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A B S T R A C T   

Land subsidence is a widespread problem impacting communities worldwide. Understanding the 
causes and factors of land subsidence is crucial for identifying and prioritizing effective mitigation 
measures. One of the main reasons for prioritizing land subsidence causes is the potential impact 
on infrastructure and the environment. The main objective of this paper is to emphasize the 
importance of prioritizing the causes of land subsidence. By understanding and prioritizing the 
factors contributing to land subsidence based on their impact and urgency, the aim is to develop 
targeted strategies for mitigation, inform policy decisions, and prevent further exacerbation of 
this problems. The study comprises three phases, where experts in the field provide their opinions 
and propose a robust hybrid framework. This framework integrates the Failure Mode and Effect 
Analysis (FMEA) and Step-wise Weight Assessment Ratio Analysis (SWARA) with Hesitant q-rung 
orthopair fuzzy set (Hq-ROFS). The performance of the proposed technique was then compared 
with two other decision-making techniques for evaluating and ranking land subsidence causes. 
According to the results, extraction of groundwater, excessive irrigation using groundwater, and 
oxidation and drainage of organic soils were identified as primary drivers of subsidence.   

1. Introduction 

Land subsidence is a widespread problem that has global implications [1]. Land subsidence refers to the progressive or abrupt 
descent of the earth’s surface [2] and is often attributed to a variety of factors, both natural and human-induced [3]. The causes of land 
subsidence are multifaceted and can vary depending on the geographical location and specific environmental conditions [4], as seen in 
Fig. 1. Land subsidence is a widespread geological occurrence that has been documented in more than 150 countries and regions 
worldwide [5,6]. Understanding the factors that contribute to land subsidence is crucial for developing effective mitigation strategies 
and preventing further damage to the Earth’s surface [5]. The phenomenon of ground collapse can be explained by the creation of 
subsurface voids or the exhaustion of subsurface materials, which can happen naturally or as a result of human activities [7]. Land 
subsidence is a complex and inelastic phenomenon that has a wide range of impacts on geological, environmental, hydrogeological, 
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human, and economic systems [8–10] Although the manifestation of land subsidence is subtle, the consequences can be far-reaching 
and harmful. Understanding the causes and factors of land subsidence is crucial for identifying and prioritizing effective mitigation 
measures. The purpose of this research is to clearly highlight the motivations and the gap for prioritizing land subsidence causes 
factors. By doing so, we aim to provide a general understanding of the diverse aspects that contribute to land subsidence as well as the 
significance of prioritizing these factors in order to effectively address this problem. One of the main encouragmenet for prioritizing 
land subsidence causes factors is the potential repercussions of land subsidence on infrastructure and the environment. As the ground 
sinks, it can lead to damage to constructions, roads, and other structures, as well as disruptions to water and drainage systems. In 
addition, land subsidence can result in the loss of valuable agricultural land and natural habitats. By prioritizing the causes of land 
subsidence, we can identify the most critical aspects and thrive targeted strategies to mitigate their effects. Supplementary to this, is 
the need to understand the role of human activities in exacerbating this phenomenon. While natural processes such as tectonic activity 
and soil compaction play a role in land subsidence, human activities such as groundwater extraction, mining, and construction can 
significantly accelerate the process. By prioritizing the causes of land subsidence, we can better grasp the impact of these activities and 
thrive policies and regulations to mitigate their effects. Despite the importance of this subject, there is a gap in the current literature 
and research on this field. While there is a wealth of information on the diverse causes of land subsidence, there is a lack of 
comprehensive analysis that prioritizes these factors based on their impact and importunity. This gap prevents our ability to effectively 
address land subsidence and thrive targeted strategies for mitigation. In order to bridge this gap, it is essential to conduct a thorough 
analysis of the causes of land subsidence and prioritize them based on their impact and importunity. This will provide us to thrive 
targeted mitigation measures that address the most critical factors and allocate resources effectively. Additionally, by prioritizing land 
subsidence causes factors, we can better inform policy decisions and regulations to prevent further exacerbation of this problem. To 
encapsulate, the objective of this paper is to highlight the motivations and the gap for prioritizing land subsidence causes factors. By 
understanding the diverse factors that contribute to land subsidence and prioritizing them based on their impact and importunity, we 
can thrive targeted strategies for mitigation and inform policy decisions to prevent further exacerbation of this problem. This will 
ultimately help to ensure the stability of the ground and the structures built upon it, as well as protect valuable agricultural land and 
natural habitats. 

In recent years, there has been a growing interest in applying multi-criteria decision-making methods to address the uncertainty in 
land subsidence causes factors. One of the key challenges in this area is the integration of multiple criteria, such as geological, hy-
drological, and anthropogenic factors, to make informed decisions in the presence of uncertainty. To address this challenge, scholars 
have proposed diverse multi-criteria decision-making approaches that take into account the uncertainty in the decision-making 
process. As an illustration [11], utilized this methodology to determine 14 elements that influence subsidence, whereas [12] 
applied it to forecast subsidence within an underground mine [13]. implemented fuzzy logic to delineate the susceptibility of 

