calculated on the basis of the answers to a series of questions based on monthly stress and the participant's health status. PSS is a summary measure of 10 items (range 0-4 points for every item). It is classified into low (PSS 0-13), moderate (PSS 14-26), and high perceived stress (PSS 27-40).⁷

Fatigue was measured using the Chalder Fatigue Scale (CFQ), a questionnaire for measuring the extent and severity of fatigue within both clinical and nonclinical epidemiological studies.⁸

Diet and daily habits, including smoking and alcohol consumption, were evaluated. Participants were classified into four sections according to WHO's Smoking and Tobacco Use Policy. A daytime smoker is someone who smokes any tobacco product at least once a day, and an occasional smoker is someone who smokes but not every day.⁹ Each question was explained to the participant separately by the collaborator.

2.4 | Bias

A large number of collaborators were chosen from different regions and institutions within each country to achieve diversity within the sample and reduce the probability of bias. We trained the collaborators with a course explaining each section of the questionnaire and how to present it to the participants. The tutorial videos were uploaded in Arabic and English on YouTube. We also translated the questionnaire into Arabic by two Arab doctors separately and simultaneously, and the translation underwent a peer-review process.

2.5 | Statistical methods

Data were analyzed using SPSS PC version 24.0 statistical software. Descriptive statistics (mean, standard deviation, frequencies, and percentages) were used to describe the quantitative and categorical variables. Moreover, the Chi-square test was used for each variable only if the sample number exceeded 100 to observe the association between the categorical study and outcome variables. The quantitative variables such as age, body mass index, and drinking water in litters were divided into categories, and then we equated the chi-square. We calculated the prevalence for each country if the country's participants exceeded 200. All the results of the statistical inference tests were interpreted to a 95% confidence level, that is, the significance level of 0.05 was used with twotailed hypothesis. The normal distribution suitability of the numerical variables was tested with the Shapiro–Wilk test.

2.6 Ethics approval and consent to participate

This study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments, and under ethical approval from the ethics committee at the Faculty of Medicine, University of Aleppo, Syria. Moreover, Ethical approval was obtained in each country independently by the national lead, and participants' information was kept anonymous and confidential. Informed consent was obtained from all patients before participating, and all forms were filled out after a personal interview with the participant to explain all the questions.

3 | RESULTS

3.1 | Participants and descriptive data

Most of the participants were of Caucasian ethnicity (85.3%), and the others were Asian (9.1%), Afro-Caribbean (4.8%), and other ethnicities (0.8%). The mean age of the participants was 32.7, with a standard deviation of 14.5. 2% of participants were female (41.8% male). No missing data was found.

3.2 | Prevalence of IBS

The average prevalence of IBS was 25.2% (6.2%–44.2%), with a higher rate among the Afro-Caribbean race at 31.5%. Most of the participants were of IBS-M type (40.5%) and IBS-C type (36.1%). The highest prevalence of IBS was in Sudan (29.2%) and Egypt (28.9%), and the lowest prevalence was in Algeria (18.5%). The prevalence of IBS and its sub-types for each country and ethnicity are found in Table 1.

3.3 | Risk factors of IBS

3.3.1 | Sociodemographic risk factors

The prevalence of the IBS increased with age, especially the peak prevalence between 31 and 50 years (fourth decade 32.1% and fifth decade 31.1% *p*-value < 0.001). There was a tendency for the disease to be statistically greater among females than males (28.0% vs. 22.1%, *p*-value < 0.001). The prevalence of the disease was statistically lower in those with a body mass index within normal and increased if they were underweight, overweight, or obese (22.9 vs. 25.2%, 27.1%, and 33.8% consecutively, *p*-value < 0.001). IBS among healthy participants was lower than in participants with mild and severe systemic diseases (23.4% vs. 31.4% and 26.7% consecutively, *p*-value < 0.001). Rural participants were more likely to be patients than urban participants (29.6% vs. 24.8%, *p*-value < 0.001) (Table 2).

3.3.2 | Comorbidities risk factors

65.5% of the participants with IBS have reported that one of their first-degree relatives has been diagnosed with IBS. The prevalence of IBS among patients with hypertension, diabetes, anemia, and allergies to certain substances is significantly higher (33.4%, 33.9%, 31.5%, and 28.8%, *p*-values < 0.05) than among non-patients. There is an association between IBS and some other chronic digestive diseases such as EPS, PPDS, GERD, and functional dyspepsia (*p*-value < 0.05).

The prevalence of IBS among patients infected with COVID-19 within a year is more significant than among others (27.4% vs. 24.1%, *p*-value < 0.001). There is a significant increase in prevalence in participants with severe fatigue (39.7%) compared with moderate (27.3%) and low (16.3%) fatigue (*p*-value < 0.001). Also, there is a significant increase in prevalence in the participants with high stress (31.8%) compared with moderate (26.0%) and low (10.0%) fatigue (*p*-value < 0.001) (Table 3).

3.3.3 | Habits and field of work risk factors

There is a statistically significant increase in the prevalence of IBS in people who work, especially in the fields of agricultural projects and natural resources, civil engineering, informatics, technology or computer engineering, commercial companies and offices, home economics, industry, and teaching (*p*-value < 0.05). But the

TABLE 1Prevalence of IBS according to the population based of the participants.

Participants with IBS Participants IBS-D Category Subcategory without IBS IBS-C **IBS-M IBS-other** Total Ethnicity Caucasian (n, %) 3487 (74.3%) 432 (9.2%) 216 (4.6%) 485 (10.3%) 75 (1.6%) 4695 Afro-Caribbean (n, %) 183 (68.5%) 33 (12.4%) 10 (3.7%) 38 (14.2%) 3 (1.1%) 267 Asian (n, %) 411 (82.5%) 32 (6.4%) 16 (3.2%) 37 (7.4%) 2 (0.4%) 498 Hispanic (n, %) Not counted Not counted Not counted Not counted Not counted 2 Not counted Not counted Other (n. %) Not counted Not counted Not counted 43 Total 4118 (74.8%) 500 (9.1%) 244 (4.4%) 563 (10.2%) 80 (1.5%) 5506 Country Syria (n, %) 2235 (76.8%) 290 (10.0%) 135 (4.6%) 209 (7.2%) 40 (1.4%) 2909 381 (71.1%) 36 (6.7%) 23 (4.3%) 93 (17.4%) 3 (0.6%) 536 Egypt (n, %) 380 Pakistan (n, %) 298 (78.4%) 31 (8.2%) 15 (3.9%) 34 (8.9%) 2 (0.5%) Sudan (n, %) 377 (70.2%) 44 (8.2%) 29 (5.4%) 76 (14.2%) 11 (2.0%) 537 Algeria (n, %) 181 (81.5%) 9 (4.1%) 3 (1.4%) 23 (10.4%) 6 (2.7%) 222 Total* 4118 (74.8%) 500 (9.1%)/ 244 (4.4%)/CI: 563 (10.2%)/ 80 (1.5%) 5506 CI: 3.9%-5.0% 9.5%-11.0% CI: 1.2%-1.9%

Abbreviations: CI, confidence interval; IBS, irritable bowel syndrome; IBS-C, irritable bowel syndrome-constipation Type; IBS-D, irritable bowel syndrome-diarrhea type; IBS-M, irritable bowel syndrome-mixed type.

