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ABSTRACT

Missing values in complex biological data sets have significant impacts on our ability to correctly
detect and quantify interactions in biological systems and to infer relationships accurately. In
this article, we propose a useful metaphor to show that information theory measures, such as
mutual information and interaction information, can be employed directly for evaluating
multivariable dependencies even if data contain some missing values. The metaphor is that of
thinking of variable dependencies as information channels between and among variables. In this
view, missing data can be thought of as noise that reduces the channel capacity in predictable
ways. We extract the available information in the data even if there are missing values and use
the notion of channel capacity to assess the reliability of the result. This avoids the common
practice—in the absence of prior knowledge of random imputation—of eliminating samples
entirely, thus losing the information they can provide. We show how this reliability function can
be implemented for pairs of variables, and generalize it for an arbitrary number of variables.
Illustrations of the reliability functions for several cases are provided using simulated data.

Keywords: channel capacity, information theory, missing data, multivariate data analysis, reli-

ability function.

1. INTRODUCTION

B iological systems are composed of a large number of components that interact, constitute, transmit,

and exchange information in a complex manner (Galas et al., 2014). The wide range of heterogeneous

data on biological systems that are increasingly available presents both great opportunities and challenges in

the effort to reconstruct the underlying dependency structure of the systems, and hence biological mecha-

nisms, from data characterizing biological variables. The relevant probability distributions of various bio-

logical data types are generally not known (Weng et al., 1999; Adami et al., 2000). Moreover, most data

obtained from experiments are incomplete for various reasons. For example, the human genomic data of

the sequences of single nucleotide polymorphisms (SNPs) often have significant number of missing values

(Hutter and Zaffalon, 2005; Su et al., 2005; Hudson et al., 2014). Typically, missing SNP data range from
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*10% to 20% in human genome data sets (Daly et al., 2001; Patil et al., 2001). Medical data, and particularly

patient and subject self-reported information, are notoriously fraught with missing data points. These and

other forms of missing values in data sets have a significant impact on our ability to correctly detect and

quantify interactions in biological systems.

Inference methods based on statistical approaches such as expectation–maximization algorithms are

commonly used for inferring missing data. Furthermore, these methods typically use specific probability

distributions as priors, for example, when imputing missing SNP data (Stephens and Scheet, 2005). There

have been many approaches to imputation and model-free inference in the analysis of biological data.

Information theory-based methods have been increasingly successful in searching for interactions by

detecting and reconstructing the dependency structure from biological data, due, in part, to their inherently

model-free nature (Galas et al., 2010; Sakhanenko and Galas, 2011, 2015; Sakhanenko et al., 2017).

However, these methods also suffer from the missing data problem, and can thereby encounter significant

difficulty in drawing conclusions and in estimating statistical significance of detected interactions. Some

methods attempt to complement incompleteness of data using posterior distributions, which are obtained

in a Bayesian framework by a second-order Dirichlet prior distribution (Hutter and Zaffalon, 2005). Other

methods combine information theory measures with algorithms from machine learning, for example, Greedy

and Nearest Neighbor algorithms have been used for feature selection from incomplete data (Doquire and

Verleysen, 2011; Qian and Shu, 2015). However, when we have little or no information about prior

distributions, as is common for biological data (e.g., RNA levels, gene expression data, protein levels and

patterns of phenotypes, and medical record data), these inference methods all fail.

Systematic and assumption-free methods of extracting accurate information, including dependencies among

variables, and assessing its reliability from data that are incomplete, are needed. In this article, we suggest a useful

metaphor for which information theory measures, such as mutual information and interaction information, can be

employed directly for evaluating multivariable dependencies, even if the data have some missing values. The

metaphor we propose is that of thinking of variable dependencies as information channels. In this view, missing

data can be thought of as reducing the channel capacity in predictable ways. We extract the available information

in the data even when it has missing values and use the notion of channel capacity to assess its reliability. This

avoids the common practice, in the absence of prior knowledge for informed imputation, of eliminating samples

entirely and, therefore, losing the information they can provide. Since this can be done without making any

assumption about prior probability distributions, it can be universally applied. Another common practice of

adding random values where missing values occur has the effect of changing the significance of the result in

unknown ways. The reliability function proposed here can provide a precise estimate of its reliability.

Since the missing values are viewed as a reduction in the channel capacity, a specific ‘‘reliability

function’’ can be derived from information theory to quantitatively describe these channel capacities. This

reliability function then expresses the maximum amount of information about a given dependence (in-

cluding multiple variable dependencies) we could possibly find given the level of missing data.

In the next section, we summarize the information theory-based analysis context relevant to our for-

mulation, then in the following section we discuss the missing values problem and the communications

channel idea in more detail. Finally, in the following sections, we define and characterize a reliability

function for both pairwise variable dependencies and multivariable problems.

2. DEPENDENCE DETECTION USING INFORMATION THEORY

The context of this work on the problem of missing data comes from the search for multivariable

dependencies in biological data, using measures of dependence from information theory (McGill, 1954;

Sakhanenko and Galas, 2015; Sakhanenko et al., 2017). In this section, we briefly review the basic rela-

tionships that are used in this analysis and will be shown to lead to the derivation of the reliability functions.

Mutual information is perhaps the most well-known measure of pairwise information, which measures the

amount of information about one variable embodied in the knowledge of another (Khinchin, 1957). It is defined as

I X1‚ X2ð Þ = H X1ð Þ + H X2ð Þ - H X1‚ X2ð Þ‚ (1)

where H(Xi) is an entropy of Xi and H(X1,X2) is a joint entropy of variables X1 and X2. Mutual information

is equal to Kullback–Leibler divergence of the joint-to-single probability distributions of two variables
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(Galas et al., 2010; Sakhanenko and Galas, 2011, 2015), a measure of the deviation of the pair probability

distribution from independence.