Fig. 1. The investigation of the spatial distribution of land subsidence over a prolonged period [3].  
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subsidence in the Grosseto plain, while [14] amalgamated multi-criteria decision-making and artificial intelligence to chart the risk of 
subsidence in the Tasuj plain. The study by Ref. [15] in a highly populated slum area along the Musi River in Palembang, Indonesia, 
used the Analytical Hierarchy Process (AHP) method to develop a land subsidence susceptibility map, providing an analysis of the 
factors contributing to land subsidence [16]. used the Best–Worst Method (BWM), was used to determine the relative importance of 
factors such as groundwater depletion, lithology, and groundwater extraction in assessing land subsidence hazard [17]. employed 
seven different hydrological and geological parameters to evaluate the vulnerability to subsidence using a fuzzy logic approach within 
the confines of the Salmas and Shabstar aquifers. Incorporating a diverse set of parameters [18], conducted a subsidence assessment 
utilizing the AHP-fuzzy approach. The eight parameters employed included annual groundwater level drawdown, aquifer medium, 
land use, discharge, aquifer saturation thickness, net recharge, fault proximity, and topography [19]. has exclusively examined the 
factors that are associated with the emergence of land subsidence in the course of urbanization. However, the author has not given due 
consideration to other facets of the development of land subsidence. Research conducted by Ref. [20] delved into the multifarious 
aspects of land subsidence including geological structure, irrational planning, groundwater extraction, and management of under-
ground urban infrastructure. Researchers [21] have applied fuzzy multi-criteria decision-making techniques to assess the impact of 
groundwater extraction, land use changes, and soil properties on land subsidence, taking into account the uncertainty in the input data 
and criteria weights. The study [22] used the Analytic Network Process (ANP) and the Combined Compromise Solution method with 
Maximum Variance (MV-CoCoSo) to prioritize natural hazards, specifically landslides, in order to improve the city’s resilience against 
these threats. Land subsidence is a critical issue that has significant implications for the environment, infrastructure, and human 
settlements. Despite its importance, there is a lack of comprehensive classification of the factors contributing to land subsidence. 
Previous research has highlighted the need for a thorough evaluation of the parameters related to the effectiveness of subsidence, yet 
this has not been adequately addressed. In response to this gap in the literature, our research aims to make a significant contribution by 
conducting a meticulous assessment of the multifaceted factors that affect land subsidence. Unlike previous studies that have focused 
on specific regional factors, our study covers all variables that influence the subsidence of land. By doing so, we seek to provide a 
comprehensive understanding of the factors contributing to land subsidence, thereby addressing the limitations of existing research. 
The significance of our research problem lies in its potential to inform policy-making, urban planning, and infrastructure development. 
Land subsidence poses a threat to the stability of buildings, roads, and other structures, as well as to the integrity of natural ecosystems. 
By gaining a deeper understanding of the factors driving land subsidence, we can develop more effective strategies for mitigating its 
impacts and preventing further degradation of the environment. In comparison to related papers, our research stands out for its holistic 
approach to the study of land subsidence. While previous studies have focused on specific regional factors, our research takes into 
account all variables that contribute to land subsidence, providing a more comprehensive and nuanced understanding of this complex 
phenomenon. By doing so, we aim to fill a critical gap in the literature and offer valuable insights for researchers, policymakers, and 
practitioners working in the field of land subsidence. All in all, our research makes a significant contribution to the study of land 
subsidence by undertaking a meticulous assessment of the multifaceted factors that affect this phenomenon. By addressing the limi-
tations of existing research and providing a comprehensive understanding of the factors driving land subsidence, our study has the 
potential to inform more effective strategies for mitigating its impacts and preserving the integrity of natural and built environments. 
In this context, the innovative value of the contribution of Failure Mode and Effect Analysis (FMEA), and Step-wise Weight Assessment 
Ratio Analysis (SWARA) with Hesitant q-rung orthopair fuzzy set (Hq-ROFS) in the study of land subsidence causes factors by the 
authors is of great significance. 

Therefore, the main objective and contributions of this research study are as follows:  

• Development of a Robust Hybrid Framework: The contribution of FMEA, SWARA, and Hq-ROFS in the study of land subsidence 
causes factors by the authors is significant in providing a comprehensive and flexible approach to understanding and analyzing the 
complex and uncertain nature of land subsidence. By integrating these techniques, the authors are able to identify the most critical 
factors contributing to land subsidence, assess their relative importance, and model their interactions in a more realistic and ac-
curate manner.  

• Application for a thorough study: This allows for a more informed and efficient decision-making process in developing strategies 
for mitigating and managing land subsidence.  

• Comparison with Other Techniques: In our study, we will assess the effectiveness of our proposed method by comparing it with 
two other decision-making techniques used to evaluate and rank factors contributing to land subsidence. This comparison will 
provide valuable insights into the strengths and limitations of our framework, adding depth to our research. 

• Detailed Evaluation of land subsidence factors: In order to conduct this investigation, we have consulted experienced tech-
nicians and considered a range of potential factors contributing to land subsidence. The study provides a thorough assessment of 20 
potential causes, which can be an important tool for policymakers, urban planners, and researchers working in the field of land 
subsidence.  

• Identification of Most and Least Effective land subsidence causes: The study has pinpointed the most and least effective causes 
of land subsidence, unlike other studies that focus on specific regions. This specific finding could provide valuable guidance for 
future endeavors aimed at reducing the factors contributing to land subsidence. 

This research method focuses on utilizing uncertainty and a multitude of variables related to land subsidence. We understand that 
effective research requires a comprehensive approach that takes into account various factors that can contribute to land subsidence, 
including geological, hydrological, and anthropogenic factors. By incorporating uncertainty into our research methodology, we aim to 
account for the inherent unpredictability of these complex systems and ensure that our results are robust and reliable. Additionally, by 
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analyzing a wide range of variables, we can gain a more nuanced understanding of the causes and consequences of land subsidence, 
which can inform more effective mitigation and adaptation strategies. Overall, our research method is designed to be rigorous, 
comprehensive, and responsive to the complexities of land subsidence dynamics. 

The following section of this study is organized as follows: Section 2 outlines the methodologies employed, including FMEA, the 
SWARA method, and the Hesitant q-rung orthopair fuzzy set method. The proposed approach is elucidated in Section 3. Section 4 
analyzes the implementation of two techniques and deliberates on the prioritization of the most significant causes of land subsidence. 

2. Methodology 

In this segment, we offer a comprehensive elucidation of the methodologies employed within this study. In the field of geotechnical 
engineering, the integration of FMEA and SWARA with Hq-ROFS provides several advantages in prioritizing land subsidence causes 
factors. Firstly, the use of FMEA allows for a systematic approach to identifying and evaluating potential failure modes and their effects 
on the system. This helps in understanding the critical factors leading to land subsidence, thereby enabling better decision-making in 
terms of risk management and mitigation strategies. Secondly, the integration of SWARA with Hq-ROFS provides a comprehensive and 
structured method for assigning weights to the identified factors. This allows for a more accurate and objective prioritization of the 
causes of land subsidence, taking into account the uncertainties and hesitancies in the decision-making process. The SWARA method 
entails the ranking of criteria in a hierarchical fashion, with the most important criteria being prioritized over the least important ones. 
The involvement of experts in determining the weightage of these criteria is crucial to the process [23]. SWARA enables 
decision-makers to establish priorities based on predefined policies, particularly when these priorities align with known situations. It 
effectively evaluates the relative importance of multiple criteria simultaneously [24]. The versatility of SWARA makes it applicable in 
various decision-making contexts, and its adoption by researchers has witnessed a significant increase in recent years [25]. In terms of 
prioritization, contextual consideration, comprehensive evaluation of multiple criteria, and widespread application, the SWARA 
method offers advantages over the Analytic Hierarchy Process (AHP), the analytic network process (ANP), and the Best Worst Method 
(BWM) [26]. Supplementary to these, the use of Hq-ROFS enhances the analysis by capturing the hesitant and uncertain nature of 
human judgment, which is often present in complex geotechnical problems such as land subsidence. This ensures that the prioritization 
process is more reflective of real-world conditions and considerations. All in all, the integration of FMEA and SWARA with Hq-ROFS 
offers a robust and comprehensive approach to prioritizing land subsidence causes factors. This methodology provides a systematic 
and objective way of identifying critical factors and assigning weights, ultimately leading to more informed decision-making in the 
management of land subsidence. 

