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Abstract 
When evaluating the effects of vaccination programs, it is common to 
estimate changes in rates of disease before and after vaccine 
introduction. There are a number of related approaches that attempt 
to adjust for trends unrelated to the vaccine and to detect changes 
that coincide with introduction. However, characteristics of the data 
can influence the ability to estimate such a change. These include, but 
are not limited to, the number of years of available data prior to 
vaccine introduction, the expected strength of the effect of the 
intervention, the strength of underlying secular trends, and the 
amount of unexplained variability in the data. Sources of unexplained 
variability include model misspecification, epidemics due to 
unidentified pathogens, and changes in ascertainment or coding 
practice among others. In this study, we present a simple simulation 
framework for estimating the power to detect a decline and the 
precision of these estimates. We use real-world data from a pre-
vaccine period to generate simulated time series where the vaccine 
effect is specified a priori. We present an interactive web-based tool to 
implement this approach. We also demonstrate the use of this 
approach using observed data on pneumonia hospitalization from the 
states in Brazil from a period prior to introduction of pneumococcal 
vaccines to generate the simulated time series. We relate the power of 
the hypothesis tests to the number of cases per year and the amount 
of unexplained variability in the data and demonstrate how fewer 
years of data influence the results.
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Introduction
After a new vaccine is introduced, it is often necessary 
to evaluate the effect of the intervention on disease rates. 
This is typically done by evaluating changes in the average 
number of cases or the trend in cases before and after vaccine  
introduction1. However, this type of analysis is challenging  
because it can be difficult to distinguish changes in disease  
rates caused by the vaccine from changes resulting from  
random variations, epidemics, changes in healthcare utilization, 
or changes in reporting practices. Additionally, there is often 
no ‘ground-truth’ against which estimates can be compared to  
determine whether an estimate is credible. These issues are a  
threat to the validity of any vaccine evaluation study, even  
when using large nationwide databases. However, the problems 
are especially acute when moving from larger to smaller  
populations, where the signal to noise ratio will be lower.

While it is intuitive that having more noise in the data makes 
it more difficult to detect a change, it is not clear how much  
data are needed to effectively quantify a vaccine-associated  
change if one exists. The power to detect a decline will depend 
on many factors, including the magnitude of the expected 
effect (higher power with a greater expected decline), the  
number of cases per unit time, and the number of years of  
pre- and post-vaccine data. Because the specific characteristics 
of datasets can vary, it is difficult to make general statements 
about power. However, simulation-based methods can be used to  
evaluate and compare power in different datasets based on 
the pre-vaccine time series and the magnitude of the expected  
effects2,3.

In this study, we present a simple web-based tool that can be 
used to input any disease time series and obtain an estimate of 
the power for that series to detect a specified vaccine-associated 
decline. This is accomplished by extracting characteristics of the 
time series (e.g., seasonality, trends, unexplained variability)  
from the pre-vaccine period and simulating a set of time series 
that have similar characteristics and have a vaccine impact that 
is specified a priori. We demonstrate the application of this 
approach on observed pre-vaccine data on pneumonia hospi-
talizations from the 26 states plus the federal district in Brazil  
and relate characteristics of the time series to the power.

Methods
Data
We used state-level hospitalization data from Brazil, which have 
been described in detail previously4. These de-identified data are 

drawn from the Unified Health System (SIH-SUS, Ministry of 
Health), which captures ~70% of the population in Brazil. The 
raw data can be obtained directly by contacting the Ministry of  
Health in Brazil. The formatted time series data are available 
in the Github repository for this study. Each hospitalization is 
assigned a unique ICD10 code. For these analyses, we focused 
on data on <12 month old children and 80+ year old adults 
for the pre-vaccine period 2003–2009. These two populations  
provide a useful contrast. The time series for the infants was 
relatively stable prior to vaccine introduction, while the data  
for the 80+ year old adults had a notable increasing trend before 
vaccine introduction. Both sets of time series exhibit strong  
seasonality with a peak in the winter. 