*For all study participants, even from countries with less than 200 participants.

Category	Subcategory	Participants without IBS	Participants with IBS	Total	Pearson chi-square	p-Value
Age					43.965	< 0.001
C .	18-30 (n, %)	2625 (77.4%)	767 (22.6%)	3392		
	31-40 (n, %)	476 (67.9%)	225 (32.1%)	701		
	41-50 (n, %)	415 (68.9%)	187 (31.1%)	602		
	51-60 (n, %)	341 (71.0%)	139 (29.0%)	480		
	More than 60 (n, %)	242 (73.3%)	88 (26.7%)	330		
Gender					5530.936	<0.001
	Male (n, %)	1793 (77.9%)	508 (22.1%)/Cl: 20.4%-23.9%	2301		
	Female (n, %)	2306 (72.0%)	898 (28.0%)/CI: 26.6%-29.5%	3204		
BMI according WHO					33.447	<0.001
Classification	Underweight < 18.5 (n, %)	279 (74.8%)	94 (25.2%)	373		
	Normal range [18.5–24.9] (n, %)	2142 (77.1%)	638 (22.9%)	2780		
	Overweight [25.0-29.9] (n, %)	1122 (72.9%)	418 (27.1%)	1540		
	Obese Class I [30-34.9] (n, %)	394 (66.2%)	201 (33.8%)	595		
	Obese Class II [35-39.9] (n, %)	124 (73.8%)	44 (26.2%)	168		
	Obese Class III > 40 (n, %)	Not Counted	Not Counted	49		
ASA grade					5544.174	<0.001
	ASA I (n, %)	2928 (76.6%)	896 (23.4%)	3824		
	ASA II (n, %)	961 (68.6%)	440 (31.4%)	1401		
	ASA III (n, %)	181 (73.3%)	66 (26.7%)	247		
	ASA IV (n, %)	Not counted	Not counted	27		
	ASA V (n, %)	Not counted	Not counted	6		
Geographic					5517.374	<0.001
	Urban life (n, %)	3339 (75.2%)	1100 (24.8%)	4439		
	Rural life (n, %)	683 (70.4%)	287 (29.6%)	970		

TABLE 2 Correlation of IBS according to the sociodemographic of the part
--

Note: ASA I, healthy person; ASA II, mild systemic disease; ASA III, severe systemic disease; ASA IV, severe systemic disease that is a constant threat to life; ASA IV, a moribund person who is not expected to survive without the operation; ASA V, a declared brain-dead person whose organs are being removed for donor purposes.

Not counted

Not counted

Abbreviations: ASA, American Society of Anesthesiologists Classification; IBS, irritable bowel syndrome.

prevalence of IBS among medical workers such as physicians and nurses is statistically less than others (23.6% and 22.7% vs. 25.8% and 25.6%, p-value < 0.001) (Table 4).

Nomad life (n, %)

Participants who need to do physical activity are statistically more likely to be patients than those whose physical activity is acceptable (25.7% vs. 24.9%, p-value < 0.001). Also, those whose diet consists mainly of fats and proteins are statistically more likely to be patients than those who depend on high-fiber foods and a diverse diet (p-value < 0.001). There is also a statistical

prevalence of those who eat intermittent meals between the main meals (p-value < 0.001).

96

IBS is statistically more prevalent among smokers than nonsmokers, even if they quit smoking or only smoke on occasion (p-value < 0.001). There is a statistically lower prevalence of the disease in moderate drinkers, but there is not enough sample size in those heavy drinkers due to the religious nature of the participating countries, so we were unable to know the effect of heavy alcohol drinking on IBS. Participants who sleep 6-8 h were statistically less

-WILEY

TABLE 3 Correlation of IBS according to comorbidities.

Category	Subcategory	Participants without IBS	Participants with IBS	Total	Pearson chi-square	p-Value
Family history (first-degree relatives	Yes	1512 (64.9%)	818 (35.1%)	2330	5700.464	<0.001
diagnosed with IBS (n, %))	No	2587 (81.5%)	588 (18.5%)	3175		
EPS (n, %)	Yes	1002 (55.4%)	806 (44.6%)	1808	6019.257	<0.001
	No	3097 (83.8%)	600 (16.2%)	3697		
PPDS (n, %)	Yes	876 (54.9%)	721 (45.1%)	1597	5960.829	<0.001
	No	3223 (82.5%)	685 (17.5%)	3908		
GERD (n, %)	Yes	905 (62.4%)	546 (37.6%)	1451	5657.439	<0.001
	No	3194 (78.8%)	860 (21.2%)	4054		
Hypertension requiring medication $(n, \%)$	Yes	404 (66.6%)	203 (33.4%)	607	22.404	<0.001
	No	3695 (75.4%)	1203 (24.6%)	4898		
Diabetes mellitus (n, %)	Yes	265(66.1%)	136(33.9%)	401	15.951	<0.001
	No	3834 (75.1%)	1270 (24.9%)	5104		
Autoimmune diseases (n, %)	Yes	111 (77.6%)	32(22.4%)	143	.772	0.380
	No	3988 (74.4%)	1374 (25.6%)	5362		
Headache or migraine (n, %)	Yes	406 (72.1%)	157 (27.9%)	563	1.815	0.178
	No	3693 (74.7%)	1249 (25.3%)	4942		
Chronic immunosuppression (n, %)	Yes	Not calculated	Not calculated	23	Not calculated	I
	No			5482		
Anemia (n, %)	Yes	491 (68.5%)	226 (31.5%)	717	15.501	<0.001
	No	3608 (75.4%)	1180 (24.6%)	4788		
Allergic to certain substances (n, %)	Yes	432 (71.2%)	175 (28.8%)	607	3.883	0.049
	No	3667 (74.9%)	1231 (25.1%)	4898		
COPD (n, %)	Yes	Not calculated	Not calculated	50	Not calculated	I
	No			5455		
Asthma (n, %)	Yes	199 (74.8%)	67 (25.2%)	266	0.018	0.893
	No	3900 (74.4%)	1339 (25.6%)	5239		
Ischemic heart disease (n, %)	Yes	80 (74.1%)	28 (25.9%)	108	0.009	0.926
	No	4019 (74.5%)	1378 (25.5%)	5397		
Urinary problems (n, %)	Yes	161 (71.2%)	65 (28.8%)	226	1.285	0.257
	No	3938 (74.6%)	1341 (25.4%)	5279		
Functional dyspepsia (n, %)	Yes	123 (51.9%)	114 (48.1%)	237	66.286	<0.001
	No	3976 (75.5%)	1292 (24.5%)	5268		
Endometriosis (n, %)	Yes	Not calculated	Not calculated	31	Not calculated	
	No			5474		
Past history of COVID-19 infection	Yes	1768 (72.6%)	667 (27.4%)	2435	5513.875	<0.001
(within the last 12 months) (n, %)	No	2331 (75.9%)	739 (24.1%)	3070		
Abdominal surgery/laparotomy (n, %)	Yes	768 (68.4%)	355 (31.6%)	1123	5533.350	<0.001
	No	3331 (76.0%)	1051 (24.0%)	4382		