2.1. Failure Mode and Effect Analysis (FMEA) 

The concept of FMEA was developed in the 1960s by leading figures in the aerospace industry [27]. The primary aim of the FMEA 
method is to assess the possible causes and outcomes of failure modes, while also identifying any possible failure modes. To evaluate 
the risk, FMEA uses the Risk Priority Number (RPN) and the analysis results can be used to recognize and address the impact of failure 
modes on the management process. 

The FMEA is a valuable methodology that is used to identify and eliminate potential or known failures in complex systems. This 
helps to enhance the safety and reliability of these systems and provides important information for making informed risk management 
decisions. The assessment of each failure mode is based on three parameters: difficulty of detection (D), likelihood of occurrence (O) 
and severity (S) [28]. And These parameters are typically evaluated using numerical scales ranging from 1 to 10, with the evaluation 
being performed using ordinal scales of measurement. The risk priorities of the failure modes are determined by the RPN, equation (1), 
which is the product of the S, O, and D of a failure. In other words, the RPN is calculated by multiplying the probabilities of the severity, 
occurrence, and detection of the failure. This helps in determining the risk priorities of the failure modes [29].  

That is, RPN––S × O × D.                                                                                                                                                         (1) 

Table 1 provides a 10-point scale for evaluating the factors of three risk, S (severity), O (likelihood of occurrence), and D (difficulty 
of detection). These risk factors are assessed using this scale. 

Table 1 
Traditional ratings for SOD factors.  

Rating Severity (S) Occurrence (O) Detection (D) 

10 Hazardous without warning Very high: failure is almost inevitable Absolute uncertainty 
9 Hazardous with warning 
8 Very high High: repeated failures High: repeated failures 
7 High 
6 Moderate Moderate: occasional failures Moderate: occasional failures 
5 Low 
4 Very low 
3 Minor Low: relatively few failures Low: relatively few failures 
2 Very minor 
1 None Remote: failure is unlikely Remote: failure is unlikely  
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2.2. SWARA method 

The Step-wise Weight Assessment Ratio Analysis (SWARA) technique is a decision-making approach that involves determining 
weight values that are critical to the process. This method, which was created by Keršuliene et al. [23], boasts a crucial feature in its 
capacity to evaluate the opinions of experts on significant criteria, while simultaneously ascertaining their respective weights [23]. In 
order to implement the SWARA method, several steps are required following the identification and creation of a comprehensive list of 
criteria involved in the decision-making process [30]. 

Step 1. The prioritization of criteria necessitates a meticulous evaluation of their importance. Esteemed experts undertake this phase, 
whereby they bestow a ranking upon the specified criteria based on their respective levels of significance. Specifically, the preeminent 
criterion receives the foremost rank, conversely, the subordinate criterion is bestowed with the final rank and the intermediate criteria 
are ranked in accordance with their relative importance. 

Step 2. To calculate Sj, the relative significance of the mean value, the determination of the significance of each criterion is essential, 
commencing from the second ranked criterion. It is imperative to ascertain the extent of the importance of criterion Cj in relation to 
criterion Cj +1. 

Step 3. Calculate coefficient kj as follows: 

Kj =

{
1 j = 1

Sj + 1 j > 1 (2)   

Step 4. Determine recalculated weight qj as follows: 

qj =

⎧
⎪⎨

⎪⎩

1 j = 1
qj − 1

kj
j > 1

(3)   

Step 5. To determine the weight values of the criteria, it is necessary to perform acomputation in which the sum of these values is 
equal to one. 

Wj =
aj
∑m

k=1
aj

(4)   

2.3. Hesitant q-rung orthopair fuzzy set (Hq-ROFS) 

In 2020 [31], introduced a new technique called Hesitant q-Rung Orthopair Fuzzy weighted average (Hq-ROFWA), which com-
bines Hq-ROFS and hesitant fuzzy sets (HFS). This technique is a generalization of various fuzzy set types, including fuzzy sets, HFS, 
intuitionistic fuzzy sets, Pythagorean fuzzy sets (PFS), intuitionistic hesitant fuzzy sets (IHFS) and hesitant Pythagorean fuzzy sets 
(HPFS). The Hq-ROFA approach provides decision-makers with a wider range of options for selecting non-membership and mem-
bership scores compared to other fuzzy set types such as IHFS and PFS. The Hq-ROFA concept is more adaptable and flexible for 
decision-makers, which makes it more beneficial. 

[31] has shown that the Hq-ROFWA technique is consistent with the concept of hesitant q-rung orthopair fuzzy numbers 
(Hq-ROFN). 

2.3.1. Definition (1) 
[32,33] Let B denote a general set. A Probabilistic Fuzzy Set (PFS) P, defined on B, can be expressed as follows Eq (5): 

P=
{
< t, kp(t), lp(t)> |t∈B} (5)  

the function kp(t) : B→ [0,1] is utilized to indicate the score of membership, while the function lp(t) : B→[0,1] is utilized to express the 
non-membership score of the element t ∈ B to P, respectively. For each t ∈ B, it is imperative that the condition 0 ≤ (kp(t))2

+ (lp(t))2
≤

1 is satisfied. The degree of hesitancy/indeterminacy, πp(t), is given by Eq (6): 

πp(t) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
(
kp(t)

)2
−
(
lp(t)

)2
√

. (6)  

2.3.2. Definition (2) 
[34,35] Let B denote a general set. An object denoted as q-Rung orthopair fuzzy sets (q-ROFS) F is defined on B in the form of Eq (7): 
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F ={< t, kF(t), lF(t)>q|t∈B, q ≥ 1} (7) 

Here, kF(t) : B→[0,1], express the membership score, and lF(t) : B→[0,1], express the non-membership score of an element t ∈ B to F. 
It must be noted that for any t ∈ B, the condition 0 ≤ (kF(t))q

+ (lF(t))q
≤ 1 must be satisfied. Moreover, the measure of uncertainty 

associated with an element t ∈ B with respect to F can be expressed as: πF(t) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − (kF(t))q

+ (lF(t))qq
√

, where q ≥ 1 Eq (8). In the 
absence of ambiguity, F(t) = (kF(t), (lF(t)) is commonly referred to as q-rung orthopair fuzzy element (q-ROFE). 