Simulating data based on observed time series from 
Brazil
The goal for this exercise was to simulate a set of time series 
with characteristics that resembled the observed hospitalization 
data from the pre-vaccine period but that had specified vaccine  
effects added in. We then sought to estimate the vaccine effect  
using the same model that was used to generate the data and  
evaluate the power to detect the effect. This provides a best-case 
scenario where the underlying model is correctly specified. 

The first step in this process was to extract characteristics of 
the time series from the pre-vaccine period (trend, season-
ality, and amount of unexplained variation). For each state, 
we fit a regression model to the data from the pre-vaccine 
period (2003–2009). The outcome variable was the number of  
pneumonia hospitalizations (coded as J12-18) per month, and 
the covariates were an index variable for time (to capture any  
linear trends in the data) and 12-month and 6-month harmonic  
variables (to capture seasonality)5. We used a Poisson regression 
model with a Gaussian observation-level random intercept to 
account for overdispersion in the data such that
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The models were fit using the glmer function in the lme4 package 
in R, version 3.6.1.

The next step is to use the fitted model to simulate time series 
of counts of hospitalization for the post-vaccine period with 
similar characteristics as the pre-vaccine period, with a specified 
vaccine-associated decline added to the simulated data. Using  
the estimated regression coefficients ˆ )(βk  and their estimated 
variance/covariance matrix, we generated 500 independent  
random draws of the parameters from a multivariate normal 
distribution for each state and age group combination. These 
were combined with the design matrix to obtain simulated 

.µ̂t  Random draws of φ̂t  were independently generated from 
a normal distribution with a mean of 0 and a standard deviation  
equal to the standard deviation estimated for φ

t
 from the fitted  

model. To incorporate a known vaccine effect, we assumed that 
the time series declined by a specified amount over a 24-month  
period. We generated time series where the maximum vaccine  

          Amendments from Version 1
The analyses were changed so that now only the post vaccine 
data are simulated. Therefore the calculations of power are 
conditional on the observed pre-vaccine data. The user interface 
now also allows the user to adjust the number of pre- and post-
vaccine time points. Specific responses are below.

Any further responses from the reviewers can be found at 
the end of the article
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effect after 24 months ranged from a 10% – 50% reduction  
(rate ratio of 0.5–0.9). To capture these declines, we generated  
a vector, v

t
, with entries equal to 0 at the time of vaccine  

introduction and decreasing linearly to the log(Rate-Ratio-Final)  
over 24 months. Simulated counts, Y

t,sim
, were generated by 

taking a random draw from the Poisson distribution with  
mean. 

ˆˆ .vt t tµ φ+ +
e  The simulated counts reflect uncertainty in 

the regression parameters, unexplained variability in the data,  
as well as uncertainty from the observation process. The  
simulated counts from the post-vaccine period were combined 
with the observed counts from the pre-vaccine period. Therefore,  
the power calculations are conditional on the observed pre- 
vaccine data.

Estimation of vaccine effects
We next estimated the vaccine effect using a regression model 
similar to the one used to generate the data. The outcome was 
the (simulated) number of counts per month. As above, we  
adjusted for seasonality using 6- and 12-month harmonic terms, 
and secular trends were captured using an index for time. The  
vaccine effect was quantified using a linear spline term that  
began at the time of vaccine introduction and continued for 
24 months before stabilizing. An observation-level random  
intercept was included to capture overdispersion of the count 
data. Using the fitted model, we calculated the estimated rate  
ratio 24 months after vaccine introduction as 24*(coefficient 
for the vaccine effect term). To evaluate how many years of  
pre-vaccine data are needed to estimate the effects, we sequen-
tially removed the first 1, 2, or 3 years of data and evaluated  
the effect on power. Coverage of the 95% confidence intervals 
(alpha=0.05) were used to assess power.

Data and availability
All of the time series data and code used in these analyses  
are available from a Github repository https://github.com/
weinbergerlab/PoissonITS_power. The interactive tool, along  
with a sample dataset, can be accessed at https://weinbergerlab.
shinyapps.io/ITS_Poisson_Power.