Health Science Reports

TABLE 3 (Continued)

Category	Subcategory	Participants without IBS	Participants with IBS	Total	Pearson chi-square	p-Value
The Chalder Fatigue Scale						
	Low fatigue (n, %)	1246 (83.7%)	24 (16.3%)	1488	5635.541	<0.001
	Moderate fatigue (n, %)	2529 (72.7%)	951 (27.3%)	3480		
	Severe fatigue (n, %)	324 (60.3%)	213 (39.7%)	537		
Perceived Stress Scale						
	Low stress (n, %)	422 (90.0%)	47 (10.0%)	469	5583.025	<0.001
	Moderate stress (n, %)	3118 (74.0%)	1098 (26.0%)	4216		
	High stress (n, %)	559 (68.2%)	261 (31.8%)	820		

Abbreviations: COPD, chronic obstructive pulmonary disease; EPS, epigastric pain syndrome; GERD, gastro-esophagus retardation disease; IBS, irritable bowel syndrome; PPDS, postprandial distress syndrome.

TABLE 4 Correlation of IBS according to the field of work or profession of the participants.

	0	•				
Category	Subcategory	Participants without IBS	Participants with IBS	Total	Pearson chi-square	p-Value
Agricultural projects and natural	Yes	82 (72.6%)	31 (27.4%)	113	5506.217	<0.001
resources (e.g., Farmer) (n, %)	No	4017 (74.5%)	1375 (25.5%)	5392		
Civil engineer (n, %)	Yes	108 (71.5%)	43 (28.5%)	151	5506.704	<0.001
	No	3991 (74.5%)	1363 (25.5%)	5354		
Informatics, technology or	Yes	140 (73.7%)	50 (26.3%)	190	5506.062	<0.001
computer engineeretc. (n, %)	No	3959 (74.5%)	1356 (25.5%)	5315		
Commercial companies and offices	Yes	141 (72.3%)	54 (27.7%)	195	5506.492	<0.001
(n, %)	No	3958 (74.5%)	1352 (25.5%)	5310		
Physicians (n, %)	Yes	465 (76.4%)	144 (23.6%)	609	5507.293	<0.001
	No	3634 (74.2%)	1262 (25.8%)	4896		
Nurses (n, %)	Yes	140 (77.3%)	41 (22.7%)	181	5506.821	<0.001
	No	3959 (74.4%)	1365 (25.6%)	5324		
Home economics (n, %)	Yes	168 (71.2%)	68 (28.8%)	236	5507.389	<0.001
	No	3931 (74.6%)	1338 (25.4%)	5269		
Industry (n, %)	Yes	81 (71.1%)	33 (28.9%)	114	5506.711	<0.001
	No	4018 (74.5%)	1373 (25.5%)	5391		
Teaching (schools, universities)	Yes	327 (71.9%)	128 (28.1%)	455	5509.445	<0.001
(n, %)	No	3772 (74.7%)	1278 (25.3%)	5050		
Not working (n, %)	Yes	1738 (75.8%)	555 (24.2%)	2293	5509.691	<0.001
	No	2361 (73.5%)	851 (26.5%)	3212		

Abbreviation: IBS, irritable bowel syndrome.

likely to be patients than those who slept more than 8 h or less than 6 h (24.9% vs. 27.5% and 25.8% consecutively, *p*-value < 0.001). The prevalence of the disease among those who drink stimulants like tea or coffee and its derivatives is statistically higher than its prevalence

among those who drink other types of stimulants or who do not drink them (p-value < 0.001). There appears to be an inverse correlation between the prevalence of disease and the amount of water drunk, but it is not statistically significant (Table 5).

-WILEY-

TABLE 5 Correlation of IBS according to habits.

	6					
Category	Subcategory	Participants without IBS	Participants with IBS	Total	Pearson chi-square	p-Value
Global physical activity score						
	Physical activity is not required (score > 600) (n, %)	724 (75.1%)	240 (24.9%)	964	917.160	<0.001
	Physical activity is required (score < 600) (n, %)	3371 (74.3%)	1165 (25.7%)	4536		
Participant's predominant food	pattern					
	Fatty food (n, %)	387 (70.5%)	162 (29.5%)	549	5519.924	<0.001
	Carbohydrates (n, %)	798 (72.4%)	304 (27.6%)	1102		
	Protein food (n, %)	270 (71.2%)	109 (28.8%)	379		
	High-fiber foods (n, %)	248 (76.5%)	76 (23.5%)	324		
	Other (n, %)	43 (75.4%)	14 (24.6%)	57		
	Diverse (n, %)	2353 (76.1%)	741 (23.9%)	3094		
Eating snacks between the mair	n meals					
	Yes (n, %)	2574 (73.4%)	931 (26.6%)	3505	5511.296	<0.001
	No (n, %)	1525 (76.3%)	475 (23.8%)	2000		
Smoking						
	A daily smoker (n, %)	678 (72.9%)	252 (27.1%)	930	2757.424	<0.001
	An occasional smoker (n, %)	454 (72.4%)	173 (27.6%)	627		
	Ex-smoker (n, %)	199 (72.4%)	76 (27.6%)	275		
	Nonsmoker (n, %)	2767 (75.4%)	905 (24.6%)	3672		
Drinking alcohol						
	Not drinking (n, %)	3897 (74.3%)	1348 (25.7%)	5245	2754.990	<0.001
	In moderation (n, %)	187 (77.0%)	56 (23.0%)	243		
Sleeping hours						
	Less than 6 (n, %)	781 (74.2%)	271 (25.8%)	1052	2755.635	<0.001
	Between 6 and 8 (n, %)	2530 (75.1%)	837 (24.9%)	3367		
	More than 8 (n, %)	787 (72.5%)	298 (27.5%)	1085		
kind of stimulants that participa						
Tea (n, %)	Yes	2038 (72.8%)	761 (27.2%)	2799	66.889	<0.001
	No	1995 (76.5%)	613 (23.5%)	2608		
Coffee and its derivatives (n, %)	Yes	1947 (74.1%)	680 (25.9%)	2627	57.857	<0.001
	No	2086 (75.0%)	694 (25.0%)	2780		
Mate (drink) (n, %)	Yes	399 (77.3%)	117 (22.7%)	516	59.502	<0.001
	No	3634 (74.3%)	117 (22.7%)	4891	57.502	0.001
Energy drinks (n, %)	Yes	217 (79.2%)	57 (20.8%)	274	60.479	<0.001
LICESY ULITES (1, 70)	No	3816 (74.3%)	1317 (25.7%)	5133	5077	0.001
Carbonated drinks (n, %)					62.426	<0.001
	Yes	417 (78.7%)	113 (21.3%)	530	02.420	<0.001
Amount of control in the Press	No	3616 (74.1%)	1261 (25.9%)	4877		
Amount of water drunk in liters		005 (70.000)	400 (07 70)	00.4	0.057	0.055
	Less than 1 liter per day (n, %)	285 (72.3%)	109 (27.7%)	394	9.257	0.055