A generalization of mutual information to more than two variables, called interaction information, was

proposed in the 1950s (McGill, 1954). Similar to mutual information, it is a symmetric function that is

defined in terms of joint entropies. For three variables, the interaction information is

I X1‚ X2‚ X3ð Þ = H X1ð Þ + H X2ð Þ + H X3ð Þ
- H X1‚ X2ð Þ - H X1‚ X3ð Þ - H X2‚ X3ð Þ + H X1‚ X2‚ X3ð Þ:

(2)

This definition can also be rewritten as a recursive relation, arbitrarily choosing X3 as a ‘‘target’’

(conditional) variable:

I X1‚ X2‚ X3ð Þ = I X1‚ X2ð Þ - I X1‚ X2jX3ð Þ‚ (3)

where I(X1‚ X2jX3) is the conditional mutual information for a given X3. Equation (3) shows the impor-

tant point that if the additional variable X3 is independent of the other two, the interaction information

becomes 0.

For a set of n variables Vn = fX1‚ X2 . . . ‚ Xng, the interaction information is defined as sums of joint

entropies

I(Vn) =
X

s�V�
(- 1)jsj + 1H(s)‚ (4)

where the sum is over all possible s, subsets of Vn, and jsj is the cardinality of the subset, s.

The differential interaction information is defined as the change in the interaction information among

sets by the addition of one variable:

D(Xi‚ Vn) = I(Vn) - I(VnnfXig) = - I(VnnfXigjXi)‚ (5)

where Vn

y{Xi} is the set Vn without variable Xi. As shown by the second equality, the differential

interaction information is equivalent to the conditional interaction information. It is easy to see that if

the target variable Xi is independent from any of the variables in the set Vn

y{Xi}, then the differen-

tial interaction information is 0. The differential interaction information is thus a measure of dependence

in this way.

These information theory-based measures have several advantages that make them useful for de-

pendency detection. First, these measures are model-free in that they make no assumptions about the

nature of the underlying function of the dependence or about the probability distributions of the vari-

ables. Since the information required for detection of dependence is less than that required for defining

the functional form of dependence, detection with these measures is more resistant to undersampling.

These measures have been applied successfully to detect and quantify both pairwise and multivariable

dependencies in biological data (Galas et al., 2010, 2014; Sakhanenko and Galas, 2015; Sakhanenko

et al., 2017).

3. THE PROBLEM OF MISSING DATA

A number of factors can affect the calculation of dependency measures, such as noise of several kinds,

missing data, and undersampling. In this article, we focus only on the problem of missing data. In this

section, we describe the problem, show how it can affect accuracy, and how missing values can be handled

using information theory methods.

As mentioned in Section 1, there are various approaches to handling missing data. Let us distinguish

three main types:

(i) The samples with missing data are omitted individually for the calculation of each entropy term on an

as-needed basis.

(ii) The samples with many missing values are removed at the outset and not used for the calculation at

all.

(iii) The missing values are inferred or filled with random values.
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Consider a simple toy data set with 3 variables and 10 samples:

1 2 3 4 5 6 7 8 9 10

X 0 1 1 0 0 0 1 0 0 0

Y 0 1 0 ? 1 1 1 0 1 0

Z 0 0 1 0 0 0 0 0 0 0

In our example, variable Y has a missing value in sample 4, denoted by the symbol ‘‘?’’

Using approach (i) we simply skip the missing values during the entropy calculation involving Y. In this

article, we calculate entropies using the ‘‘naive’’ or ‘‘point’’ form based on probabilities estimated as

frequencies. Table 1(a) shows single and joint entropies as well as mutual information.

Note that the mutual information calculated between X and Y is negative due to the single missing value,

which, of course, violates the non-negativity property of mutual information.

We could use approach (ii) instead and completely eliminate the samples with missing values from the

calculations. Recomputing Table 1(a) in this case results in the values in Table 1(b). This resolves the issue

of negative mutual information, but discards information in the process. Notice that the mutual information

values go up in a nonuniform manner compared with the previous case, for example, while I(X,Z) goes up

by 2%, I(Y,Z) goes up by 32%. Such induced fluctuations are typical when there is insufficient data, so

discarding data must be avoided wherever possible. Another version of approach (ii) is to optimize the

selection of samples/variables by minimizing the amount of information deleted, allowing some missing

values to remain in the data. This approach still discards information from the data, although not as much as

in the original approach.

The alternative approach (iii) is to fill in the missing values with either some sort of inferred, or partially

inferred values, or with random values. Table 1(c, d) shows the corresponding entropies and mutual

information for the cases when the missing value is filled in with either 0 or 1. This approach also resolves

the issue of negative mutual information and preserves all the information in the samples; however, it can

introduce bias and/or noise into the data, causing spurious effects, for example, I(X,Z) goes from 0.108

when the missing value is filled in with 0 to 0.1445 when the missing value is filled in with 1, a 34% change

from a single imputed missing value. Of course, this issue is exacerbated here by the small amount of data,

but it clearly illustrates that filling in the missing data can bias the results. One way to reduce this bias is

to infer missing values by applying some statistical inference approaches [expectation–maximization,

Gibbs sampling (Su et al., 2005), etc.], which make assumptions about probability distributions of the data,

using Dirichlet priors or the approximate coalescent prior. Although these approaches can be useful in

imputing SNP data, they are not applicable for most other biological data sets where the distributions are

unknown (Doan et al., 2016).