Results
Interactive tool to estimate power
Because the power to detect a change in a time series is  
influenced by the expected effect size, the amount of unex-
plained variation in the data, and the number of years of data  
available, it can be difficult to make general statements about 
power. However, observed time series from the pre-vaccine  
period can be used to simulate time series to perform a best-case 
power calculation. This can provide an indication of whether 
it is worth performing an analysis or whether collecting  
additional data (e.g., additional pre-vaccine time points) could 
be helpful. We provide a simple ‘point-and-click’ interface 
where the user provides a time series in a csv or Excel format,  
indicates which columns contain the date variable, the outcome, 
and any potential controls, and the date at which the intervention  
is introduced (Figure 1). Controls are time series that share  
important characteristics with the outcome time series. Relevant 
controls could include population size, all-cause hospitalizations, 
or other specific causes of disease that share similar trends and  
are not influenced by the intervention.

Figure 1. User interface for power calculation. The user 
uploads a time series, specifies the expected decline in terms of 
a rate ratio, specifies the key variables (date, outcome of interest, 
and controls), the date of the intervention, and the number of 
simulations to generate. A sample dataset can be downloaded by 
clicking the button at the top of the screen.

Characteristics of the state-level data from Brazil
As a demonstration of this approach, we apply this simulation 
framework to data from Brazil, disaggregated to different 
subnational levels (state, region). The size of the population 
varies drastically by state, from 450,000 to 41 million individu-
als (in 2010). On average there were 30-1900 hospitalizations  
due to pneumonia per month per state among children <12 m 
and 12-1100 hospitalizations per month per state among adults  
80+ years of age during the pre-vaccine period. The time 
series for the <12m old children were highly seasonal but  
without a strong long-term trend, while the time series for the 
80+ year olds increased markedly starting in the pre-vaccine 
period. We simulated time series for each of the states that had  
similar characteristics to the observed time series in the pre- 
vaccine period but with vaccine effects of different magnitudes  
(Figure 2).

Effect of number of cases and random noise on ability 
to accurately to detect a decline
We first evaluate the relationship between the amount of  
unexplained variability in the data and the ability to accurately  
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Figure 2. Sample simulated monthly time series of hospitalizations due to all-cause pneumonia for adults 80± years of age from a small 
state (A,B) and a large state (C,D) in Brazil with a 50% decline post-vaccination (A,C) or 10% (B,D).

estimate the effect of the vaccine. There is a clear relationship 
between the amount of unexplained variability in the data and 
the power to detect a vaccine-associated change (Figure 3A).  
This trend was consistent across all of the states between both  
children and adults.

Plotting the estimated power against the average number of  
hospitalizations in the state/region, there is also a relationship, 
but the trend differed between children and adults (Figure 3B).  
This is because the amount of unexplained variability was 
higher in the <12m old children than in the 80+ year old adults  
(Extended data: Figure S1)

Effect of number of years of data on ability to 
accurately to detect a decline
With fewer years of baseline data, the power to detect a change 
in disease rates associated with the vaccine also declines. For  
datasets with little unexplained variability, even with just 12 
months of pre-vaccine data, there could be high power to detect  
a vaccine-associated decline of 20%. However, when there is  
more unexplained variability in the time series, power declines 
with shorter pre-vaccine periods (Figure 4). These declines in  
power are particularly dramatic for time series with intermediate 
levels of unexplained variability (Figure 4).

Demonstration of the interface
As a demonstration of the point-and-click interface, we use 
hospitalization data from Chile among children <24 months  
(raw data available from http://www.deis.cl/)6. This sample 
time series can be downloaded directly from the interface. The  
outcome variable is the number of hospitalizations per month due 
to all-cause pneumonia (J12_18) for 2003–2014. The number of 
non-respiratory hospitalizations per month (ach_noj) is included 
as a control time series. If no control is present, this field can be 
left blank. The date of vaccine introduction is set to January 1,  
2011. The program generates a specified number of simulated  
post-vaccine time series (N) based on the pre-intervention data  
(Figure 5A). With two years of post-vaccine data (vaccine  
introduction in 2011, evaluating through 2012), the 500 estimates  
of the rate ratio are centered on the true value (indicated by a red 
dashed line), with a moderate degree of uncertainty (Figure 5B). 
This yields 63% power to detect a rate ratio of 0.8 (Figure 5B). 
Compared with the analyses of the Brazil series, the power is  
reasonable given the amount of unexplained variability in the  
data but could be increased (Figure 5C). This can be seen in  
the simulation by increasing the length of the evaluation period  
by a year (e.g., through 2013) (Extended data: Figure S2). The 
power in this instance would increase from 63% to 83% with  
an improvement in the precision of the estimates.