-WILEY-

TABLE 5 (Continued)

Category	Subcategory	Participants without IBS	Participants with IBS	Total	Pearson chi-square	p-Value
	1–2 liter per day (n, %)	1436 (73.8%)	509 (26.2%)	1945		
	2-3 liter per day (n, %)	1417 (73.8%)	502 (26.2%)	1919		
	3-4 liter per day (n, %)	623 (75.5%)	202 (24.5%)	825		
	More than 4 L per day (n, %)	338 (80.1%)	84 (19.9%)	422		

Abbreviation: IBS, irritable bowel syndrome.

4 | DISCUSSION

4.1 | Prevalence of IBS

Our study included 5506 participants from 15 low- and middleincome countries. The mean prevalence of IBS in our sample was 25.2%, with Sudan and Egypt having the highest percentages. The prevalence of IBS was higher among Africans than Caucasians, and it seems that environmental and genetic factors play a role in this, which should be investigated more in other studies.

IBS prevalence in Pakistan was 21.6%, which is considered a dramatic increase from the 13.3% reported in the same country in 2006.¹⁰ Furthermore, Egyptian IBS prevalence was 28.9%; a similar percentage (27.5%) was found by a cross-sectional study done on Egyptian medical students in the year 2022.¹¹ Nonetheless, the Pakistani study used Rome II for diagnosis, and the Egyptian study included only 182 participants and used Rome III instead of Rome IV criteria.

The pathophysiology of IBS is functional impairment of the GI tract in the absence of any obvious biological abnormalities.¹² This functional impairment is centered around three main principles: altered GI motility, GI hyperalgesia, and psychopathology.¹³ The latter may justify the increased prevalence in stressed individuals, as well as in people who sleep less than 6 h.

4.2 | Nonmodifiable risk factors

Several factors are associated with a higher probability of IBS. Some of these factors are non-modifiable, such as the fourth and fifth decades of age and a positive family history of IBS.

Some studies have found an association between some variations in the sucrase-isomerase gene and increased risk of IBS,^{14,15} a finding that might explain the increased prevalence in participants who have a positive family history of IBS in a first-degree relative.

The female gender was also a risk factor for IBS. This can be justified by the role of estrogen in regulating two of the three main principles of IBS, which are GI motility and visceral pain.¹⁶

Non-modifiable risk factors also include a personal history of allergies, a personal history of chronic diseases (especially hypertension and diabetes), and a history of COVID-19 infection within the previous year. The predominant clinical features of the post-COVID gastrointestinal syndrome include abdominal discomfort, diarrhea, constipation, and vomiting. A review has interpreted these long-term digestive symptoms that are consistent with IBS as being caused by the infection itself or by various drugs used in the context of acute COVID, especially lopinavir and ritonavir.¹⁷

4.3 | Modifiable risk factors

Modifiable risk factors include an abnormal BMI (whether high or low), smoking, a protein- or fat-rich diet, and drinking caffeine beverages.

In our study, we found that acceptable physical activity is associated with a lower incidence of IBS. In the same context, a randomized controlled trial that included 102 IBS patients found that moderate to vigorous activity 3–5 days a week in these patients resulted in clinical improvement of the IBS symptoms.¹⁸

A recent study described the association between heavy smoking (20 or more cigarettes per day) and the occurrence of IBS-D. This can be explained by the direct effects of nicotine on colonic motor function, mediated by nicotine receptors on intrinsic and extrinsic colonic nerves.^{19,20}

Regarding diet, a Western diet high in fat has been associated with IBS in a large French cohort.²¹ Several mechanistic hypotheses have been put forward to explain this association, including an enhanced colonic response to lipids.²² Previous studies have also shown that the use of soluble fibers (e.g., oats and fruits) results in symptom improvement.²³ However, insoluble fibers (e.g., wheat bran) were not of significant and even caused abdominal bloating.²⁴

Living in a rural area and working in certain jobs are also modifiable risk factors for IBS. In our study, health workers were less likely to be patients than other professions. This could be due to doctors' and nurses' knowledge of the etiology and preventive ways of this disease; however, more studies are needed on this aspect.

4.4 | Clinical implications

Here are some highlights of the clinical implications and potential strategies based on the findings from this cross-sectional study on IBS prevalence and risk factors:

Clinical implications:

 The high IBS prevalence (25.2%) demonstrates this is a major chronic digestive disease burden in developing countries that needs focused attention.

WILEV_Health Science Reports

- Positive associations with modifiable factors like diet, smoking, activity levels, and so forth underscore the potential for lifestyle management.
- Protective effect seen in healthcare workers reinforces the value of patient education and awareness.

Potential strategies:

- Increaseing IBS awareness and screening practices in primary care in developing countries to improve early diagnosis.
- Lifestyle counseling by dieticians, social workers, and community health workers on diet, activity, and sleep hygiene.
- Smoking cessation programs and resources for patients with IBS where relevant.
- Self-management workshops on stress reduction techniques like yoga, meditation, and cognitive behavioral therapies for IBS patients.
- Culturally appropriate educational campaigns on IBS using diverse platforms to reach rural areas.
- Policy efforts to promote physical activity through built environment changes in developing country urban areas.

In summary, the high disease burden calls for greater health system prioritization and lifestyle-based management with tailored sociocultural approaches to curb preventable risk factors.

