
Mourad et al. Genome Biology  (2018) 19:34 
https://doi.org/10.1186/s13059-018-1411-7

METHOD Open Access

Predicting double-strand DNA breaks
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Abstract

Double-strand breaks (DSBs) result from the attack of both DNA strands by multiple sources, including radiation and
chemicals. DSBs can cause the abnormal chromosomal rearrangements associated with cancer. Recent techniques
allow the genome-wide mapping of DSBs at high resolution, enabling the comprehensive study of their origins.
However, these techniques are costly and challenging. Hence, we devise a computational approach to predict DSBs
using the epigenomic and chromatin context, for which public data are readily available from the ENCODE project.
We achieve excellent prediction accuracy at high resolution. We identify chromatin accessibility, activity, and
long-range contacts as the best predictors.

Keywords: Double-strand breaks, Epigenetics, Chromatin, Machine learning

Background
Double-strand breaks (DSBs) arise when both DNA
strands of the double helix are severed. DSBs are caused by
the attack of deoxyribose and DNA bases by reactive oxy-
gen species and other electrophilic molecules [1]. DSBs
are particularly hazardous to a cell because they can lead
to deletions, translocations, and fusions in the DNA, col-
lectively referred to as chromosomal rearrangements [2].
DSBs are most commonly found in cancer cells. Several
high-throughput sequencing techniques have been devel-
oped for the genome-wide mapping of DSBs in situ such
as BLESS [3], GUIDE-seq [4], END-seq [5], and DSBCap-
ture [6]. One of the most recent techniques, DSBCapture,
was used to map more than 80 000 endogenous DSBs at a
resolution lower than 1 kb in human. To date, DSBs have
been mapped at high resolution only for a few cell lines
due to the high sequencing costs and experimental diffi-
culties. This has prevented the comprehensive study of the
DSB landscape in the human genome across diverse cell
lines and tissues.
Chromatin immunoprecipitation followed by high-

throughput DNA sequencing (ChIP-seq) and DNase I
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hypersensitive site sequencing (DNase-seq) data are pub-
licly available for dozens of cell lines and tissues from
the ENCODE [7] and Roadmap Epigenomics [8] projects.
On the one hand, recent studies have shown that the
mapping of regulatory elements such as enhancers and
promoters can be accurately predicted using available
epigenome and chromatin data [9, 10]. Other studies have
shown that the epigenome can be predicted by combi-
nations of DNA motifs and DNA shape [11–14]. On the
other hand, DSBs and the resulting DNA repair mecha-
nisms have been shown to be linked to epigenome marks,
including H3K4me1/2/3 and chromatin accessibility [6].
Accordingly, PRDM9-mediated trimethylation of H3K4
(H3K4me3) was originally shown to play a critical role in
regulating DSBs associated with meiotic recombination
hotspots [15–17]. Moreover, the repair of DSBs involves
both post-translational modification of histones, in partic-
ular γ -H2AX, and concentration of DNA-repair proteins
at the site of damage [18, 19]. It remains unclear to what
extent DNA motifs or histone modifications predict or
regulate the cellular response to DSBs in other devel-
opmental stages. Here, we thus sought to test whether
publicly available epigenome and chromatin data, or DNA
motifs and shape, could be used to predict DSBs.
In this article, we demonstrate, for the first time, that

endogenous DSBs can be computationally predicted using
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the epigenomic and chromatin context, or using DNA
sequence and DNA shape. Our predictions achieve excel-
lent accuracy (area under the receiver operating char-
acteristic curve or AUROC > 0.97) at high resolution
(< 1 kb) using available ChIP-seq and DNase-seq data
from public databases. Despite the highly imbalanced
data when predicting DSBs genome-wide, our approach
detects a reasonable number of false positives (area under
the precision–recall curve or AUPR = 0.459). DNase,
CTCF binding, and H3K4me1/2/3 are among the best
predictors of DSBs, reflecting the importance of chro-
matin accessibility, activity, and long-range contacts in
determining DSB sites and subsequent repairing. We also
successfully predict DSB sites using DNA motif occur-
rences only (AUROC = 0.839) and identify the CTCF
motif as a strong predictor. In addition, DNA shape anal-
ysis further reveals the importance of the structure-based
readout in determining DSB sites, complementary to the
sequence-based readout (motifs).