Page 5 of 17

Gates Open Research 2020, 4:27 Last updated: 21 OCT 2020

http://www.deis.cl/


Figure 4. Effect of shortened baseline periods on the relationship between the power to detect a decline associated with 
vaccine introduction and the amount of unexplained variation in the time series. Each dot represents the power for one state/age 
group in Brazil. Dots with lighter colors had fewer years of data.

Figure 3. Relationship between power to detect a decline associated with vaccine introduction and (A) the amount of unexplained variation 
in the time series or (B) the average number of cases per month for different specified magnitudes of vaccine effects. The labels at the 
top of the panel indicate the magnitude of the expected vaccine effect, with an incidence rate ratio (IRR) of 0.5 representing a 50% decline 
associated with the vaccine and a IRR of 0.9 equal to a 10% decline. Each dot represents the power for one state in Brazil. The black triangles 
represent estimates for adults 80+ years of age, and the gray circles represent estimates for children <12 months of age.

Discussion
In this study, we describe a simple interface for conducting  
simulations to evaluate the power to detect a vaccine-associated 

decline from time series data. This approach provides  
analysts a simple best-case scenario for determining whether 
they are likely to detect specified vaccine effects with the data  
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Figure 5. Sample output from the interactive interface using hospitalization data for Chile under 2 years of age (data can be 
obtained by clicking the download button on the interface). The upper left panel shows the 100 simulated time series. The upper right 
panel shows the estimates of the rate ratio for each of the 100 simulations. The true specified rate ratio (0.8) is denoted by a red dashed line. 
63% of the estimates had 95% confidence intervals that did not cross 1. The bottom left panel shows the estimate of power for this study 
(red dot) compared with the estimates from the Brazil states with different length baseline periods.

on hand or whether collecting additional pre- or post- vaccine 
data would be beneficial. This type of tool should be used when  
planning analyses and prior to conducting a formal evaluation  
analysis with the data on hand.

By analyzing subnational data from Brazil, we demonstrate 
how power varies with the number of cases and the degree 
of unexplained variability in the data. Reducing unexplained  
variability in the data by using time-varying covariates can help 
to increase power. Such covariate could include other causes  
of disease/hospitalization/death or known correlates of changes 
in disease rates (e.g., percent of the population with access to  
healthcare).

These analyses evaluate power based on the statistical  
characteristics of the time series. As with any analysis, failure 
to correctly control for relevant trends will also introduce  

important biases and could greatly outweigh the issues related 
to statistical characteristics of the data. For instance, if there is  
a non-linear trend that is not well-captured by an interrupted  
time series analysis, the vaccine effect could be substantially  
over- or under-estimated.

The estimates generated with this approach represent a ‘best-case’ 
scenario where we know the exact date of vaccine introduc-
tion and where all non-vaccine-associated changes are linear and  
can be controlled with a simple model. In reality, numerous  
factors can influence pneumonia hospitalization rates. The 
use of control variables can help to adjust for these, but often  
remain unexplained factors that cannot be easily adjusted.

In the statistical model used here, the control variable(s) are 
included as covariates in the regression framework. An alternative 
approach would be to pick a single covariate and include it as an 
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offset term7. There are advantages and disadvantages to using the 
control variables as covariates rather than an offset term (which 
effectively includes the control variable as a covariate but fixes  
the regression coefficient to one). Error in the control time series 
can lead to inadequate control of underlying trends8. This is  
particularly an issue with data from small regions with few  
cases of disease. Using a control as an offset ensures that the 
trend is captured. However, using the control variable as an  
offset term can introduce biases when the control itself  
experiences major changes that are caused by a factor that does 
not reflect the outcome. By allowing the regression coefficient to  
be estimated instead of fixed at one, it guards against this by  
giving less weight to controls that do not reflect changes in the  
outcome. 