4.5 | Potential confounding variables

- Age-IBS prevalence increased with age. Age may confound associations between other factors and IBS.
- Gender—Females had a higher IBS prevalence. Gender differences could confound other observed relationships.
- Comorbidities—Chronic diseases like diabetes and hypertension were associated with higher IBS prevalence. These may confound other variables.
- *Medications*—Drugs used for comorbid conditions could influence IBS risk, confounding associations.
- Diet—Dietary patterns like high fat/protein diet were associated with IBS. Diet may be a confounder.
- Physical activity—Lack of adequate activity was linked to higher IBS prevalence. This could confound other observations, especially in the outcomes of certain jobs.

4.6 | Limitations of the study

Our study's importance comes from the fact that most of the included countries have not had sufficient data regarding IBS prevalence before.

Nonetheless, there were some limitations. In terms of the population, despite the variety of nationalities included in the study, more than half of the participants were from Syria. We tried to overcome this by including participants from different geographical areas and different socioeconomic backgrounds. Also, most of the population was Caucasian; other ethnicities were represented by much fewer ratios. This is because Caucasians are the predominant ethnicity in the included countries. Furthermore, most of the included countries had a Muslim majority, so we could not clearly study the association between alcohol consumption and IBS. Finally, our study is cross-sectional; we were able to study the association between several factors and IBS. However, a cohort study is still needed to further ascertain this association and examine its magnitude.

This cross-sectional study may reflect the prevalence and risk factors of IBS in low- and middle-income countries. Individuals living in high-income countries were not included in this study.

5 | CONCLUSION

The prevalence of IBS appears to be higher in low- and middle-income countries (mean = 25.2%, range [6.2%-44.2%]) than in high-income countries, with a higher prevalence among Africans than Caucasians and Asians. In addition to the previously known risk factors for IBS, such as female sex, smoking, psychological stress, and chronic fatigue. Other risk factors were discovered, such as chronic diseases, including high blood pressure and diabetes, allergies to some substances, previous infection with COVID-19, and first-degree patients with IBS. There are also some other modifiable risk factors, such as an abnormal BMI (whether high or low), smoking, a protein- or fat-rich diet, drinking caffeine-containing beverages, and poor physical activity.

AUTHOR CONTRIBUTIONS

Ahmad Y. Arnaout: Conceptualization; data curation; formal analysis; investigation; methodology; project administration; supervision; validation; writing—original draft; writing—review & editing. Yaman Nerabani: Conceptualization; methodology; validation; writing—original draft; writing—review & editing. Zain Douba: Supervision. Luma Haj Kassem: Formal analysis; validation; writing—review & editing. khaled arnaout: data curation; formal analysis; validation. Muhammad B. Shabouk: Writing—original draft; Writing—review & editing. Hussein Zayat: Data curation; formal analysis. Wafik Mayo: Writing—original draft; writing review & editing. Yamen Bezo: Writing—original draft; writing review & editing. Ibrahim Arnaout: Data curation; writing—original draft. Ahmad Yousef: Supervision. Mohamed B. Zeina: Formal analysis; validation. Ziad Aljarad: Supervision; validation.

ACKNOWLEDGMENTS

The authors acknowledge Mr. Muhammad Moutaz Al-Shaghel, a medical student from the University of Aleppo, for his work as a graphic designer in the study. We are also thankful to the PRIBS study team and all the patients who participated in this study. There is no funding for this research.

Country	r PRIBS Study Team Coauthor Name	Email	ORCID	Task
Syria	Abd Alazeez Atli	abdalazizatli@gmail.com	0000-0001-7951-3869	Data collection
Syria	Ahmad Chehabi	dodishehabi@hotmail.com	0000-0003-4181-8282	Data collection
Syria	Ahmad Haj Asaad	ahmadhajasaad999@gmail.com	0000-0001-5926-7461	Data collection
Syria	Ahmad Hanino	www.ahmadhanino2@gmail.com	0000-0001-9382-2238	Data collection
Syria	Ahmad Khaled	ak8213886@gmail.com	0000-0002-6881-0005	Data collection
Syria	Ahmad Nahawi	Ahmdnhwy136@gmail.com	0000-0001-8622-3819	Data collection
Syria	Alaa Hawarah	alaa.mha19@gmail.com	0000-0002-2605-8070	Data collectio
Syria	Alhasan Alkhayer	alhasan.alkhayer9@gmail.com	0000-0002-3197-7231	Data collectio
	Ali Abbas		0000-0002-8023-3992	Data collectio
Syria	Ali Mahmoud Ahmad	aliasaadabbas.97@gmail.com		Data collectio
Syria Syria		Ali.0932820336@gmail.com	0000-0002-1881-8754	
Syria	Amana Kezze	amana.k6be.careful@gmail.com	0000-0003-1683-9241	Data collection
Syria	Ameena Odeh	ameena.odeh@hotmail.com	0000-0002-5401-8041	Data collection
Syria	Bashar Bazkke	bashar.bazkke@gmail.com	0000-0001-6097-9220	Data collectio
Syria	Besher Alhadi Asadi	Besher.asadi@gmail.com	0000-0002-3760-5551	Data collectio
Syria	Danya Mourad	danyamourad@gmail.com	0000-0003-3541-0205	Data collectio
Syria	Elissa abd elfattah	smile4ever691998@gmail.com	0000-0001-5126-0804	Data collectio
Syria	Esraa Jlelatie	esraa.jlelatie@gmail.com	0000-0002-6862-3920	Data collectio
Syria	Ezeddin Dabbagh	ezzalldin.da@gmail.com	0000-0002-1229-8380	Data collectio
Syria	Fahima Taleb	fahimataleb62@gmail.com	0000-0002-2075-9239	Data collectio
Syria	Ghina Jamil Majed	jamilmajid2016@hotmail.com	0000-0002-3906-3776	Data collectio
Syria	Haidar Barakat	haidar0barakat@gmail.com	0000-0003-0017-4679	Data collectio
Syria	Halla Barri	barrihalla@gmail.com	0000-0003-0167-2960	Data collectio
Syria	Hasan Ali Maroush	hassan.marouch1998@gmail.com	0000-0001-8313-9283	Data collectio
Syria	Hayat al. Agha	hayat.a.alagha@gmail.com	0000-0002-2276-7005	Data collectio
Syria	Heba Cheikh Othman	hebashekhothman@gmail.com	0000-0002-9727-9719	Data collectio
Syria	Hiba Allah Sarraj	www.hibasarraj@gmail.com	0000-0002-9159-9148	Data collectio
Syria	Ibrahim Khezaran	ibrahim.khezaran98@gmail.com	0000-0001-8351-0994	Data collectio
Syria	Jaber Baki Zada	jaber.b.k.z.q.q@gmail.com	0000-0001-6442-6973	Data collectio
Syria	Joudy Om Alola Sheet	joudy.sheet@gmail.com	0000-0003-0192-4654	Data collectio
Syria	Lana Almahairi	lanaalmahairy@gmail.com	0000-0003-2308-9928	Data collectio
Syria	Layal Alshiekh	alsheikhlayal@gmail.com	0000-0002-9401-5451	Data collectio
Syria	Maen Al-Najjar	maen.alnajjar2860@gmail.com	0000-0002-7658-0561	Data collectio
, Syria	Mahmoud Koritbi	mahmoudkoritby@gmail.com	0000-0001-6031-312X	Data collectio
Syria	Majd-Aldin Sabhan	majood.m.sbhan@gmail.com	0000-0003-1814-3766	Data collectio
Syria	Marah Khalil	marooha.99@gmail.com	0000-0002-0702-449X	Data collectio
Syria	Mawya Alrawi	mawya2001alrawi@gmail.com	0000-0003-1544-2306	Data collectio
Syria	Mofida Ghannam	mofidaghannam00@gmail.com	0000-0002-2428-7005	Data collectio
Syria	Mohamad Ali Farho	ali_fa_2001@hotmail.com	0000-0002-3277-2270	Data collectio
Syria	Mohamad Al-mahdi Al-kurdi	mohammedmahdikurdi@gmail.com	0000-0002-1858-8450	Data collectio
Syria	Mohamad Nabhan Sawas	mo.nabhan.sa@gmail.com	0000-0003-4060-6755	Data collectio