2.3.3. Definition (3) 
[36] Consider a given set B, in this context, we define the hesitant fuzzy set (HFS) H on B as an entity that takes the form Eq (9): 

H ={ < t, kH(t)> |t∈B}. (9) 

Here, kH(t) denotes the membership grade of an element t ∈ B to the set H, which is represented by a set of discrete numbers in the 
range of [0,1]. To simplify notation, we shall refer to the hesitant fuzzy element (HFE) as kH(t). Additionally, we denote the number of 
elements in kH(t) as # kH(t). 

2.3.4. Definition (4) 
[37] Let B be a general set. A dual hesitant fuzzy set (DHFS) D on B is a mathematical construct that takes the form Eq (10): 

D={< t, kD(t), lD(t)> |t∈B} (10) 

Here, kD(t) and lD(t) are two finite subsets of the unit interval [0,1], which respectively express the possible dual hesitant non- 
membership scores and dual hesitant membership scores of the element t ∈ B to D. It is important to note that for any t ∈ B, the 
following condition must hold: 0 ≤ P,λ ≤ 1,0 ≤ P

+
+ λ+ ≤ 1. 

Furthermore, J ∈ kD(t), λ ∈ lD(t),V+
= max

P∈kD(t)
{V} and λ+ = max

λ∈lD(t)
{λ} for all t ∈ B. 

2.3.5. Definition (5) 
[38] Consideration of a general set B necessitates an examination of IHFS I, an object that can be indicated as Eq (11): 

H ={< t, kH(t), lH(t)> |t∈B} (11)  

In this representation, kH(t) and lH(t) denote the subsets of [0,1], which are indicative of the intuitionistic hesitant membership and 
intuitionistic hesitant non-membership scores of t ∈ B to H. For every element t ∈ B, it can be established that ∀P(t) ∈ kH(t), a cor-
responding λ(t) ∈ lH(t) exists such that 0 ≤ V(t)+ λ(t) ≤ 1. In the same way, ∀λ(t) ∈ lH(t), there exist V(t) ∈ kH(t) such that the 
condition 0 ≤ V(t) + λ(t) ≤ 1 is met. 

2.3.6. Definition (6) 
[31] Let B denote a general set. A Hq-ROFS G , defined on B, Eq (12) can be used to represent the object: 

G ={< t, kG (t), lG (t)>q|t∈B, q ≥ 1} (12) 

Here, kG (t) and lG (t) are two subsets of [0,1], the q-rung orthopair of hesitancy, representing both the non-membership and 
membership scores of an object t ∈ B to the set G , are respectively denoted. 

Furthermore, for every item t ∈ B, if ∀P(t) ∈ kH(t), then there exists λ(t) ∈ lH(t) such that the condition 0 ≤ (V(t))q
+ (λ(t))q

≤ 1 
holds. In the same way, if, (t) ∈ lH(t) , then there exists V(t) ∈ kH(t), such that the condition 0 ≤ (V(t))q

+ (λ(t))q
≤ 1 holds. 

2.3.7. Definition (7) 
[31] For an Hq-ROFN ε = G (k, l) that is described by the variables k and l, the function of score of ε can be defined as Eq (13): 

Ŝ(ε)= 1
#k
∑

P∈k

J
q
−

1
#l
∑

λ∈l
λq (13) 

In the given context, the symbols #k and #l represent the number of elements in sets k and l, respectively. Another way to express 
this is to say that #k indicates the size or cardinality of set k, while #l indicates the size or cardinality of set l. 

Let ε denote the Hq-ROFN, where ε = G (k, l) The precision function of ε is given by Eq (14): 

A(ε)= 1
#k
∑

V∈k

V
q
+

1
#l
∑

λ∈l
λq (14)  

2.3.8. Definition (8) 
Consider the assemblage of Hq-ROFNs denoted by εi = G (ki, li)(i = 1,2,…,n). Let w̃ = (w̃1,…, w̃n)

T be the ranking weights of εi 

where by W̃ ≥ 0(i= 1,…, n) and i ∈ [0, 1] with 
∑n

i=1w̃i = 1. As follows Eq (15): 
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Hq-ROFWA(ε1, ε2,…, εn)=
⋃

Vi∈hi,λi∈li

{{ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
∏n

i=1
(1 − V

q
i )

w̃i

}
q

√
√
√
√ ,

{
∏n

i=1
λw̃i

i

}}

. (15)  

2.3.9. Hq-ROFS in MCDM problem 
The present discourse endeavors to elaborate the principal measures comprising the decision-making methodology along with its 

corresponding procedure. The subsequent section will enumerate and expound on the sequential steps integral to the aforementioned 
approach. 

Let X be a set of n feasible alternatives denoted as {t1, t2,…, tn} and C be a finite set of criteria given as {C1,C2,…,CM}. Moving 
ahead, we will consider the ranking weights w̃ = (w̃1, w̃2,…, w̃3)

T that cover all the criteria, with 0 ≤ w̃i ≤ 1 and 
∑n

i=1w̃i = 1 for i = 1,
…,m. The decision makers Dmem and Dnon− mem provide evaluation scores for each option ti(1,…, n) associated with the given set of 
criteria Cj(j= 1,…,m) through kij and lij, respectively. The combination of these two values as a Hq-ROFN results in εij = (kij,lij). This 
implies that decision maker Dmem assigns a membership grade hij to alternative ti based on criteria Cj, while decision maker Dnon− mem 

assigns a non-membership grade gij to alternative ti based on criteria Cj. On the basis of the examination of Dmem and Dnon− mem, it is 
possible to formulate the Hq-ROF decision matrix D = (εij)m×n. 

Moreover, based on the Hq-ROFWA operator for multi-criteria decision making problems, the process of decision-making, which 
involves the usage of Hq-ROF information, can be explicated in the ensuing manner: 

Step 1. By employing the Hq-ROFWA operator Eq (16), it is possible to aggregate the Hesitant q-Rung Orthopair Fuzzy weighted 
elements εij pertaining to each criterion Cj. This entails the calculation of all preference values εi for the alternatives ti. 

Fig. 2. Proposed research approach to prioritize causes.  
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εi =Hq − ROFWA(εi1, εi2,…, εin)

= ⨁n
j=1w̃ jεij  

=
⋃

Pij∈kij ,λij∈lij

⎧
⎨

⎩

⎧
⎨

⎩

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
∏n

j=1

(
1 − V

q
ij

)
w̃ j

}

,
q

√
√
√
√

⎧
⎨

⎩

∏n

j=1
λw̃j

ij }} (16)   

Step 2. With regards to Equation (13), it is possible to calculate the score function Š(εi)(i= 1, 2,…,m) for all hesitant q-rung 
orthopair fuzzy preference values εi. In the event of any similarities among the score functions, Equation (14) can be utilized to 
determine the reliability functions of all Hq-ROF preference values εi. 