In our analyses here and for the online tool, we use independent 
observation-level random effects. When analyzing time series  
data, there is often correlation between observations across 
time. Adjusting for seasonality and time-varying covariates can  
reduce this autocorrelation considerably in many settings, though 
residual autocorrelation can persist. An alternative approach  
would be to use an autoregressive model for the random effects. 
We have found that the autoregressive model of order one (AR(1)) 
for the random effects can lead to identifiability issues (similar  
to issues observed with spatial models9) where introduction  
of the correlated random effects biases the estimation of trend  
or control variables. Depending on the characteristics of the  
underlying trends in the time series, this can bias estimates of  
vaccine impact. 

The analyses presented here assume a gradual decline in disease 
rates following an intervention, which plateaus after 24 months. 
This would be a reasonable assumption for a new vaccine being 
introduced for routine use. In the case of a vaccine campaign, the 
change might be much more abrupt and resemble a step change. 
The interactive app allows the user to specify the length of time that 
passes before disease rates stabilize.

We summarize the results of these simulations in terms of  
statistical power (i.e., what percentage of simulations yielded 
a statistically significant effect when an actual non-zero 
effect was present). In practice, we typically avoid describing  
evaluations of vaccine impact made using observational time 
series data in terms of statistical significance. It is often more  
informative to instead describe the estimate of vaccine impact 
and the strength of the evidence/precision of the estimates. 
These types of analyses are rarely used for making dichotomous  
policy decision (e.g., licensure), so using an arbitrary threshold  
for declaring whether a vaccine ‘works’ is not needed.

In conclusion, we present a simple framework for evaluating 
the power to detect vaccine-associated declines of a specified  
magnitude. This approach can help in planning for an evaluation 
study and for understanding differences between studies.

Data availability
Underlying data
The Brazilian dataset can be accessed by contacting the Ministry  
of Health (Ministério da Saúde) directly via http://portalms.saude.
gov.br.

The Chilean dataset can be accessed from the Chilean Depart-
ment of Statistics website: http://www.deis.cl Time series data and 
code available from: https://github.com/weinbergerlab/PoissonITS_
power

Archived data and code as at time of publication: https://github.
com/weinbergerlab/PoissonITS_power 

License: CC0

Extended data
Figshare: Estimating the power to detect a change caused by a  
vaccine from time series data, 

This project contains the following extended data:

-   �Figure S1. Relationship between amount of unexplained  
variability in the data and the average number of cases  
per month for each of the Brazilian states for children <12 
months of age (gray circles) and adults 80+ years of age (black 
triangles). https://doi.org/10.6084/m9.figshare.1190814310

-   �Figure S2. Sample output from the interactive interface  
using hospitalization data for Chile under 2 years of age, 
where the date of introduction is shifted earlier by 12 months 
(to January 1, 2010). In comparison to Figure 4, (where a  
date of introduction of January 1, 2011 is used), the  
estimates are more precise, and the power is higher. https://
doi.org/10.6084/m9.figshare.11908158.v211

Data are available under the terms of the Creative Commons 
Attribution 4.0 International license (CC-BY 4.0).

Software availability
Interactive tool available from: https://weinbergerlab.shinyapps.io/
ITS_Poisson_Power

Source code available from: https://github.com/weinbergerlab/ 
PoissonITS_power

Archived source code as at time of publication: https://zenodo. 
org/badge/latestdoi/177850456

License: CC-BY 4.0
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Fossés, France 
2 Université Paris Est, IMRB-GRC GEMINI, Créteil, France 

In this relevant paper, the authors try to estimate the power to detect a change (a decline) caused 
by a vaccine from time series data. To implement this approach, they created an interactive web-
based tool. They used data on pneumonia from Brazil before pneumococcal conjugate vaccine 
introduction to generate the simulated time series and to demonstrate the use of this approach. 
Interestingly, whether in times series analysis or in before after studies, the specific question of 
power is rarely raised and from our point of view, this is the strength of this work. This relevant 
information can have an added value to perform impact studies. Although the results the authors 
presented were expected, such as increasing power when increasing years of surveillance before 
the intervention, the interest of this work is to provide the demonstration of this effect, and to 
allow quantification of this power. 
 