Results and discussion
Double-strand break prediction approach
Our computational approach for predicting DSBs is
schematically illustrated in Fig. 1. In the first step, we
analyzed public DSBCapture data from Lensing el at. [6],
which is the most sensitive and accurate genome-wide
mapping of DSBs to date (Fig. 1a). DSBCapture captures

DSBs in situ and it can directly map them at single-
nucleotide resolution. DSBCapture peaks were called with
less than 1-kb resolution (median size of 391 bases). The
DSBCapture peaks obtained from two biological repli-
cates were intersected to yield more reliable DSB sites.
Endogenous breaks were captured for normal human
epidermal keratinocytes (NHEKs), for which numerous
ChIP-seq and DNase-seq data are publicly available from
the ENCODE project [7]. In the second step, we integrated
and mapped different types of data within DSB sites and
non-DSB sites. To prevent bias effects, non-DSB sites
were randomly drawn from the human genome with sizes,
GC, and repeat contents similar to those of DSB sites [20]
(Fig. 1b). ChIP-seq and DNase-seq peaks in NHEKs, as
obtained from the ENCODE project, were mapped to cor-
responding DSB and non-DSB sites [7]. We also mapped
p63 ChIP-seq peaks from keratinocytes [21]. We further
searched for potential protein-binding sites at DSB and
non-DSB sites using motif position weight matrices from
the JASPAR 2016 database [22], and predicted DNA shape
at DSB and non-DSB sites using Monte Carlo simula-
tions [23]. In the third step, a random forest classifier was
built to discriminate betweenDSB sites and non-DSB sites
based on epigenome marks or DNA (Fig. 1c). Random
forest variable importance values were used to estimate
the predictive importance of a feature. We also compared
random forest predictions with another popular method,

a b c

Fig. 1 Double-strand break (DSB) prediction using epigenome marks or DNA. The prediction approach has three steps. aMapping of DSBCapture
sequencing data and DSB peak calling. bMapping of features at DSB and non-DSB sites. Features include epigenomic and chromatin data from the
ENCODE project, DNA motifs from the JASPAR database, and DNA shape predictions. c Prediction of DSB sites using features. AUC area under the
curve, ds double strand, DSB double-strand break, PCR polymerase chain reaction



Mourad et al. Genome Biology  (2018) 19:34 Page 3 of 14

lasso logistic regression [24]. Using lasso regression, we
assessed the positive, negative, or null contribution of a
feature to DSBs.We then split the DSB dataset into a train-
ing set to learn model parameters by cross-validation, and
into a testing set to compute the receiver operating char-
acteristic (ROC) and precision–recall (PR) curves, as well
as AUROC and AUPR, to evaluate prediction accuracy.

Double-strand breaks are enriched with epigenomemarks
and DNAmotifs
We first sought to assess comprehensively the link
between DSBs and epigenome marks or DNA motifs. As
previously shown [6, 25], several epigenomic and chro-
matin marks colocalized at DSBs (Fig. 2a). Among the
most enriched marks were DNase I hypersensitive sites,
H3H4 methylation, and CTCF (Fig. 2b). For instance,
91% of DSBs colocalized to a DNase site, whereas this
percentage dropped to 11% for non-DSB regions. This
corresponded to an odds ratio (OR) of 89.3. Similarly, high
enrichment was found for H3K4me2 (74% versus 11%;
OR = 22.4) and for the insulator protein CTCF (25% ver-
sus 2%; OR = 19), which may involve its interactions with
the insulator-related cofactor cohesin, which has been
shown to protect genes from DSBs [26]. As such, DSBs
mostly localized within open and active regions that were
often implicated in long-range contacts [27]. Interestingly,
DSBs also colocalized with tumor protein p63 binding
(19.4% versus 1%; OR = 23.8), a member of the p53 gene
family [28, 29]. In addition, we could distinguish DNase
and CTCF sites that were enriched at the center of DSBs
from histone marks that were found at the edges of DSB
sites (Fig. 2c). Therefore, the strong enrichment of epige-
nomic and chromatin marks at DSB sites suggests that
DSB regions could be accurately predicted using avail-
able ChIP-seq and DNase-seq data from public databases,
including ENCODE and Roadmap Epigenomics.
Previous enrichment analyses of DNA-binding proteins