Step 3. The rank of the alternatives, ti, is determined using the score function, and the most suitable alternative is chosen based on 
the result. It is important to note that the superiority of an alternative is directly proportional to the value of its score function. 

3. Proposed approach 

This particular research endeavor posits a highly sophisticated, multi-faceted methodological framework designed to holistically 
approach the analysis and assessment of potential risks inherent in various processes. Specifically, the proposed approach is comprised 
of three distinct but complementary components, namely, FMEA, SWARA, and Hq-ROFS methodology, as seen in detail in Fig. 2. 

Firstly, the FMEA approach shall be employed to discern probable modes of failure, their resulting effects, and underlying causes 
within the process. Subsequently, the cross-functional team shall evaluate and determine the RPN assigned to each failure mode based 
on the severity, occurrence, and detection ratings. 

The SWARA method, an expert-based approach for determining weights and rankings, will be utilized to prioritize the failure 
modes. In order to identify the paramount criteria for failure prioritization, a literature review and team input will be conducted. 
Experts will be tasked with assigning a comparative importance value to each criterion, which will then be utilized in calculating 
overall weights. 

Finally, the Hq-ROFS model shall be utilized to address the issue of uncertainty in assessments made by experts. The incorporation 
of hesitancy and accuracy of each expert’s assessments shall be achieved through the utilization of orthopair fuzzy sets. These sets are 
capable of representing varying degrees of precision and uncertainty. The calculation of aggregated risk scores shall be carried out by 
means of q-rung orthopair fuzzy weighted averaging operators. 

The integrated FMEA, SWARA and Hq-ROFS approach provides a comprehensive methodology to assess risk, incorporate expert 
input, and address vagueness in linguistic assessments. The results will enable prioritization of failure modes and support decision- 
making to mitigate high risks in the process design. 

Table 2 
Identified causes in the process of land subsidence.  

Symbol Factor Name Severity (S) Occurrence (O) Detection (D) 

TM1 TM2 TM3 TM1 TM2 TM3 TM1 TM2 TM3 

C1 Overuse of groundwater for irrigation 8 7 9 9 8 9 2 3 4 
C2 Oil and gas extraction 5 5 6 7 8 8 3 3 2 
C3 Underground mining 5 4 6 7 7 9 2 3 1 
C4 Construction of large buildings or infrastructure, such as dams or 

highways 
4 5 7 7 6 7 1 2 1 

C5 Destruction of forests 7 6 7 7 7 6 3 3 2 
C6 Converting agricultural lands to urban areas 5 4 6 6 5 5 2 2 1 
C7 Population growth and urbanization 5 5 6 6 7 5 3 3 4 
C8 Groundwater extraction 8 7 9 8 8 7 3 4 4 
C9 fault activities 6 5 6 6 5 6 7 7 6 
C10 tectonic movement 5 7 6 7 5 7 6 7 7 
C11 consolidation/compaction of recent deposits 6 4 5 6 7 6 8 7 8 
C12 the collapse of loess 7 6 8 5 6 4 8 8 7 
C13 sea-level rise 6 6 7 5 4 5 5 5 6 
C14 oxidation and drainage of organic soils 8 7 6 6 7 4 4 5 4 
C15 karst erosion 6 7 7 7 6 5 5 4 5 
C16 permafrost degradation 7 6 8 6 7 5 3 4 4 
C17 Heavy rains 8 7 8 5 4 5 2 1 2 
C18 Drought 8 7 9 6 5 6 2 2 1 
C19 storm 7 6 7 5 4 4 1 1 2 
C20 Changes in the climate system 8 7 9 6 7 6 2 2 2  
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4. Result and discussion 

Within this particular section, we shall conduct a thorough analysis of the outcomes that arise from the implementation of the 
recommended approach in the assessment of the causes of land subsidence. Consistent with the initial phase of this methodology, the 
FMEA team undertakes the identification of potential risks while concurrently establishing the triple factor values for each cause, as 
presented in Table 2. 

In the second phase of the research methodology, subsequent to the implementation of the SWARA method, the values of the 
coefficient k and the weights of q and w are ascertained for each decision-maker in evaluating the causal factors presented in Table 3, 
utilizing Equations (2)–(4). The ultimate weight of the principal criteria for each decision-maker can be discerned from Table 4. 

In the ultimate phase of the evaluation process, when faced with the circumstances of a somewhat hesitant q-rung orthopair fuzzy 
environment, it is imperative for the experts to thoroughly assess the various alternatives by utilizing Hq-ROFNs. It is important to 
note, however, that certain values may be reiterated in this context, but it should not be assumed that these repeated values hold a 
greater significance than those that are not repeated as frequently. Based on the informed opinions of the experts, a well-constructed 
Hq-ROF decision matrix can be formulated and subsequently presented in Table 5. 

Ultimately, the underlying reasons for the observed phenomena are assessed utilizing both the Hq-ROFS and FMEA methodologies, 
thereby ensuring a comprehensive analysis. Within this section, two distinct approaches are employed in accordance with Tables 1 and 
4, and the resultant outcomes are expounded upon, taking into account the inherent uncertainty associated with the SOD factors as 
well as the reliability of the identified causes on Table 6. Moreover, a score function is ascertained via the Hq-ROFSs approach for 
various q values on Table 6. Finally, the available options are meticulously compared based on their respective rankings as per Tables 7 
and 8. 

The results indicate clear differences in the prioritization of land subsidence factors between the Hq-ROFS and FMEA approaches. 
Using the Hq-ROFS method, causes C8 and C1 consistently ranked first and second across all values of q, while C14 consistently ranked 
third. Causes C7 and C5 also consistently shared the lowest ranking. However, the FMEA approach produced a different prioritization, 
with C12 ranking first (RPN = 268), C10 ranking second (RPN = 253), and C11 ranking third (RPN = 242). The FMEA method 
identified C19 as the lowest priority factor (RPN = 38). 

In summary, the two multi-criteria decision making techniques resulted in divergent rankings of the most critical factors 
contributing to ground subsidence. The Hq-ROFS method prioritized C8, C1, and C14 as the top factors, while the FMEA approach 
prioritized C12, C10, and C11. Both methods agreed that C7, C5, and C19 were low priorities. Further research could help determine 
which technique provides greater accuracy in evaluating these complex geotechnical hazards. Nonetheless, this study demonstrates 
the sensitivity of factor prioritization to the choice of multi-criteria decision methodology. 