For administrative data bases, we understand the usefulness of this tool. However, many 
surveillance systems are specifically set up to prospectively follow the evolution of an outcome 
after vaccine implementation, and adding a posteriori several years of surveillance before the 
vaccine to improve power when analyzing data is clearly not possible. With the proposed 
interactive tool, the dataset has to be downloaded to perform the power analysis, meaning that 
the study is already finished. 
 
But of course, the major interest of a power calculation lies in the fact that it is calculated a priori 
and not after the data were collected. Thus, we were not convinced by: “This type of tool should be 
used when planning analyses and prior to conducting a formal evaluation analysis with the data 
on hand.” nor by “This approach can help in planning for an evaluation study and for 
understanding differences between studies.” 
 
Several revisions should be made to strengthen the current paper:

First of all, the authors should add limitations of their study. 
 

○

To allow a priori power comutation, one suggestion would be the possibility of adding a 
module to simulate data based on expected population sizes with assumed variability based 
on previous studies and a defined number of years. This would allow adjusting the number 
of baseline years needed before the intervention and would be really helpful to 
appropriately assess public health intervention impact. 
 

○

Another model than Poisson regression could also be proposed such as ARIMA or negative 
binomial regression modelling. 
 

○

How was the adjustment made on the control outcome? 
 

○

Inclusion of an ARMA term in the model should also be considered, adjusting for seasonality 
may not be always sufficient to capture all the autocorrelation of the data 
 

○

The evaluation of the residuals, particularly with correlograms, is also an important point 
 

○

The authors should improve the clarity of their R scripts and should add explanatory text so ○
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that non-experts can better understand the model building.
 
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Partly
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In their paper Weinberger and Warren describe a simulation-based approach for calculating 
statistical power in time series studies of vaccine impact. They apply their methodology to data 
from Brazil and Chile, using the latter to demonstrate a web-based interactive tool they have 
developed. 
  
I agree with the premise of the paper that power calculations may have an important role to play 
in designing vaccine impact studies, particularly in deciding how much pre and post vaccine data 
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needs to be collected. And the web-based tool is potentially a useful tool for researchers planning 
a vaccine impact study. 
  
However, my major concern is that in its current form the tool has limited flexibility to evaluate 
power for different amounts of pre and post vaccine data. For example, if a researcher wants to 
know the power associated with different lengths of post-vaccine surveillance, given they have, 
say, three years of pre-vaccine surveillance, can they use the tool to calculate power for these 
scenarios? Based on my understanding of the Chile example, the amount of post-intervention data 
can only be increased if the pre-intervention data is reduced. This is a significant constraint since it 
is hard to imagine why a researcher would not want to use all the pre-vaccine data available. 
  
My recommendation would therefore be to adapt the current version of this tool to include 
numbers of pre and post vaccine observations as additional parameters.  In theory this should be 
straightforward to do by: 
 

Fitting the model to pre-vaccine data 
 

1. 

Using the resulting parameter estimates, and an assumed vaccine impact, to simulate 
additional pre-vaccine and post-vaccine data 
 

2. 

Estimating vaccine impact based on the combined (observed + simulated) data 
 

3. 

Using vaccine impact estimates from multiple simulations to estimate power.  4. 
I have proposed combining observed and simulated data so that the estimated power is 
conditional on the observed data. An alternative approach would be to simulate all the pre-vaccine 
data to give an unconditional estimate, but I think this estimate is probably less useful given that 
the final analysis will almost certainly make use of the pre-vaccine data used in the power 
calculation. 
  