-WILEY-Health Science Reports

Country	Coauthor Name	Email	ORCID	Task
Syria	Mohamad Sbeinati	mohamad.sbeinati@gmail.com	0000-0001-8308-3590	Data collectio
Syria	Mohamad Shehab Alyousfi	mohammadshehabalyousfi@gmail.com	0000-0002-0005-0898	Data collectio
Syria	Mohammad Ahmad Faksh	mohammadfaksh658@gmail.com	0000-0001-8378-8021	Data collectio
Syria	Mohammad ali alkouje	mohamed.alkouje@gmail.com	0000-0002-5062-5100	Data collectio
Syria	Mohammad Alkhawalda	mjkhawaldeh@gmail.com	0000-0001-7260-7707	Data collectio
Syria	Mohammad Shahrour	mohammadshahrour21@gmail.com	0000-0001-7506-9924	Data collectio
Syria	Mohanad Daher	muhanaddaher8@gmail.com	0000-0002-0617-6280	Data collectio
Syria	Monzer keblawy	monzerkeblawi@gmail.com	0000-0002-9075-2446	Data collectio
Syria	Nour Halwani	nourhalwanii99@gmail.com	0000-0002-3025-4330	Data collectio
Syria	Nour Jreikh	nour2000j1@gmail.com	0000-0001-6987-0635	Data collectio
Syria	Ola Alkhallouf	olakhallouf472@gmail.com	0000-0002-4657-9666	Data collectio
Syria	Omar Najjar	omarnajjar934@gmail.com	0000-0002-0488-9826	Data collectio
Syria	Qusai Razzouk	qusayr2000@gmail.com	0000-0002-9540-1100	Data collectio
Syria	Raghad Sawas	raghadsawas96@gmail.com	0000-0001-8122-533X	Data collectio
Syria	Rama Aboudan	rama.11aboudan@gmail.com	0000-0002-1618-7071	Data collectio
Syria	Rama Summak	RSummak@gmail.com	0000-0002-1960-1135	Data collectio
Syria	Rama Zannerni	ramazannerni3@gmail.com	0000-0001-8908-8966	Data collectio
Syria	Ramez Shahin	ramezshahin4@gmail.com	0000-0001-8854-3453	Data collectio
Syria	Rand Ibrahim	roroibrahim1722@gmail.com	0000-0002-4415-2060	Data collectio
Syria	Razan hajjouz	razanhajjouz1998@gmail.com	0000-0001-8084-7495	Data collectio
Syria	Saffana krayem	Saffana.krayem99@gmail.com	0000-0002-0066-593X	Data collectio
Syria	Sally Korini	s.0958371433@gmail.com	0000-0001-5329-8240	Data collectio
Syria	Sami abedalkader Abedalkader	samialmofty.7@gmail.com	0000-0002-0785-2770	Data collectio
Syria	Sana Oubari	sanaoubari1999@gmail.com	0000-0003-2342-9734	Data collectio
Syria	Sanaa Nahhas	sanaanahhas@gmail.com	0000-0003-3180-3984	Data collectio
Syria	Sedra Kreid	Sidra.kd.2000@gmail.com	0000-0003-4043-3436	Data collectio
Syria	Shahd Maan Alamoura	shahed.maam@gmail.com	0000-0002-4889-2525	Data collectio
Syria	Shahd Maarrawi	shahdmaarrawi@gmail.com	0000-0002-4075-5526	Data collectio
Syria	Shahd Merhej	Shahdmerhej2002@gmail.com	0000-0002-2521-7623	Data collectio
Syria	Sherine hagi shamou	sherinecomputer@gmail.com	0000-0003-0643-7142	Data collectio
Syria	Siham Alabrash	sihamalabrash@gmail.com	0000-0002-2060-6056	Data collectio
Syria	Somar Berro	somerberro@gmail.com	0000-0001-6443-9408	Data collectio
Syria	Tala Jouma Alhejazi	talahij1432@gmail.com	0000-0001-6272-4184	Data collectio
Syria	Turfa Moudarres	turfaaa99@gmail.com	0000-0003-1519-4859	Data collectio
Syria	Walaa Qirata	walaaqirata@gmail.com	0000-0001-8533-4621	Data collectio
Syria	Yahya Smadi	yahyasamady.1997@gmail.com	0000-0002-8660-9313	Data collectio
Syria	Yasmeen saeed rajab	yasmynrjb66@gmail.com	0000-0003-0612-7857	Data collectio
Syria	Youmen Srajaldeen	yomensrajaldeen@gmail.com	0000-0002-2988-8416	Data collectio
Syria	Rami Anadani	ramianadani99@gmail.com	0000-0001-5461-4241	Data collectio
		reem.kozum.1998@gmail.com	0000-0002-8143-9140	