This study demonstrates the differences in risk prioritization outcomes among two multi-criteria decision-making techniques 
(Fig. 3): traditional FMEA and Hq-ROFS, approach. The results highlight the limitations of traditional FMEA and the advantages of 
using more advanced fuzzy set techniques that incorporate uncertainty and expert opinion in evaluating complex criteria. 

The proposed q-rung orthopair fuzzy set method addresses key weaknesses in traditional FMEA and basic Hesitant fuzzy ap-
proaches. By utilizing uncertainty degrees for each criterion and multiple prioritization levels, it better represents real-world condi-
tions and expert perspectives. The introduction of Hq-ROFS theory further expands the reliability of the criteria data by capturing a 
wider range of expert opinions and uncertainties. Consequently, the proposed technique produced more nuanced, reliable, and 
realistic risk rankings compared to simpler methods. 

4.1. Validation of proposed approach 

In this section, we conducted two validation studies to ensure the reliability and validity of our rankings. The first study involved 
comparing the results from our proposed approach (Hq-ROFWA) with two existing approaches, IHFWA and PHFWA, to assess the 
consistency and effectiveness of our method in prioritizing causes of land subsidence. In the second study, we used Spearman’s cor-
relation analysis to validate the results obtained from the MCDM methods. 

4.1.1. Comparative analysis 
The purpose of this section is to show how reliable, accurate, and effective the proposed methodology is in real-world situations. To 

Table 3 
The weights of cause factors.  

Team number Risk factor Comparative importance of average valueS~j Coefficient Recalculated weight Weight  

S    1 1 1 1.000 1.000 1.000 0.440 0.461 0.492 
TM1 O 0.4 0.5 0.666 1.4 1.5 1.666 0.600 0.667 0.714 0.264 0.307 0.352  

D 0.285 0.333 1.285 1.4 1.333 1.285 0.429 0.500 0.556 0.188 0.230 0.273  
S    1 1 1 1.000 1.000 1.000 0.414 0.425 0.440 

TM2 D 0.285 0.333 0.4 1.285 1.333 1.4 0.714 0.750 0.778 0.295 0.319 0.342  
O 0.222 0.25 0.285 1.222 1.25 1.285 0.556 0.600 0.636 0.230 0.255 0.280  
O    1 1 1 1.000 1.000 1.000 0.483 0.533 0.593 

TM3 S 0.666 1 1.5 1.666 2 2.5 0.400 0.500 0.600 0.193 0.266 0.355  
D 0.285 0.333 0.4 1.285 1.333 1.4 0.286 0.375 0.467 0.138 0.2 0.276  
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do this, we carefully compared the results obtained from the Hq-ROFWA technique with those from other established methodologies 
such as Intuitionistic hesitant fuzzy weighted average (IHFWA) and Pythagorean hesitant fuzzy weighted average (PHFWA). Our 
analysis revealed a consistent pattern in the ranking results across all methods, with C8, C1, and C14 consistently placed in the top 
three positions (see. Table 9). 

Upon further examination, we found that the causes of land subsidence identified by all three approaches were remarkably similar, 
indicating the validity and reliability of the proposed method. The consistency in the identification of land subsidence causes across all 
three methods confirms the robustness of our approach and instills confidence in the accuracy of the prioritization process. The use of 

Table 4 
Final SWARA weights of causes factors.  

Risk factors Final weight 

S 0.386 
O 0.366 
D 0.250  

Table 5 
Decision Matrix of Hq-ROFWA.  

Crit. S O D 

C1 {(0.8,0.2),(0.2,0.3)} {(0.9,0.1),(0.5,0.2)} {(0.2,0.8),(0.4,0.6)} 
C2 {(0.5,0.3),(0.2,0.4)} {(0.7,0.2),(0.3,0.1)} {(0.3,0.6),(0.3,0.7)} 
C3 {(0.5,0.5),(0.3,0.4)} {(0.8,0.2),(0.4,0.3)} {(0.2,0.8),(0.3,0.6)} 
C4 {(0.4,0.3),(0.5,0.4)} {(0.7,0.2),(0.2,0.3)} {(0.1,0.9),(0.2,0.8)} 
C5 {(0.7,0.2),(0.5,0.3)} {(0.9,0.1),(0.5,0.2)} {(0.3,0.6),(0.3,0.7)} 
C6 {(0.5,0.5),(0.4,0.4)} {(0.6,0.3),(0.2,0.4)} {(0.1,0.7),(0.2,0.8)} 
C7 {(0.5,0.3),(0.5,0.4)} {(0.6,0.4),(0.4,0.2)} {(0.3,0.5),(0.4,0.6)} 
C8 {(0.8,0.2),(0.1,0.3)} {(0.8,0.2),(0.2,0.1)} {(0.3,0.6),(0.4,0.6)} 
C9 {(0.6.0.4),(0.5,0.3)} {(0.6,0.4),(0.3,0.4)} {(0.7,0.2),(0.5,0.3)} 
C10 {(0.5,0.4),(0.3,0.2)} {(0.7,0.3),(0.5,0.4)} {(0.6,0.3),(0.4,0.2)} 
C11 {(0.6,0.4),(0.4,0.3)} {(0.6,0.3),(0.4,0.2)} {(0.8,0.1),(0.5,0.2)} 
C12 {(0.7,0.2),(0.4,0.2)} {(0.5,0.4),(0.2,0.3)} {(0.8,0.2),(0.6,0.1)} 
C13 {(0.6,0.4),(0.3,0.2)} {(0.5,0.3),(0.4.0.2)} {(0.5,0.3),(0.5,0.2)} 
C14 {(0.8,0.1),(0.3,0.2)} {(0.6,0.3),(0.3,0.2)} {(0.4,0.5),(0.5,0.2)} 
C15 {(0.6,0.2),(0.4,0.3)} {(0.7,03),(0.5,0.4)} {(0.5,0.3),(0.4,0.2)} 
C16 {(0.7,0.2),(0.2,0.4)} {(06,0.3),(0.3,0.2)} {(0.3,0.6),(0.4,0.6)} 
C17 {(0.8,0.2),(0.4,0.2)} {(0.5,0.4),(0.4,0.2)} {(0.2,0.8),(0.3,0.7)} 
C18 {(0.8,0.1),(0.1,0.3)} {(0.6,0.4),(0.5,0.4)} {(0.2,0.8),(0.4,0.5)} 
C19 {(0.7,0.2),(0.5,0.3)} {(0.5,0.3),(0.4,0.3)} {(0.1,0.8),(0.4,0.5)} 
C20 {(0.8,0.2),(0.3,0.2)} {(0.6,0.3),(0.2,0.3)} {(0.2,0.6),(0.3,0.7)}  

Table 6 
Hq-ROFWA Score Functions for Diffirent q.  