were limited by the ChIP-seq data available. Hence, we
sought DNA motifs that may be enriched at DSB sites
as a way to obtain a more comprehensive list of candi-
date DNA-binding proteins. Of the 454 available motifs
from the JASPAR 2016 database, 134 were significantly
enriched (p < 0.05, Bonferroni correction), indicating
that DSBs were associated with a large number of protein-
binding sites (Fig. 2d). Among the most enriched and
frequent motifs, we identified numerous motifs specifi-
cally recognized by protein cofactors of the transcription
factor complex AP-1. This included JUND (OR = 1.40,
12% of DSBs), JUNB (OR = 1.27, 19% of DSBs), the het-
erodimer BATF::JUN (OR = 1.31, 10% of DSBs), and also
FOS (OR = 1.37, 20% of DSBs), FOSL1 (OR = 1.37, 17%
of DSBs), and FOSL2 (OR = 1.27, 18% of DSBs). Among
the most enriched but less frequent motifs, we expect-
edly found CTCF (OR = 1.54, 1.7% of DSBs), as well as

members of the tumor protein family p53, i.e., p53 itself
(OR = 1.54, 0.2% of DSBs), p63 (OR = 1.49, 0.3% of
DSBs), and p73 (OR = 1.54, 0.1% of DSBs) [28, 29]. Such
enrichment of DNA motifs at DSB sites, therefore, sup-
ports that DNA sequence can alone predict some of the
DSBs encountered.

Prediction using epigenomic and chromatin data
Given the strong link between DSBs and epigenomic and
chromatin marks, we sought to build a classifier to dis-
criminate DSB sites from non-DSB sites based on the
presence or absence of such marks. For this, we used
random forests, which are very efficient classifiers for
predicting a feature. They can capture non-linear and
complex interaction effects [30]. We split the data into a
training set to learn model parameters and a testing set
to evaluate prediction accuracy. Using this classifier, we
obtained excellent predictions of DSBs based on the epige-
nomic and chromatin marks available (AUROC = 0.970
and AUPR = 0.985; Fig. 3a; Additional file 1: Figure S1).
Bootstrap analysis of 2000 replicates revealed that these
predictions were very robust (95% confidence interval, CI,
of AUROC: [0.968,0.972]). We also computed the variable
importance (VI), which reflects the importance of a mark
as a predictor (Fig. 3b). Among the marks, DNase showed
the highest variable importance (VI = 0.180), reflect-
ing the known higher chromatin accessibility after DNA
damage [19] or the involvement of chromatin-remodeling
complexes in DSB processing [31]. Other good predictors
were CTCF (VI = 0.042), p63 (VI = 0.031), H3K4me1
(VI = 0.028), H3K4me2 (VI = 0.019), H3K4me3 (VI =
0.012), and H3K27ac (VI = 0.010), highlighting the roles
of active chromatin, but also long-range contacts and
DNA damage response in predicting DSB sites.
A drawback of variable importance lies in its inability to