The example mentioned shows that there is no single best approach of handling the missing values—

every approach has its limitations that can be quite detrimental in the downstream dependency analysis

using information theory. Volatile information scores that can be large enough to be significantly mis-

interpreted as a real signal in the data, information loss, and biased computation are all problems we face

when dealing with missing values. The missing values problem is thus an important practical problem

when searching for and quantitating multivariable dependencies. Note that although we used mutual

information to illustrate the challenges of handling missing data, same issues arise when using other more

Table 1. Entropies and Mutual Information Calculated Using

Three Approaches to Handling Missing Data

X Y Z X Y Z X Y Z X Y Z

X 0.881 -0.019 0.194 0.918 0.018 0.197 0.881 0.035 0.194 0.881 0.006 0.194

Y 1.891 0.991 0.108 1.891 0.991 0.143 1.846 1.0 0.108 1.846 0.971 0.145

Z 1.157 1.352 0.469 1.224 1.352 0.503 1.157 1.361 0.469 1.157 1.296 0.469

(a) (b) (c) (d)

Tables (a) and (b) correspond to approaches (i) and (ii). Tables (c) and (d) correspond to approach (iii), where the missing value is

replaced with either 0 or 1. The diagonal elements of each table correspond to single entropies, the elements of the bottom half

correspond to the joint entropies, and the elements of the top half (highlighted) correspond to mutual information.
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general information measures, such as interaction information or the Delta measure (differential interaction

information).

In the next section, we introduce the idea that missing data are like a noisy communications channel

between the variables concerned. This notion leads us to the idea of the channel capacity between de-

pendent variables. We can calculate the channel capacity in such channels that have been degraded by the

occurrence of missing data by extending the metaphor that missing data are noise and using the usual

communications relations. We then define the reliability function as the quantitative level that the channel

capacity has been degraded by missing data points.

4. THE RELIABILITY FUNCTION

4.1. Binary symmetric channels

The binary channel is a most basic model of a communication system. Consider a channel between

binary variables X and Y, which specify an input and an output, containing a source of errors or noise

(Shannon, 1949, 2001; Verdu and Han, 1994; Ashikhmin et al., 2000; Tishby et al., 2000; Slonim, 2002;

Reyes-Valdes and Williams, 2005; Cover and Thomas, 2012). Let e represent the probability of a com-

munication error in this binary input–output channel. The conditional probability p(YjX) of an output given

an input in the presence of errors is then defined in Table 2.

The channel is symmetric in our case since each of the variables has information about the other. If X and

Y are the input and the output of a communication channel governed by the conditional probability defined

in Table 2, then the channel’s mutual information between X and Y is calculated as

Ich(X‚ Y) = -
X

x

p(x) log [p(x)] -
X

y

p(y) log [p(y)]

+
X

x

X
y

p(x‚ y) log [p(x‚ y)]

= -
X

y

X
x

p(yjx)p(x)

" #
log

X
x

p(yjx)p(x)

" #

+
X

x

X
y

p(yjx)p(x) log [p(yjx)]

= (1 - e)p1( log [1 - e] - log [(1 - e)p1 + ep2])

+ ep1( log [e] - log [ep1 + (1 - e)p2])

+ ep2( log [e] - log [(1 - e)p1 + ep2])

+ (1 - e)p2( log [1 - e] - log [ep1 + (1 - e)p2]‚

(6)

where p1 = p(X = 0) and p2 = p(X = 1), so p1 + p2 = 1, and p(x) is a shorthand for p(X = x).

Larger values of Ich(X,Y) correspond to more accurate communication through the channel. In contrast,

when the error increases to e = 1/2, then I(X,Y) is 0, indicating that it is impossible to transmit any

information through this channel. According to the Shannon–Hartley theorem (Cover and Thomas, 2012)

for any given level of noise e, Ich(X,Y) is maximized when the probability distribution is uniform, that is

when p1 = p2 = 1/2, and it is called the channel capacity. The mutual information, Ich(X,Y), is a symmetric

downward-convex function (Fig. 1). Therefore, Ich(X,Y) is maximal with respect to e when e is either 0 or 1,

and this maximum, in terms of p1 and p2, is

Ich
max(X‚ Y) = - p1 log p1 - p2 log p2: (7)

Keep in mind that when e is 1, the information is fully restored, but the alphabet is simply inverted.

Table 2. Conditional Probability Table for

a Pairwise Case, X ! Y

X = 0 X = 1

p (Y = 0jX) 1-e e

p (Y = 1jX) e 1-e
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4.2. RELIABILITY FUNCTION IN THE PAIRWISE CASE

We now use the idea of a communication channel to specifically define a reliability function that

measures how much the missing data erode the mutual information. Given a pair of variables V1 and V2

representing biological measurements (SNPs, quantitative traits, gene expression levels, etc.), we want to

know how much the missing data affect I(V1,V2). Since we view V1 and V2 as an input and output of a noisy

binary symmetric transmission channel, where missing values are errors in transmission, we view data

samples as packets of bits being transmitted from V1 to V2. If all samples have defined values for both

variables V1 and V2 (or alternatively, both values are missing for some samples), then we interpret the

channel as noise free, namely there is no error in the information transmission between V1 and V2. In

contrast, if a sample has a defined value for V1 but not for V2, or vice versa, it is interpreted as an error in

the information transmission between V1 and V2, and the overall noise is determined by the number of

samples for which there are missing values. The model is embodied in this mapping u:

u(V) = 1‚ if the value of V is missing

0‚ otherwise

�
‚

and binary variables X = u(V1) and Y = u(V2) representing the missing data in V1 and V2. Then the reliability

function, De = (V2jV1), is defined as

De(V2jV1) = Ich u(V1)‚ u(V2)ð Þ = Ich(X‚ Y)‚

where X and Y are the input and output of a noisy binary transmission channel governed by the conditional

probability distribution with an error e shown in Table 2 and thus, the mutual information, I(X,Y), can be

expressed as in Equation (2). For simplicity throughout the rest of the article, we assume the mapping u has

been made and simply write De(YjX) = Ich(X,Y).