-WILEY

Country	r PRIBS Study Team Coauthor Name	Email	ORCID	Task
Syria	Othman Sheikh Hussein	othmanshiekhhussain@gmail.com	0000-0002-8228-7898	Data collection
Egypt	Mustafa Alsebaei	mustafaalsebaei08@gmail.com	0000-0001-7250-5428	Data collection
Egypt	Abdelrahman Shawky Refaee	abdorefaee@yahoo.com	0000-0002-1981-9425	Data collection/ National lea
Egypt	Albaraa Daradkeh	elbaraa.mahmoud1901@alexmed. edu.eg	0000-0002-8282-8236	Data collection
Egypt	Alshaymaa Mortada Ali Eltohry	alshaymaaali62@gmail.com	0000-0001-6867-8326	Data collection
Egypt	Azza Osama abdelmetaal alqurei	azzausama47@gmail.com	0000-0002-5436-8818	Data collection
Egypt	Donia Amgad Farhat	donia_farhat@yahoo.com	0000-0003-1379-1908	Data collection
Egypt	Eslam Mohamad Elshennawy	eslam_alshenawy@med.kfs.edu.eg	0000-0003-1410-7784	Data collection
Egypt	Fatma Yousef abdelaziz abo elnaga	batayousef03@gmail.com	0000-0002-9534-5444	Data collection
Egypt	Ghada Mahmoud Hussien Eid	ghadamahmoud088@gmail.com	0000-0002-7606-4364	Data collection
Egypt	Marwa Mahmoud Soliman Sabaa	marwa_sabaa@yahoo.com	0000-0003-3885-0943	Data collection
Egypt	Mo'men Mohamed Roshdy	moemenroshdy2016@gmail.com	0000-0002-3803-0817	Data collection
Egypt	mohamed said abdelkader koreitam	m_korietum@yahoo.com	0000-0003-0342-9550	Data collection
Egypt	Neamt Mahmoud Amin Hassan sakr	Neamtsakr@yahoo.com		Data collection
Egypt	Radwa Eletr	radwa.atef41@gmail.com	0000-0002-5040-2417	Data collection
Pakistan	Abdul Basit	abdulbasitrauf97@gmail.com	0000-0003-2189-080X	Data collection
Pakistan	Aleena Batool	aleenabatool114@gmail.com	0000-0001-6235-3643	Data collection
Pakistan	Anshahrah Riaz	anshahrahriaz8@gmail.com	0000-0002-4568-7307	Data collection
Pakistan	Aqsa Iqbal	aqsaiqbal965@gmail.com	0000-0003-4719-6058	Data collection
Pakistan	Ibad ur Rehman	ibadrehmaan@gmail.com	0000-0001-9639-0741	Data collection
Pakistan	Izma Ajaz	izmaajaz@gmail.com	0000-0002-6287-0031	Data collection
Pakistan	Namrah Anwer	nemo_anwer@outlook.com	0000-0003-4374-3843	Data collection
Pakistan	Syeda Tahira Waheed	tahirahashmi20@gmail.com	0000-0002-1478-1309	Data collection
Pakistan	Warda khan	warda.khan4902@gmail.com	0000-0002-3104-1433	Data collection
Sudan	Abobakr Abdallah Mohamed Osman	abobakr97abdallah11@gmail.com	0000-0002-3400-6561	Data collection
Sudan	Abubakr Elsadig Musa Muhammed	abubakr35007@gmail.com	0000-0003-2658-000X	Data collection
Sudan	Albushra Altayeb Adam Osman	albushraaltayeb@gmail.com	0000-0001-6594-8730	Data collection
Sudan	Asjad Hassan Eltayeb Shamseldeen	jody.hassan26@gmail.com	0000-0002-7486-3912	Data collection
Sudan	Esraa Hammad AbdAllah Ageeb	toriageeb302@gmail.com	0000-0002-5376-8465	Data collection
Sudan	Fatima Mohamed Awad Osman	fatmo4160@gmail.com	0000-0002-1563-7296	Data collection
Sudan	Maysoon Nagmeldin Mursi Mohamedshafee	maysoony99@gmail.com	0000-0001-6273-8543	Data collection
Sudan	Moaz Noureldin Easa El Tayeb	moaznoreldeen@gmail.com	0000-0002-5821-295X	Data collection
Sudan	Mohamed Alghazali	mhghazally@gmail.com	0000-0002-5465-5366	Data Collection
Sudan	Mohamed hassan Tagelkhatim Mohamed	mo7.alves1994@hotmail.com	0000-0003-2097-4585	Data collection
Sudan	Rawnag Ali Mubarak Ali	www.rawnag8888@gmail.com	0000-0002-5940-5155	Data collection
Sudan	Sarah Ahmed Alhassan	saraosama797@gmail.com	0000-0002-4813-0539	Data collection
Sudan	Taqwa Elyas Altahir Alshaikh	taqwaleyas@gmail.com	0000-0001-6811-3456	Data collection

(Continues)

14 of 15 WILEY-Health Science Reports

Coauthors for PRIBS Study Team						
Country	Coauthor Name	Email	ORCID	Task		
Libya	Ayman abulrassul Hasan aboulqassim	alsharifayman1986@gmail.com	0000-0001-6244-8618	Data collection		
Libya	Eshrak Saad Ahmed	Splendoure94@gmail.com	0000-0002-1486-0226	Data collection/ National lead		
Libya	Huda Ahmed Muftah Aqmati	hudaaqmati852@gmail.com	0000-0001-6988-8253	Data collection		
Libya	Khwla F. Magid	khwlafadil34@gmail.com	0000-0002-5189-0088	Data collection		
Libya	Moufiq abdulrasoul Hasan aboulqassim	mowfagoz@gmail.com	0000-0002-8015-8611	Data collection		
Libya	Zinelabedin Mohamed	Zen_zen47@yahoo.com	0000-0003-0133-809X	Data collection/ National lead		
Libya	Najat Ahmed Hashem Mohammed	najatahmed003@gmail.com		Data collection		
Algeria	Rais Mohammed Amir	raismohammedamir@gmail.com	0000-0002-1290-4379	Data collection/ National lead		
Algeria	Assia Salah	assia-salah@outlook.fr	0000-0003-0619-5243	Data collection		
Algeria	Djedidi Lamis	djedidilamis@gmail.com	0000-0002-6162-8868	Data collection		
Algeria	Ihcene Gourari	contact.ihcene@gmail.com	0000-0001-8900-9527	Data collection		
Algeria	Manare kahoul	kahoulmanare@gmail.com	0000-0003-3780-8292	Data collection		
Algeria	Rayane Dorbane	m20414@univ-constantine3.dz	0000-0001-5618-2366	Data collection		
Algeria	ABDERRAZAK MOHAMMED	med.abderrazak@yahoo.com	0000-0003-4474-1292	Data collection		
Jordan	Ahmad Alshkirat	ahm0190145@ju.edu.jo	0000-0002-7005-4229	Data collection		
Jordan	Ghalib Nashaat El Hunjul	ghalibhunjul@gmail.com	0000-0002-4439-7519	Data collection		
Jordan	Hashem Altabbaa	hashem0908@hotmail.com	0000-0002-8031-838X	Data collection		
Jordan	Laith Shakhatreh	laithshakhatreh99@gmail.com	0000-0002-9060-3942	Data collection		
Jordan	Mo'ath Al-Hazaimeh	spaceking1999@gmail.com	0000-0002-9666-7808	Data collection		
Jordan	Sereen khasawneh	sereen-2000@hotmail.com	0000-0002-8503-6218	Data Collection		
India	Dhruv Tewari	bukshukchin2@gmail.com	0000-0001-5886-8089	Data collection		
India	Rachana Reddy Dasireddy	rachanadasireddyksrr@gmail.com	0000-0001-6154-9134	Data collection		
India	Rishabh Kapil	kapilrishabh09@gmail.com	0000-0001-6999-489X	Data collection		
Yemen	Dua Hassan Hassan Mohammed Abu-Ali	doctorduaa331@gmail.com	0000-0003-0174-7782	Data collection		
Yemen	Abdulghani Ahmed Ali Al-Aswadi	abdulghanialaswadi1@gmail.com	0000-0001-7469-8606	Data collection		
Saudi Arabia	Ahmed Mohamed	ahmadalfadel777@gmail.com	0000-0001-5996-7097	Data collection		
United Arab Emirates	Haya Mohammed Zakaria Mashhadi	hayamzm@gmail.com	0000-0002-5480-478X	Data collection		
Morocco	Boukhiam Meriem	boukhiameriem@gmail.com	0000-0001-5828-1456	Data collection		
Palestine	Bashar Mohamed AlHennawi	bashar.hennawi@gmail.com	0000-0001-9357-6233	Data collection		
Iraq	Israa Abduljaleel Al-fayyadh	israa.med@hotmail.com	0000-0003-2352-3771	Data collection		
Serbia	Abd Alrazak Albasis	abdulrazzakalbasis99@gmail.com	0000-0003-0943-4051	Data collection		
Serbia	Abdalmoeen Yousef Albasis	Aboodalbasis@gmail.com	0000-0001-7155-5853	Data collection		