distinguish between the positive or negative contribution
of the predictive mark on DSBs. For this reason, we also
used lasso logistic regression to predict DSBs [24]. With
this second model, we obtained excellent predictions,
although slightly less accurate (AUROC = 0.967, CI95%:
[0.966,0.971]; AUPR = 0.982; Additional file 1: Figure S2).
From lasso regression, we could assess the positive or
negative contributions of the predictive marks using beta
coefficients (Fig. 3c). We also performed logistic regres-
sion without any regularization and obtained very similar
coefficients (Additional file 1: Figure S3). This allowed
us to compute p values associated with the coefficients.
We found that all variables, except H3K79me2, H3K9ac,
and H4K20me1, were significantly associated with DSBs
(Additional file 1: Table S1). We identified positive pre-
dictive contributions of DNase, CTCF, p63, H3K4me1,
and H3K4me2 marks, as previously revealed by enrich-
ment analysis. We also uncovered negative predictive
contributions of H3K9ac, H3K36me3, and H3K79me2.
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Fig. 2 Epigenomic, chromatin, and DNA motif profiles of double-strand breaks (DSBs). a A genome browser view of DSBs with histone marks,
chromatin openness (DNase-seq), and DNA-binding proteins. b Colocalization frequencies of epigenomic marks and DNA-binding proteins at DSB
sites, compared to non-DSB sites. c Average profiles of epigenomic marks and DNA-binding proteins at DSB sites. d Enrichment of DNA motifs at
DSB sites, as measured by the odds ratio and the percentage of DSB loci with a motif. DSB double-strand break

In agreement, H3K9ac was shown to be rapidly and
reversibly reduced in response to DNA damage [32].
Moreover, H3K36me3 may negatively impede DSBs by
restricting chromatin accessibility through nucleosome
positioning [33] or more directly by favoring the repair of
DSBs [34].
We next sought to build a classifier using only one or

two epigenomicmarks, because thismay be able to predict
DSB sites even for cells for which only a few data points

are available. We found that DNase I sites alone were
sufficient to achieve good prediction accuracy (AUROC =
0.919 andAUPR= 0.962; Fig. 3d; Additional file 1: Figure S4),
whereas H3K4me2 was not sufficient (AUROC = 0.816
and AUPR = 0.907; Fig. 3d; Additional file 1: Figure S4).
Combinations of DNase with H2A.Z or H3K4me1 yielded
very accurate predictions (AUROC = 0.952 and AUPR =
0.977; AUROC = 0.951 and AUPR = 0.976, respectively;
Fig. 3d; Additional file 1: Figure S4), close to the model
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Fig. 3 Prediction of double-strand breaks using epigenomic and chromatin data with random forests. a Receiver operating characteristic curve for
the prediction of double-strand breaks. Area under the ROC curve (AUROC) is plotted. b Variable importance of epigenomic and chromatin
variables. c Lasso logistic regression coefficients. d Different predictive models including all variables, DNase only, H3K4me2 only, DNase+H2A.Z, or
DNase+H3K4me1. AUROC area under the receiver operating characteristic curve

including all marks. Because DNase was a strong predic-
tor, we explored where DNase was absent at DSBs to iden-
tify other marks that could be predictive here. We thus
built a classifier using only DSBs that did not overlap any
DNase site. DSB sites were still predicted well (AUROC
= 0.869 and AUPR = 0.792; Additional file 1: Figure
S5a and S5b), and CTCF and H3K4me1 were the most
highly predictive variables (Additional file 1: Figure S5c).
This revealed enhancer looping as a major driver of DSBs,
in agreement with recent studies showing that DSBs form
at loop anchors [35] and that CTCF facilitates DSB repair
[36]. These results demonstrate that DSBs can be accu-
rately predicted at less than 1-kb resolution using just a
small amount of data.

Comparison with BLESS experiment and validation using
an independent dataset
We then compared previous DSB predictions with DSBs
identified by BLESS experiments [3, 6]. We also included

in the comparison DSBCapture DSBs as the gold standard
because of its higher sensitivity compared to BLESS:
84 821 DSBs were found by DSBCapture compared to
18 510 DSBs found by BLESS [6]. We first looked at pre-
dicted DSB sites surrounding the two genes MYC and
MAP2K3 (Fig. 4a). For MYC, random forests correctly
identified the four DSBs that were detected by DSBCap-
ture, but erroneously predicted one DSB (yellow circle),
whereas BLESS identified only one DSB out of four. For
MAP2K3, random forests successfully predicted all DSBs
detected by DSBCapture, whereas BLESS identified only
three DSBs out of 11.
We then compared predictions with BLESS at the