The reliability function De(YjX) represents a communication capacity of a binary symmetric channel.

Recall from Equation (2) that

De(YjX) = (1 - e)p1( log [1 - e] - log [(1 - e)p1 + ep2])

+ ep1( log [e] - log [ep1 + (1 - e)p2])

+ ep2( log [e] - log [(1 - e)p1 + ep2])

+ (1 - e)p2( log [1 - e] - log [ep1 + (1 - e)p2])‚

(8)

where p1 = p(X = 0), p2 = p(X = 1) (the probability of a missing value), so that p1 + p2 = 1, and e is the

probability of communication error in the channel.

Recall that since De(Y jX) is equal to Ich(X‚ Y), it is a downward convex function that is maximized when

the probability distribution p(X) is uniform, for example, p1 = p2 = 1=2.

FIG. 1. Mutual information of the communi-

cation channel Ich(X‚ Y) as a function of e and p1.

The range of the error rate is limited to 0 < e < 0.5.

When e = 0.5, Ich(X‚ Y) reaches 0.
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In a communication channel, the upper limit of the mutual information with respect to probability p(X) of

the input X is the channel capacity, we represent as C. For a binary symmetric channel, C, Equation (8)

shows this upper limit to be

C = sup
p(X)

De(Y jX) = log (2) + e log (e) + (1 - e) log (1 - e): (9)

The channel capacity is minimal, and equal to 0, when the error rate, e = 0.5, which means that we

cannot obtain any information about dependencies between X and Y: there is no reliability in information

transmission between X and Y. For the analysis of data, all potential dependencies between such variables

would have to be discounted no matter how significant the estimated mutual information between these

variables appears.

By definition of De(YjX) [Eq. (8)], if there is no error, e = 0, the reliability function becomes

D0(Y jX) = - p1 log (p1) - p2 log (p2) = H(X)‚ (10)

which is the maximum value of De(YjX) given the probability distribution of p1 and p2. Figure 2a shows the

relationship between the reliability function and error under three different probability distributions p(X).

Note that the three curves shown in Figure 2a correspond to three slices through the surface in Figure 1.

Equation (8) shows that De(Y jX) is bounded by 0 and H(X), the entropy of the input variable. The

reliability function should measure the effects of the missing values not the effect of the variable distri-

bution; therefore, we normalize De(Y jX) to ensure that the reliability function is between 0 and 1.

de(YjX) =
De(Y jX)

H(X)
: (11)

Figure 2b shows how normalized reliability function de(Y jX) depends on the error rate. Both De(YjX) and

de(Y jX) are actually symmetric with respect to error e. We focus, however, only on the realistic range of

error rates, 0 � e � 0:5.

4.3. Simulations with pairwise dependence

Let us now examine the relationship between the reliability function and the amount of information as

the frequency of missing values increases. To do this, we simulated data sets consisting of 200 variables

that take on one of three values randomly across 1000 samples. All variables are independent except for the

two special variables, X and Y, which are set to be identical for a given number of samples, thus forming a

pairwise dependency. The fraction of samples for which X and Y are identical is referred to here as the

strength of the dependency. In this simulation, we considered three cases: the strengths of dependency at

10%, 20%, and 50%.

To simulate missing data, as is often the case for real biological data, we removed 0%, 5%, 10%, 15%,

and 20% of data points at random. Points for missing data were selected over all variables, including the

dependent variables.

FIG. 2. Reliability function as a function of e. (a) The changes of reliability function De(Y=X) with respect to e. The

different line styles correspond to different probability distribution p(X): solid—p1 = 0.5, p2 = 0.5, dashed—p1 = 0.1,

p2 = 0.9; and dotted—p1 = 0.01, p2 = 0.99. (b) The same information for normalized reliability function, de(YjX).
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Given these simulated data, the task of interest is to detect the pairwise dependency between X and Y. We

do this by simply computing mutual information for all possible pairs of variables and then identifying the

pairs whose mutual information is significant. In this example, a pair is called significant if its z-score is >3.

As expected, when there are no missing data, the dependency ÆX‚ Yæ is highly significant (with z-score >80

when the dependency strength is 50%) and is the only significant pair. Figure 3 shows z-score of ÆX‚ Yæ for

various amounts of missing data and strengths of dependency.

Section 3 discussed three different approaches for dealing with missing data that are common in bio-

logical data analysis. We evaluated all three of them as illustrated in Figure 3. Note that in approach (ii), we

removed 25% of samples with the largest number of missing values, as shown in Appendix Figure A1

(Section 7.1).

As expected, Figure 3 shows that the increasing amount of missing data erodes the signal, reducing the

significance of the dependency and making it harder to detect. Although the behavior of the approaches to

handling the missing data is similar, approach (ii) generally performs the worst simply because removing

many samples reduces the available information the most.

Let us now look at the (normalized) reliability functions of the dependent pair. Figure 4 shows the z-

scores of ÆX‚ Yæ versus the reliability function values with colors of the points corresponding to the

number of missing values.