Some additional observations: 

In equation 3, the second harmonic is written in terms of 2 sine functions. I think this is a 
typo and one of these functions should be a cosine. Also, a reference for harmonic 
regression (e.g. chapter 5.4 in Forecasting Principles and Practice by Hyndman & 
Athanasopoulos) might be useful. 
 

1. 

The tool allows for the inclusion of a control series. This is a nice feature, but it wasn’t clear 
to me how the relationship between the two time series is specified? Is the control included 
as a covariate in the regression model? In a recent paper (Bottomley et al. 2019) we argue 
that because the control is effectively trend + error it should be included as an offset term, 
otherwise confounding due to trend is not adequately accounted for.  
 

2. 

An important assumption of the model is that the observations are independent. This is a 
big assumption because time series are often autocorrelated. One way to relax the 
assumption would be to model the random effect (phi_t) as an autoregressive process. This 
might make fitting the model more complicated so I can see that you might not want to go 
down this route, but at a minimum the issue of autocorrelation should be mentioned in the 
discussion. 
 

3. 
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Statistical power must be defined with respect to a particular significance level. I presume 
the calculations are based on a 5% significance level (2-sided test), but I didn’t see this 
stated anywhere. 
 

4. 

The model assumes a linearly increasing intervention effect on the log scale.  This seems 
reasonable for a vaccine that is introduced into a childhood vaccine programme without a 
catchup campaign. But what about vaccines that are introduced with a catchup campaign? 
A step function might be more appropriate for this scenario. The assumed mode of 
introduction should be mentioned in the discussion or the tool could be modified to allow 
for different modes of introduction.

5. 

Some typos in the web interface:
In the section “Results”, delete “N” from the sentence “The second plot shows the N 
estimate”. 
 

1. 

In the section “Sample Data” missing “r” in children “These time series represent the number 
of cases among childen <24 months of age”.

2. 
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Author Response 26 Aug 2020
Daniel Weinberger, Yale School of Public Health, New Haven, USA 

We thank Dr. Bottomley for the constructive feedback on the analyses. We have responded 
by making all analyses conditional on the observed pre-vaccine data. Additionally, we have 
modified the user interface so that the user can modify the number of pre- and post-vaccine 
time points used when estimating power. 
 
 
 
Reviewer #1 
  
In their paper Weinberger and Warren describe a simulation-based approach for calculating 
statistical power in time series studies of vaccine impact. They apply their methodology to data 
from Brazil and Chile, using the latter to demonstrate a web-based interactive tool they have 
developed. 
  
I agree with the premise of the paper that power calculations may have an important role to play 
in designing vaccine impact studies, particularly in deciding how much pre and post vaccine data 
needs to be collected. And the web-based tool is potentially a useful tool for researchers planning 
a vaccine impact study. 
  
However, my major concern is that in its current form the tool has limited flexibility to evaluate 
power for different amounts of pre and post vaccine data. For example, if a researcher wants to 
know the power associated with different lengths of post-vaccine surveillance, given they have, 
say, three years of pre-vaccine surveillance, can they use the tool to calculate power for these 
scenarios? Based on my understanding of the Chile example, the amount of post-intervention 
data can only be increased if the pre-intervention data is reduced. This is a significant constraint 
since it is hard to imagine why a researcher would not want to use all the pre-vaccine data 
available.  
My recommendation would therefore be to adapt the current version of this tool to include 
numbers of pre and post vaccine observations as additional parameters.  In theory this should be 
straightforward to do by:

Fitting the model to pre-vaccine data 
 

1. 

Using the resulting parameter estimates, and an assumed vaccine impact, to simulate 
additional pre-vaccine and post-vaccine data 
 

2. 

Estimating vaccine impact based on the combined (observed + simulated) data 
 

3. 