CONFLICT OF INTEREST STATEMENT

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

Data used for this article will be made publicly available after publishing all research papers that our team aim to do. However, if other researchers wish to request access to these data or require additional information, they should communicate with the corresponding author.

TRANSPARENCY STATEMENT

The lead author Yaman Nerabani affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

ORCID

Yaman Nerabani ២ http://orcid.org/0000-0002-8639-5263

REFERENCES

- 1. Schoenfeld PS. Advances in IBS 2016: a review of current and emerging data. *Gastroenterol Hepatol.* 2016;12(8 suppl 3):S1-S11.
- Quigley EMM, Fried M, Gwee KA, et al. World gastroenterology organisation global guidelines irritable bowel syndrome a global perspective update September 2015. J Clin Gastroenterol. 2016;50: 704-713.
- 3. Defrees DN, Bailey J. Irritable bowel syndrome. Primary Care: Clini Off Pract. 2017;44:655-671.
- 4. Cuschieri S. The STROBE guidelines. Saudi J Anaesth. 2019;13:31.
- Daabiss M. American Society of Anaesthesiologists physical status classification. Indian J Anaesth. 2011;55(2):111-115.
- WHO Global Physical Activity Questionnaire (GPAQ) Analysis Guide. WHO; 2012:1-22.
- 7. Cohen S. Perceived Stress Scale. 1994.
- Jackson C. The Chalder Fatigue Scale (CFQ 11). Occup Med. 2015;65:86.
- 9. S. Chandrasekhar FRS, Ikhsanto LN. jurusan teknik mesin. guidelines for implementation. *Liq Cryst.* 2020;21:1-17.
- Husain N, Chaudhry I, Jafri F, Niaz S, Tomenson B, Creed F. A population-based study of irritable bowel syndrome in a non-Western population. *Neurogastroenterol Motility*. 2008;20(9):1022-1029.
- El Sharawy SM, Amer IF, Elkadeem MZ. Irritable bowel syndrome in Egyptian medical students, prevalence and associated factors: a cross-sectional study. *Pan Afr Med J.* 2022;41:311.

 Bercik P, Verdu EF, Collins SM. Is irritable bowel syndrome a lowgrade inflammatory bowel disease? *Gastroenterol Clin North Am*. 2005;34(2):235-245.

-WILEY

- Chumpitazi BP, Shulman RJ. Underlying molecular and cellular mechanisms in childhood irritable bowel syndrome. *Mol Cell Pediatr*. 2016;3:11.
- Garcia-Etxebarria K, Zheng T, Bonfiglio F, et al. Increased prevalence of rare sucrase-isomaltase pathogenic variants in irritable bowel syndrome patients. *Clin Gastroenterol Hepatol.* 2018;16:1673-1676.
- 15. Henström M, Diekmann L, Bonfiglio F, et al. Functional variants in the sucrase-isomaltase gene associate with increased risk of irritable bowel syndrome. *Gut.* 2018;67:263-270.
- Zielińska M, Fichna J, Bashashati M, et al. G protein-coupled estrogen receptor and estrogen receptor ligands regulate colonic motility and visceral pain. *Neurogastroenterol Motility*. 2017;29: e13025.
- 17. Raveendran AV, Jayadevan R, Sashidharan S. Long COVID: an overview. *Diab Metab Syndr: Clin Res Rev.* 2021;15:869-875.
- Johannesson E, Simrén M, Strid H, Bajor A, Sadik R. Physical activity improves symptoms in irritable bowel syndrome: a randomized controlled trial. *Am J Gastroenterol*. 2011;106:915-922.
- 19. Talley NJ, Powell N, Walker MM, et al. Role of smoking in functional dyspepsia and irritable bowel syndrome: three random populationbased studies. *Aliment Pharmacol Ther*. 2021;54:32-42.
- Meier R, Beglinger C, Dederding JP, et al. Influence of age, gender, hormonal status and smoking habits on colonic transit time. *Neurogastroenterol Motility*. 1995;7:235-238.
- 21. Buscail C, Sabate JM, Bouchoucha M, et al. Western dietary pattern is associated with irritable bowel syndrome in the French nutrinet cohort. *Nutrients*. 2017;9:986.
- Feinle-Bisset C, Azpiroz F. Dietary lipids and functional gastrointestinal disorders. Am J Gastroenterol. 2013;108:737-747.
- Moayyedi P, Andrews CN, MacQueen G, et al. Canadian Association of Gastroenterology Clinical Practice Guideline for the management of irritable bowel syndrome (IBS). J Can Assoc Gastroenterol. 2019; 2:6-29.
- Vasant DH, Paine PA, Black CJ, et al. British Society of Gastroenterology guidelines on the management of irritable bowel syndrome. *Gut.* 2021;70:1214-1240.

How to cite this article: Arnaout AY, Nerabani Y, Douba Z, et al. The prevalence and risk factors of irritable bowel syndrome (PRIBS study) among adults in low- and middle-income countries: A multicenter cross-sectional study. *Health Sci Rep.* 2023;6:e1592. doi:10.1002/hsr2.1592