Note how the reliability function drops sharply as the amount of missing data goes from 0% to 5% and

then slows down. Furthermore, the behavior of the reliability function when the missing data increase is

largely independent of the strength of the dependency, as can be clearly seen in Figure 5, since the missing

data are introduced into the data uniformly across all variables, including X and Y.

Moreover, we can calculate the minimal possible value of the reliability function given the missing value

level. The reliability function depends on the error rate: it has its minimal value when the error rate is

maximal, which is equal to twice the rate of missing values. Calculating the reliability function with the

maximal error rate results in the minimum boundary and the solution space of the reliability function shown

in Figure 5.

5. GENERALIZING RELIABILITY FUNCTION TO MULTIPLE VARIABLES

In this section, we generalize the concept of a binary symmetric channel to the three-variable and then to

the n-variable case. Similar to the pairwise case, we can derive the general n-variable reliability function

expressed in terms of error rates, missing values, in the data.

FIG. 3. z-Scores for various degrees of dependency in simulated data as a function of percentage missing data. The

different curves represent the different options for dealing with missing data. The red line represents the case without

any missing data, and the error bars represent the STD of the z-scores. Three other curves, blue, green, and orange,

correspond to approaches (i), (ii), and (iii), respectively, to handling missing values. The dashed line indicates the three-

STD level. (a–c) Correspond to the cases of 10%, 20%, and 50% dependencies. STD, standard deviation.
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5.1. The reliability function for three variables

Let us define the reliability function for the three-variable case, which measures the amount of infor-

mation eroded by missing data when evaluating three-variable dependencies. We extend the transmission

channel idea defined for two variables (Section 4) to three variables as follows. Let two of the variables

represent two inputs, X1 and X2, and the other the output, Y. We refer to the output here as the ‘‘target’’

variable. Let us assume for the moment that the transmission of information through the channel is

governed by the logical ‘‘OR’’ function, which for the error rate e results in the conditional probability

given in Table 3.

The ‘‘OR’’ function both models the information transmission in the presence of missing data and

consistently parallels the pairwise case. The reliability function for three variables is then defined using the

generalization of mutual information to three variables, which is called interaction information [Eq. (3)].

Using the definition of information transmission in the channel as given in Table 3, the reliability function

can be expressed in terms of the joint probability of the inputs p(X1‚ X2) and the conditional probability

p(Y jX1‚ X2) governing the noisy information transmission with error e:

FIG. 4. z-Score dependence on reliability function. Each panel shows the behavior of the z-scores when the values of

the reliability function and frequency of the missing values change. The error bars represent the STD of the z-scores.

The colors of circles correspond to the frequency of the missing values in a dependent tuple. (a–c) Correspond to the

cases of 10%, 20%, and 50% dependencies.

FIG. 5. The normalized reliability function as a function of the frequency of missing values. (a) The function de(Y jX)

for all dependencies (mean of 10 independent simulations). They are identical. (b) The solution space.
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De(Y jX1‚ X2) = -
X

x1

p(x1) log [p(x1)] -
X

x2

p(x2) log [p(x2)]

+
X
x1‚ x2

p(x1‚ x2) log [p(x1‚ x2)]

-
X

x1‚ x2‚ y

p(yjx1‚ x2)p(x1‚ x2) log
X
x1‚ x2

p(yjx1‚ x2)p(x1‚ x2)

" #

+
X

x1‚ x2‚ y

p(yjx1‚ x2)p(x1‚ x2) log
X

x2

p(yjx1‚ x2)p(x1‚ x2)

" #

+
X

x1‚ x2‚ y

p(yjx1‚ x2)p(x1‚ x2) log
X

x1

p(yjx1‚ x2)p(x1‚ x2)

" #

-
X

x1‚ x2‚ y

p(yjx1‚ x2)p(x1‚ x2) log [p(yjx1‚ x2)p(x1‚ x2)]:

(12)

For the full derivation of the three-variable reliability function and its explicit expression in terms of e

and elements p(X1 = 0‚ X2 = 0) = p1, p(X1 = 0‚ X2 = 1) = p2, p(X1 = 1‚ X2 = 0) = p3, and p(X1 = 1‚ X2 = 1) = p4,

see Section 7.2.

Using set notation, Equation (12) can be represented more compactly as

De(Y jX1‚ X2) =
X

S = s: S2}(fX1‚ X2g) & S6¼;f g
( - 1)jsjp(s) log [p(s)]

+
X

S2}(fX1‚ X2g)
( - 1)3 - jSj

X
x1‚ x2‚ y

p(yjx1‚ x2)p(x1‚ x2)�

� log
X

s

p(yjx1‚ x2)p(x1‚ x2)

" #
‚

(13)

where }(fX1‚ X2g is a set of all subsets: fg‚ fX1g‚ fX2g, and fX1‚ X2g. Note that for simplicity, we write s

to denote all possible combinations of values of variables in set S. Note also that the expression under the

log of the second sum is marginalized over the variables of subset S.

The normalization of the reliability function for three variables is given by Equation (15) in Section 5.3

as for n-variable formula. Figure 6 shows the relationship between the reliability function and error under

three different probability distributions p(X1‚ X2).

Figure 6 shows the reliability function before (a) and after (b) normalization. Unlike the two-variable

case, the values of De(YjX1‚ X2) become negative and convex upward, but also reach 0 at e = 0.5. In this

case, the uniform probability distribution, p1 = p2 = p3 = p4, gives the minimum curve. Figure 6b shows the

normalized reliability function. The normalized reliability function for three variables maintains the es-

sential properties of the reliability function for two variables.

Rather than use the logical ‘‘OR’’ function to define the channel, another information transmission

mode through the channel can be governed by the logical ‘‘AND’’ function. This leads to the conditional

probability given in Table 4.