genome-wide level (Fig. 4b). We observed that random
forests correctly predicted 18 084 out of 18 510 DSB sites
(97.70%) found by BLESS, while it also successfully identi-
fied an additional 63 587 out of 66 591 DSB sites (95.49%)
found by DSBCapture that were not detected by BLESS.
The model misclassified only 1552 out of 83 225 predicted
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Fig. 4 Comparison of predicted and BLESS double-strand breaks (DSBs) and validation with an independent dataset. a Comparison for the MYC and
MAP2K3 genes. b Venn diagram illustrating the overlaps between DSBCapture, random forest DSBCapture-trained model predictions, and BLESS
DSBs. c Venn diagram illustrating the overlaps between DSBCapture, random forest BLESS-trained model predictions, and BLESS DSBs. d Comparison
of receiver operating characteristic (ROC) curves between DSBCapture-trained and BLESS-trained models. Areas under the ROC curves (AUROCs) are
plotted. e ROC curve for the prediction of DSBs trained on replicate 1 and tested on the same replicate. f ROC curve for the prediction of DSBs
trained on replicate 1 and tested on replicate 2. AUROC area under the ROC curve, DSB double-strand break, ROC receiver operating characteristic

DSB sites (1.86%). However, this previous prediction
comparison should be carefully interpreted, because the
model was learned from DSBCapture and then used to
predict DSBCapture and BLESS DSBs.
To demonstrate the power of model-based predictions

further, we devised another computational experiment,
which consisted of training the model with BLESS DSBs
and then predicting DSBCapture DSBs to test if the model
could predict DSBCapture DSBs that were not detected

by BLESS. Very interestingly, we found that the model was
able to predict an additional 55 048 out of 84 821 DSBs
(64.90%) that were detected by DSBCapture but not by
BLESS, and it identified only 605 DSBs out of 73 363 pre-
dicted DSBs (0.82%), which may be false positives not
detected by DSBCapture and BLESS (Fig. 4c).
We then sought to compare models learned using DSB-

Capture and BLESS DSBs with a fair benchmark. For
this, we devised the following strategy. A first model was
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learned from DSBCapture and was used to predict BLESS
DSB sites (the DSBCapture-trained model), and a second
model was learned from BLESS and was used to predict
DSBCapture DSB sites (the BLESS-trained model). We
found that both models had very good prediction per-
formance (AUROCmodel1 = 0.9776 and AUPRmodel1 =
0.971; AUROCmodel2 = 0.9662 and AUPRmodel2 = 0.983;
Fig. 4d; Additional file 1: Figure S6).
In the previous section, we evaluated the accuracy of

model predictions using a testing dataset that was from
the same data as the training data (DSBs that over-
lapped between two replicates were split into a training
dataset and a testing dataset). Here, we assessed model
predictions by training random forests on one biolog-
ical replicate and by testing prediction accuracy on a
second biological replicate. For this, we used the two
available DSBCapture biological replicates [6]. Accord-
ingly, we used ENCODE epigenomic and chromatin data
for which two biological replicates were available: DNase,
CTCF, H3K4me3, H3K27me3, and H3K36me3. The first
(respectively, second) replicates of the ENCODE data
were associated with the first (respectively, second) DSB-
Capture replicate. Using only those five DNase-seq and
ChIP-seq items, the model that was learned with the first
replicate achieved accurate predictions on the testing data
from the first replicate (AUROC = 0.891 and AUPR =
0.906; Fig. 4e; Additional file 1: Figure S7a). Note that the
observed lower accuracy compared to that in the previous
section (Fig. 3a,d) can be explained by the small amount
of available epigenomic and chromatin data, and the lower
reliability of DSBs identified using only one DSBCap-
ture replicate. To validate the model on an independent
dataset, we predicted DSBs from the second replicate
using themodel trained on the first replicate together with
DNase-seq and ChIP-seq data for the second replicate.
We obtained accurate predictions close to that obtained
for the first replicate (AUROC = 0.889 and AUPR = 0.913;
Fig. 4f; Additional file 1: Figure S7b). These accurate pre-
dictions demonstrate that using a classifier trained with
epigenome and chromatin data is a reliable strategy for
predicting DSBs.