Crit q values 

q = 1 q = 2 q = 3 q = 5 q = 10 q = 15 q = 20 

C1 0.254024415 − 0.040360904 0.034122341 − 0.004673724 − 0.000043750 − 0.000000507 − 0.000000006 
C2 0.167087212 − 0.056184746 0.001330122 − 0.002693084 − 2.168556E-05 − 2.304069E-07 − 2.663167E-09 
C3 0.162251899 − 0.08493925 − 0.008467925 − 0.006212217 − 6.19057E-05 − 7.87397E-07 − 1.14935E-08 
C4 0.121960482 − 0.081916606 − 0.018607438 − 0.00605258 − 8.23329E-05 − 1.49878E-06 − 3.03986E-08 
C5 0.15948424 − 0.097673001 3.0543E-05 − 0.012504919 − 0.000365029 − 1.44216E-05 − 6.3842E-07 
C6 0.114973988 − 0.091898587 − 0.023095106 − 0.006055765 − 8.87099E-05 − 1.84039E-06 − 4.2575E-08 
C7 0.049479843 − 0.129724227 − 0.040714983 − 0.010334643 − 0.000171356 − 3.39931E-06 − 7.44178E-08 
C8 0.315739695 − 0.004097098 0.043347493 − 0.000682117 − 1.29268E-06 − 3.03591E-09 − 7.59656E-12 
C9 0.127884561 − 0.108764547 − 0.018814369 − 0.008056564 − 0.000101486 − 1.56703E-06 − 2.73699E-08 
C10 0.156444884 − 0.076791465 − 0.00205726 − 0.003608585 − 1.92744E-05 − 1.25462E-07 − 9.24483E-10 
C11 0.175692143 − 0.074834111 0.004374268 − 0.004344996 − 3.50965E-05 − 3.72816E-07 − 4.47151E-09 
C12 0.22141384 − 0.047604789 0.018166157 − 0.002517543 − 1.62654E-05 − 1.37391E-07 − 1.27393E-09 
C13 0.15097245 − 0.064330595 − 0.002829181 − 0.002314266 − 1.0512E-05 − 6.48774E-08 − 4.56186E-10 
C14 0.212480383 − 0.040806266 0.021477637 − 0.00156233 − 4.16124E-06 − 1.44844E-08 − 5.80017E-11 
C15 0.101712812 − 0.105020616 − 0.015273769 − 0.006751283 − 6.41615E-05 − 7.20193E-07 − 9.0593E-09 
C16 0.161220897 − 0.065945293 0.001272152 − 0.003106113 − 1.91322E-05 − 1.5394E-07 − 1.37836E-09 
C17 0.176485721 − 0.071193276 − 0.001073535 − 0.005349388 − 6.66014E-05 − 1.14257E-06 − 2.20208E-08 
C18 0.205736198 − 0.054238486 0.00981808 − 0.003756897 − 3.08052E-05 − 2.98648E-07 − 3.0635E-09 
C19 0.073405804 − 0.116281674 − 0.031148835 − 0.009279334 − 0.000124762 − 1.9561E-06 − 3.36942E-08 
C20 0.201980245 − 0.046968866 0.017128489 − 0.00210123 − 8.63226E-06 − 4.79492E-08 − 3.02763E-10  
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Table 7 
The cause priority number for FMEA.  

Crit. RPN Crit. RPN 

C1 208 C11 242.78 
C2 109.04 C12 268.33 
C3 76.667 C13 157.63 
C4 47.407 C14 171.89 
C5 118.52 C15 186.67 
C6 44.444 C16 154 
C7 106.67 C17 59.63 
C8 224.89 C18 75.556 
C9 214.07 C19 38.519 
C10 253.33 C20 101.33  

Table 8 
Comparison of causes prioritization based on two approaches.  

Symbol Rank 

Hq-ROFWA 

FMEA q = 1 q = 2 q = 3 q = 5 q = 10 q = 15 q = 20 

C1 6 2 2 2 1 1 1 1 
C2 12 9 7 8 7 9 9 9 
C3 15 10 14 14 15 12 13 13 
C4 18 16 13 16 13 15 15 16 
C5 11 12 16 10 20 20 20 20 
C6 16 17 15 18 14 16 17 18 
C7 13 20 20 20 19 19 19 19 
C8 4 1 1 1 2 2 2 2 
C9 5 15 18 17 17 17 16 15 
C10 2 13 12 12 9 8 6 6 
C11 3 8 11 7 11 11 11 11 
C12 1 3 5 4 6 6 7 7 
C13 9 14 8 13 5 5 5 5 
C14 8 4 3 3 3 3 3 3 
C15 7 18 17 15 16 13 12 12 
C16 10 11 9 9 8 7 8 8 
C17 17 7 10 11 12 14 14 14 
C18 16 5 6 6 10 10 10 10 
C19 20 19 19 19 18 18 18 17 
C20 14 6 4 5 4 4 4 4  

Fig. 3. Comparison of causes prioritization based on FMEA and Hq-ROFWA.  
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multiple techniques and the acquisition of consistent results in this study enhance its credibility and overall reliability in assessing 
causes of land subsidence. This alignment among different methods further supports the conclusion that the proposed approach is 
indeed valid and can be relied upon for effective causes of land subsidence. 

4.1.2. Spearman’s correlation analysis 
Spearman’s correlation analysis is a valuable tool for evaluating the consistency of the decision-making process. By examining the 

correlations between score functions and rankings, decision makers can ensure that their evaluations and rankings are logically 
consistent and aligned with their preferences. Additionally, Spearman’s correlation analysis can be used to validate the results ob-
tained from MCDM methods. When the correlations between alternatives align with the expected relationships, it provides confidence 
in the accuracy and reliability of the decision-making outcomes [26]. The formula for Spearman’s correlation coefficient is presented 
below. 

ρ=
1
n

∑n

i=1
(xi − x) ∗ (yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

1
n

∑n

i=1
(xi − x)2

)

∗

(

1
n

∑n

i=1
(yi − y)2

)√
√
√
√

(17) 

All in all, Spearman’s correlation analysis is crucial in MCDM methods as it enhances the understanding of relationships between 
criteria, ensures consistency in the decision-making process, identifies redundancies, validates results, and facilitates sensitivity 
analysis. It empowers decision makers to make informed and reliable decisions based on a comprehensive analysis of the alternatives. 