As before, we calculate the reliability function and note that the symmetry of the table is reflected in the

symmetry of the expression [Eq. (B4) in Section 7.2].

The normalization of the reliability function for three variables with ‘‘AND’’ function shows the

same behavior as ‘‘OR’’ function because of their symmetry (Tables 3 and 4; Appendix Figure A2 in

Section 7.1).

Table 3. Conditional Probability Table for the Three-Variable Case, Using ‘‘OR’’ Function Dependence

X1 = 0‚ X2 = 0 X1 = 0‚ X2 = 1 X1 = 1‚ X2 = 0 X1 = 1‚ X2 = 1

p (Y = 0jX1‚ X2) 1-e e e e

p (Y = 1jX1‚ X2) e 1-e 1-e 1-e
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5.2. Simulated example with three-variable dependency

To illustrate the relationship between the reliability function and the amount of information when the

frequency of missing values increases, we use the simulated example from Section 4.3 again, this time

replacing the identity function with the logical XOR function to model the three-variable dependency. We

kept all other parameters of the example same as in Section 4.3.

We first look at how much the increasing amount of missing data erodes the signal, reducing the

significance of the dependency and making it harder to detect (Fig. 7). Note that this time we use interaction

information (3) for all possible tuples and compare J(X,Y,Z) against the full set.

As in the pairwise case, the behavior of the three options for handling the missing data is similar,

although the sample elimination approach defined in Appendix Figure A3 (in Section 7.1) performs worse

simply because it is stricter, eliminating more information.

Following the pairwise example from Section 4, we examined the reliability function of the dependent

pair. Appendix Figure A4 (in Section 7.1) shows the z-scores of ÆX1‚ X2‚ Yæ versus the reliability function

values, with colors corresponding to the number of missing values. Similar to the pairwise case, the

reliability function drops sharply as the amount of missing data goes from 0% to 5% and then slows down.

The normalized reliability function here is also independent of the strength of the dependency, as can be

clearly seen in Figure 8.

Figure 8a also shows the minimal possible value of the reliability function, given the missing value

level.

5.3. The reliability function for n variables

We can derive the reliability function for n variables, Vn = fX1‚ X2 . . . ‚ Xi‚ . . . ‚ Xng, by using the in-

teraction information and taking a target variable as Xi. Recall also that the interaction information is

symmetric under permutation of the variables. Following the analysis of the three-variable case, we can

directly formulate the general n-variable reliability function. As in the three-variable case, we extend the

transmission channel idea from two variables to n variables. In this case, there are n-1 inputs and 1 output,

also referred to as the ‘‘target’’ variable. The transmission of information through the channel is again

FIG. 6. Reliability function as a function of e. (a) The changes of reliability function De(Y jX1‚ X2) with respect to e.

The different line styles correspond to different probability distribution p(X1‚ X2): solid—p1 = 0.25, p2 = 0.25, p3 = 0.25,

p4 = 0.25; dashed—p1 = 0.07, p2 = 0.43, p3 = 0.07, p4 = 0.43; and dotted—p1 = 0.03, p2 = 0.47, p3 = 0.03, p4 = 0.47. (b) The

same information for normalized reliability function, de(Y jX1‚ X2).

Table 4. Conditional Probability Table for the Three-Variable Case with ‘‘AND’’ Function

X1 = 0‚ X2 = 0 X1 = 0‚ X2 = 1 X1 = 1‚ X2 = 0 X1 = 1‚ X2 = 1

p (Y = 0jX1‚ X2) 1-e 1-e 1-e e

p (Y = 1jX1‚ X2) e e e 1-e
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governed by the logical OR function, as illustrated for three variables in Table 3. The logical OR function

for N variables returns 1 if at least one of the input variables is equal to 1.

For simplicity, let us denote the set of all variables except Xi as Vn-1. Then the expression for

De(XijVn - 1) in full, using set notation similar to (13) to accommodate the multiple variables, is given as

follows:

FIG. 7. Reliability as a function of missing data. (a–c) The z-scores with respect to frequency of missing values for

10%, 20%, and 50% dependencies. The red line represents the case without any missing data, and the error bars

represent the STD of the z-scores. Three other curves, blue, green, and orange, correspond to approaches (i), (ii), and

(iii), respectively, to handling missing values. The dashed line indicates the three-STD level.

FIG. 8. Reliability function for three variable simulation (OR function.). (a) The solution space of the reliability

function with respect to missing values given by average boundary of the reliability function. Unlike the two-variable

case, the error rate and input probability in the three-variable reliability function are not directly defined by frequency

of missing values. The average boundary of the reliability function is given instead of the minimum boundary. (b–d)

The reliability function for three-variable versus frequency of missing values for different choices of target variable.

The target variable is Y, X1, and X2, for (b–d).
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De(XijVn - 1) =
X

S = s: S2}(Vn - 1) & S 6¼;f g
( - 1)jsjp(s) log [p(s)]

+
X

S2}(Vn - 1)

( - 1)n - jSj
X
�n

p(xij�n - 1)p(�n - 1)�

� log
X

s

p(xij�n - 1)p(�n - 1)

" # ‚ (14)

where }(Vn - 1) is a set of all subsets of Vn - 1, including the empty set. Note that for simplicity we write mn to

denote all possible n-variable combinations of values. Note also that the expression under the log of the

second sum is marginalized over the variables of subset S.