Using vaccine impact estimates from multiple simulations to estimate power.  4. 
I have proposed combining observed and simulated data so that the estimated power is 
conditional on the observed data. An alternative approach would be to simulate all the pre-
vaccine data to give an unconditional estimate, but I think this estimate is probably less useful 
given that the final analysis will almost certainly make use of the pre-vaccine data used in the 
power calculation. 
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This is an excellent suggestion, and we have implemented the suggested change in 
the Shiny App, and we have also updated the analyses in the main manuscript to be 
conditional on the observed pre-vaccine data. The user can now specify the number of 
months of post-intervention data (and pre-intervention data) using sliders, and then 
power is conditional on the observed data from the pre-vaccine period. The updated 
tool is available at https://weinbergerlab.shinyapps.io/ITS_Poisson_Power 
  
  
Some additional observations: 

In equation 3, the second harmonic is written in terms of 2 sine functions. I think this is a 
typo and one of these functions should be a cosine. Also, a reference for harmonic 
regression (e.g. chapter 5.4 in Forecasting Principles and Practice by Hyndman & 
Athanasopoulos) might be useful.

1. 

We have fixed this typo and added the reference, as suggested. 
 

The tool allows for the inclusion of a control series. This is a nice feature, but it wasn’t clear 
to me how the relationship between the two time series is specified? Is the control included 
as a covariate in the regression model? In a recent paper (Bottomley et al. 2019) we argue 
that because the control is effectively trend + error it should be included as an offset term, 
otherwise confounding due to trend is not adequately accounted for. 

1. 

Indeed, the log(control+0.5) is included as a covariate, and the user can specify 
multiple control variables if available. We agree that error in the control time series 
can lead to inadequate control of underlying trends (see Shioda et al., Epidemiology 
2019). In our experience with administrative data, using a control as an offset can 
introduce biases when the control itself experiences major changes that are caused by 
a factor that does not reflect the outcome. By allowing the regression coefficient to be 
estimated instead of fixed at one, it guards against this effect by downweighting 
controls that do not reflect changes in the outcome. This is an interesting point 
though for future methodological work to compare these approaches, and we have 
added a comment on this to the discussion.  

An important assumption of the model is that the observations are independent. This is a 
big assumption because time series are often autocorrelated. One way to relax the 
assumption would be to model the random effect (phi_t) as an autoregressive process. This 
might make fitting the model more complicated so I can see that you might not want to go 
down this route, but at a minimum the issue of autocorrelation should be mentioned in 
the discussion.

1. 

We agree. However, there are two reasons we prefer to use an iid random effect. First, 
in many instances, after adjusting for seasonality and control time series, the residual 
autocorrelation is negligible. Second, we have found that AR(1) models can suffer from 
identifiability issues where inclusion of the correlated random effect biases the 
estimates of trend or control variables. A similar phenomenon has been described for 
spatial data: (Hodges JS, Reich BJ. Adding spatially-correlated errors can mess up the 
fixed effect you love. The American Statistician 2010; 64:325-34). Depending on the 
characteristics of the underlying trends in the time series, this can bias estimates of 
vaccine impact. We have not yet found a satisfactory solution to this problem, nor 
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have we been able to determine the time series characteristics that lead to this 
identifiability issue. This is an area we are actively investigating. We have added a 
comment to the discussion to indicate that the use of an AR(1) random effect could 
lead to bias in the primary associations of interest. 
 

Statistical power must be defined with respect to a particular significance level. I presume 
the calculations are based on a 5% significance level (2-sided test), but I didn’t see this 
stated anywhere.

1. 

We have an alpha of 0.05 (2 sided). We have added this detail to the methods section. 
 

The model assumes a linearly increasing intervention effect on the log scale. This seems 
reasonable for a vaccine that is introduced into a childhood vaccine programme without a 
catchup campaign. But what about vaccines that are introduced with a catchup 
campaign? A step function might be more appropriate for this scenario. The assumed 
mode of introduction should be mentioned in the discussion or the tool could be modified 
to allow for different modes of introduction.

1. 

We agree and have added a comment on this to the discussion. We also modified the 
app to allow the user to specify the length of time over which the decline occurs. So 
for a step change, the length of time would be set to 1.  
Some typos in the web interface:

In the section “Results”, delete “N” from the sentence “The second plot shows the N 
estimate”. 
 

1. 

In the section “Sample Data” missing “r” in children “These time series represent the 
number of cases among childen <24 months of age”.

2. 

Thank you, we have fixed these typos.  
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