The results of the conducted study have revealed that the Hq-ROFWA method has demonstrated a significantly higher correlation 
coefficient of 0.9713 in comparison to the IHFWA and PHFWA methods, which have shown correlation coefficients of 0.9643 and 
0.9163, respectively. These findings have effectively demonstrated the reliability and accuracy of the Hq-ROFWA method in producing 
highly precise results. A comprehensive visual representation of the correlation results obtained through the use of the Hq-ROFWA, 
IHFWA, and PHFWA methodologies is depicted in Fig. 4. As a result, decision-makers can confidently focus on preventing land 
subsidence, knowing that the results obtained from this approach are dependable, reliable, and can be trusted with utmost confidence. 

Despite its strengths, this study has limitations that provide opportunities for future research. The proposed approach does not 
account for interrelationships between criteria, which may be linear or non-linear. Extending the method to model such in-
terdependencies could improve accuracy. Additionally, the relatively small expert sample size restricts the breadth of perspectives and 
analysis. Including more experts would enhancereliability and confidence in the results. 

In conclusion, the proposed Hq-ROFS approach shows promise as a powerful decision-making tool for evaluating land subsidence 
risks and causes under uncertainty. The technique meaningfully advances standard FMEA and Hq-ROFS methods by integrating 
multiple levels of analysis and additional expert knowledge factors. Further research into criteria interrelationships and expanded 
expert data would build on the strengths of this approach. 

Future research in this area should aim to further explore the interactions between different factors contributing to land subsidence. 
Future research could also focus on developing predictive models to forecast the occurrence and severity of land subsidence, taking 
into account the complex interplay of geological, hydrological, and anthropogenic factors. However, it is advisable to explore 

Table 9 
Comparison of land subsidence factors based on various methods.   

Hq-ROFWA IHFWA PHFWA  

q = 3 q = 3 q = 3 

Symbol Score Function Rank Score Function Rank Score Function Rank 
C1 0.034 2 0.566 2 0.86 2 
C2 0.001 8 0.477 8 0.147 8 
C3 − 0.008 14 0.395 14 0.095 14 
C4 − 0.019 16 0.328 16 0.001 16 
C5 0.000 10 0.444 10 0.128 10 
C6 − 0.023 18 0.243 18 − 0.0245 18 
C7 − 0.041 20 0.154 20 − 0.0571 20 
C8 0.043 1 0.638 1 0.87 1 
C9 − 0.019 17 0.267 17 − 0.017 17 
C10 − 0.002 12 0.421 12 0.108 12 
C11 0.004 7 0.483 7 0.24 7 
C12 0.018 4 0.516 4 0.62 4 
C13 − 0.003 13 0.412 13 0.101 13 
C14 0.021 3 0.537 3 0.74 3 
C15 − 0.015 15 0.371 15 0.031 15 
C16 0.001 9 0.458 9 0.13 9 
C17 − 0.001 11 0.439 11 0.113 11 
C18 0.010 6 0.501 6 0.52 6 
C19 − 0.031 19 0.206 19 − 0.0344 19 
C20 0.017 5 0.508 5 0.61 5  
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alternative methodologies such as the Full Consistency Method (FUCOM), which presents a comprehensive strategy for assessing 
criteria by taking into account the consistency of pairwise comparisons [39], or Level Based Weight Assessment (LBWA), which 
provides a systematic and structured approach for assigning weights to criteria [40], in order to determine the criteria. 

5. Conclusion 

This study has successfully demonstrated an effective integrated approach for evaluating and prioritizing the complex causes of 
land subsidence by combining FMEA and Hq-ROFS techniques. The primary goal of this work was to comprehensively assess the 
multifaceted factors influencing land subsidence and provide valuable insights for researchers, policymakers, and practitioners 
working in this field. The results of the study have shown clear differences in the prioritization of land subsidence factors between the 
Hq-ROFS and FMEA approaches. The Hq-ROFS method consistently ranked causes C8 and C1 as the top factors, while the FMEA 
approach prioritized C12 as the highest-ranking factor. This disparity in rankings underscores the sensitivity of factor prioritization to 
the choice of multi-criteria decision methodology. Furthermore, the study identified 20 key subsidence factors through preliminary 
research and expert opinion, and analyzed them using both methods. The findings revealed that the Hq-ROFS method consistently 
ranked causes C8, C1, and C14 as the top factors, while the FMEA approach prioritized C12, C10, and C11. Both methods agreed that 
causes C7, C5, and C19 were low priorities. The importance of these results lies in their potential to inform policy-making, urban 
planning, and infrastructure development. Land subsidence poses a significant threat to the environment, infrastructure, and human 
settlements, and a comprehensive understanding of the factors driving this phenomenon is crucial for developing effective strategies to 
mitigate its impacts and prevent further degradation of the environment. This study stands out for its holistic approach to the study of 
land subsidence, as it covers all variables that contribute to this complex phenomenon, addressing the limitations of existing research. 
While previous studies have focused on specific regional factors, this research provides a more comprehensive and nuanced under-
standing of land subsidence, filling a critical gap in the literature. In conclusion, this research makes a significant contribution to the 
study of land subsidence by undertaking a meticulous assessment of the multifaceted factors that affect land subsidence. By doing so, it 
offers valuable insights for researchers, policymakers, and practitioners, and has the potential to inform strategies for mitigating the 
impacts of land subsidence and preventing further environmental degradation. Further research could help determine which technique 
provides greater accuracy in evaluating these complex geotechnical hazards, thus advancing our understanding and management of 
land subsidence. The proposed Hq-ROFS method meaningfully advances traditional FMEA by accounting for distinct criteria weights, 
multiple prioritization levels, and inherent uncertainty. This approach produced more differentiated, certain, and realistic cause 
rankings compared to FMEA alone. The fuzzy set method overcomes limitations of FMEA through its consideration of nuanced expert 
perspectives and treatment of uncertainty. 

These findings provide valuable direction for future research on evaluating and mitigating threats from land subsidence. The 
proposed technique could be readily adapted to assess risks for other subsidence-related issues or in other geographical areas. Further 
development of complementary multi-criteria decision making methods is recommended to continue improving this complex risk 
domain. 

In conclusion, the integration of FMEA and Hq-ROFS theory shows promise for robust, reliable prioritization of subsidence factors. 
This study demonstrates the advantages of modeling expert uncertainty and multi-level criteria analysis when tackling intricate 
geotechnical hazards. The proposed approach meaningfully advances subsidence evaluation and provides a flexible framework to 
build upon in future research. 
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