5.3.1. Normalization. The meaning of the reliability function can be most clearly seen if we nor-

malize it so that in the absence of missing information it goes to 1, and has a lower limit of 0. If we simply

take the limit of zero error rate, D0(XijVn - 1) = lime!0De(XijVn - 1), we can define the general normalized

reliability function as the ratio

de XijVn - 1ð Þ = De(XijVn - 1)

D0(XijVn - 1)
: (15)

In previous sections, we examined the properties of the reliability function for two and three variables in

detail, and have shown how they can be used to handle missing values and evaluate measures calculated

from incomplete data. Although we will not show results here, the general formulation for n variables can

be applied in a similar manner.

6. DISCUSSION AND CONCLUSIONS

A reliability function based on information theory ideas is proposed here for use in evaluating results

inferred from data sets with missing values. Since missing data are very common in biological and medical

data sets, we need a rigorously consistent way to assess the specific effect of missing data on the results of

inference of dependencies. In this article, we provide the way of using information theory methods to

analyze this issue of missing data and define a reliability function based on the powerful metaphor of the

channel capacity among variables. We view all variables in a data set as both sources and receivers of

information during the analysis of a data set, defining pairwise and multiconnecting networks of variables

as communication channels. The missing data are viewed as a noise or error source, and the analysis

proceeds by quantitatively examining the communication between and among variables. The reliability

function is identified with the channel capacity for the communication channels.

We began the article by treating the two-variable dependency case, showing a specific example of

the pairwise dependency measure (mutual information) with incomplete data. In this case, we showed

how the calculated mutual information, with missing data points, can distort the calculations and actu-

ally lead to negative mutual information. This, of course, is absurd and illustrates that significant prob-

lems can be caused by missing values. The values of mutual information calculated from incomplete data

can also, of course, lead to falsely large or small values and result in false or missed signals of depen-

dencies.

The concepts of a binary symmetric channel for two variables and the noise-channel capacity idea are

generalized next for the case of n-variable dependencies, and a general definition of error rate for missing

data is thus introduced. This reliability function for n-variable dependencies defines an error function,

which in the case of a binary symmetric channel becomes the simple error rate. The reliability function can

be simply normalized for any number of variables by comparison with the function in the limit of zero error

rate.

Although our focus has been on the use of reliability functions in the application of our information-

theoretic methods for the inference of dependencies, the pairwise case is equally applicable to other

common methods such as regression and correlation methods. For the multivariable case, it is not entirely

clear how to apply our approach to these methods.
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Note also that we can think of using the reliability function in conjunction with a method for imputing

the missing data. For example, the type of imputation (with or without prior knowledge) could be selected

based on the value of the reliability function. This and other applications of the reliability function will be

studied in our future work.

In summary, we have proposed a model of the reliability function that can assess the reliability

of measures of multivariable dependencies based on the concepts of a binary symmetric channel. We

expect that the methods described here can contribute to extracting as much information as possible from

various types of biological data, allowing the use of data with missing values and enhance statistical

properties of calculations of dependencies. This work thus contributes significantly to the general effort to

find dependencies and interactions that exist in complex systems using data that may include missing

values. We provide a general approach that can, in principle, deal with any data set, for any manner of

complex system.

7. APPENDIX

7.1. Appendix A: Appendix figures

Appendix Figure A1 illustrates how the missing values are distributed in the simulated example of

Section 4.3. It also shows how many samples are removed, when using approach (iii) for handling the

missing data.

Appendix Figure A2 shows the behavior of the reliability function and its normalized version based on

the AND function.

APPENDIX FIG. A1. Distribution of missing values in simulations. All panels show histograms of missing values in

samples included in data sets, which are used for mutual information calculation (Section 4.3). The frequency of

missing values is 5%, 10%, 15%, and 20% for (a), (b), (c), and (d), respectively. The red line indicates the threshold of

75 percentile of missing values in a sample, which was the criterion for sample removal.
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Appendix Figure A3 is similar to Appendix Figure A1. It illustrates how the missing values are dis-

tributed in the simulated example of Section 5.2. It also shows how many samples are removed, when using

approach (iii) for handling the missing data.

Appendix Figure A4 shows the z-scores of ÆX1‚ X2‚ Yæ versus the reliability function values with colors

of the points and error bars corresponding to the number of missing values from the simulated example of

Section 5.2.

APPENDIX FIG. A2. (a) The changes of reliability function De(YjX1,X2) with respect to e calculated three-variable

reliability function with AND function. The different line styles correspond to different probability distribution

p(X1,X2): solid—p1 = 0.25, p2 = 0.25, p3 = 0.25, p4 = 0.25; dashed—p1 = 0.07, p2 = 0.43, p3 = 0.07, p4 = 0.43; and dotted—

p1 = 0.03, p2 = 0.47, p3 = 0.03, p4 = 0.47. (b) The same information for normalized reliability function, de(YjX1,X2).

APPENDIX FIG. A3. Distribution of missing data in the three-variable simulation. Each panel shows histograms

of missing values in samples included in data sets, which are used for Delta 3 calculation (Section 5.2). The frequency

of missing values is 5%, 10%, 15%, and 20% for (a), (b), (c), and (d), respectively. The red line indicates the threshold

of 75 percentile of missing values for sample removal.
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APPENDIX FIG. A4. z-Score dependence on reliability function. (a–c) de(X1jY,X2), (d–f) de(X2jY,X1), and (g–i)

de(YjX1,X2). In contrast, three columns of panels correspond to three strength levels of the dependency, 10%, 20%,

and 50%.
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7.2. Appendix B: The reliability function for three variables

The reliability function for three variables is then defined using the generalization of mutual information

to three variables, called interaction information [Eq. (3)]

De(YjX1‚ X2) = I(X1‚ X2‚ Y)

= -
X

x1

p(x1) log [p(x1)] -
X

x2

p(x2) log [p(x2)]

-
X

y

p(y) log [p(y)]

+
X
x1‚ x2

p(x1‚ x2) log [p(x1‚ x2)]

+
X
x1‚ y

p(x1‚ y) log [p(x1‚ y)] +
X
x2‚ y

p(x2‚ y) log [p(x2‚ y)]

-
X

x1‚ x2‚ y

p(x1‚ x2‚ y) log [p(x1‚ x2‚ y)]:

(B1)

Expressing the reliability function in terms of the marginal and joint probabilities of inputs p(X1,X2)

and the conditional probability p(YjX1,X2) governing the noisy information transmission with error e,

we get

De(Y jX1‚ X2) = -
X

x1

p(x1) log [p(x1)] -
X

x2

p(x2) log [p(x2)]

-
X

y

X
x1‚ x2

p(yjx1‚ x2)p(x1‚ x2)

" #
log

X
x1‚ x2

p(yjx1‚ x2)p(x1‚ x2)

" #

+
X
x1‚ x2

p(x1‚ x2) log [p(x1‚ x2)]

+
X
x1‚ y

X
x2

p(yjx1‚ x2)p(x1‚ x2)

" #
log

X
x2

p(yjx1‚ x2)p(x1‚ x2)

" #

+
X
x2‚ y

X
x1

p(yjx1‚ x2)p(x1‚ x2)

" #
log

X
x1

p(yjx1‚ x2)p(x1‚ x2)

" #

-
X

x1‚ x2‚ y

p(yjx1‚ x2)p(x1‚ x2) log [p(yjx1‚ x2)p(x1‚ x2)]:

(B2)

This can be further simplified resulting in Equation (12) in the main text of the article.
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Using the definition of the conditional probability given by Table 3, the reliability function can be

expressed as follows:

De(Y jX1‚ X2) = - (p1 + p2) log [p1 + p2] - (p3 + p4) log [p3 + p4]

- (p1 + p3) log [p1 + p3] - (p2 + p4) log [p2 + p4]

+ p1 log [p1] + p2 log [p2] + p3 log [p3] + p4 log [p4]

- [(1 - e)p1 + ep2 + ep3 + ep4]

� log [(1 - e)p1 + ep2 + ep3 + ep4]

- [ep1 + (1 - e)p2 + (1 - e)p3 + (1 - e)p4]

� log [ep1 + (1 - e)p2 + (1 - e)p3 + (1 - e)p4]

+ [(1 - e)p1 + ep2] log [(1 - e)p1 + ep2]

+ [ep3 + ep4] log [ep3 + ep4]

+ [ep1 + (1 - e)p2] log [ep1 + (1 - e)p2]

+ [(1 - e)p3 + (1 - e)p4] log [(1 - e)p3 + (1 - e)p4]

+ [(1 - e)p1 + ep3] log [(1 - e)p1 + ep3]

+ [ep2 + ep4] log [ep2 + ep4]

+ [ep1 + (1 - e)p3] log [ep1 + (1 - e)p3]

+ [(1 - e)p2 + (1 - e)p4] log [(1 - e)p2 + (1 - e)p4]

- (1 - e)p1 log [(1 - e)p1] - ep2 log [ep2]

- ep3 log [ep3] - ep4 log [ep4]

- ep1 log [ep1] - (1 - e)p2 log [(1 - e)p2]

- (1 - e)p3 log [(1 - e)p3] - (1 - e)p4 log [(1 - e)p4]‚

(B3)

where p(X1 = 0‚ X2 = 0) = p1, p(X1 = 0‚ X2 = 1) = p2, p(X1 = 1‚ X2 = 0) = p3, p(X1 = 1‚ X2 = 1) = p4, and p1 + p2 +
p3 + p4 = 1.

If we use the logical AND function to define the channel, leading to the conditional probability given in

Table 4, then the reliability function becomes

De(Y jX1‚ X2) = - (p1 + p2) log [p1 + p2] - (p3 + p4) log [p3 + p4]

- (p1 + p3) log [p1 + p3] - (p2 + p4) log [p2 + p4]

+ p1 log [p1] + p2 log [p2] + p3 log [p3] + p4 log [p4]

- [(1 - e)p1 + (1 - e)p2 + (1 - e)p3 + ep4]�
� log [(1 - e)p1 + (1 - e)p2 + (1 - e)p3 + ep4]

- [ep1 + ep2 + ep3 + (1 - e)p4]�
� log [ep1 + ep2 + ep3 + (1 - e)p4]

+ [(1 - e)p1 + (1 - e)p2] log [(1 - e)p1 + (1 - e)p2]

+ [(1 - e)p3 + ep4] log [(1 - e)p3 + ep4]

+ [ep1 + ep2] log [ep1 + ep2]

+ [ep3 + (1 - e)p4] log [ep3 + (1 - e)p4]

+ [(1 - e)p1 + (1 - e)p3] log [(1 - e)p1 + (1 - e)p3]

+ [(1 - e)p2 + ep4] log [(1 - e)p2 + ep4]

+ [ep1 + ep3] log [ep1 + ep3]

+ [ep2 + (1 - e)p4] log [ep2 + (1 - e)p4]

- (1 - e)p1 log [(1 - e)p1] - (1 - e)p2 log [ep2]

- (1 - e)p3 log [ep3] - ep4 log [ep4]

- ep1 log [ep1] - ep2 log [(1 - e)p2]

- ep3 log [(1 - e)p3] - (1 - e)p4 log [(1 - e)p4]:

(B4)
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