The impact of controls on prediction
To assess if the high predictive accuracy of the model
was inflated due to the way we selected non-DSB sites
(the negative class), we devised different strategies. We
first focused on gene promoters and built a random forest
classifier to discriminate between promoters with DSBs
(16 801 sites) and promoters without (48 838 sites). As
previously done, we computed the ROC curve but we also
included the PR curve to account for class imbalance. We
obtained very good performance for both the ROC curve
(AUROC = 0.941; Fig. 5a) and the PR curve (AUPR =
0.860; Fig. 5b). Second, we built a classifier to discriminate

between gene bodies with DSBs (2187 sites) and gene bod-
ies without (34 573 sites). We also obtained a very good
ROC curve (AUROC = 0.943; Fig. 5c), but with a lower
PR curve because of the higher class imbalance in gene
bodies (AUPR = 0.538; Fig. 5d). Third, we built a classifier
to discriminate between enhancers with DSBs (7373 sites)
and enhancers without (38 521 sites). We again observed
a very good ROC curve (AUROC = 0.933; Fig. 5e) and
good PR (AUPR = 0.705; Fig. 5f). Fourth, we evaluated
predictions over the whole genome in an unbiased way.
For this, we split the genome into 250-base bins. Then we
built a classifier to discriminate between bins with DSBs
(189 132 bins) and bins without (11 362 262 bins). Using
this approach, we obtained very good ROC accuracy
(AUROC = 0.967) but with lower PR accuracy (AUPR
= 0.459) due to the high class imbalance, revealing a
high number of false positives detected genome-wide by
our method. We concluded that the excellent accuracy of
model-based predictions was not inflated due to the way
non-DSB sites were selected over the genome.

Prediction in another cell type
To validate our model-based predictions further, we used
the random forest learned from DSBs in one cell type
(NHEK) to predict DSBs in another cell type (U2OS). For
this, we used data that were available for both NHEK and
U2OS cells: DNA-seq, CTCF, H3K4me1/3, H3K9me3,
H3K27ac, H3K27me3, H3K36me3, and POL2B. The val-
idation is illustrated in Additional file 1: Figure S8. In
summary, we trained a random forest with DSBCapture
DSBs and DNase-seq and ChIP-seq data in NHEKs. We
then predicted DSBs in U2OS cells using the NHEK-
trained random forest with U2OS DNA-seq and ChIP-seq
data. We validated the predictions with U2OS DSB data.
To evaluate prediction accuracy, we used the DSB data

(DSBCapture [6] and BLESS [37]) that were generated for
a specific cell line called U20S AID-DIvA. These DSB data
were the only ones available in U20S. This cell line was a
U2OS cell line that expressed the AsiSI restriction enzyme
inducing DSBs at targeted sites [38]. To focus on endoge-
nous DSBs, we kept only DSB data that did not overlap
AsiSI sites. Most likely, only a fraction of all endoge-
nous DSBs in U2OS could be mapped because DSB read
coverage was low outside AsiSI sites.
In the first benchmark, we computed ROC and PR

curves to evaluate the accuracy of model-based pre-
dictions. We compared our DSB predictions to a list
of 2327 DSB sites identified by DSBCapture peak call-
ing and 6443 non-DSB sites that were randomly drawn.
Although this endogenous DSB list was far from complete,
we obtained good prediction accuracy (AUROC = 0.835;
CI95%: [0.824,0.846]; AUPR = 0.881; Fig. 6a; Additional
file 1: Figure. S9). In agreement, we found that U2OS
DSB prediction using a U2OS-trained random forest
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Fig. 5 Prediction of double-strand breaks (DSBs) using different controls. a Receiver operating characteristic (ROC) curve of a random forest
discriminating between promoters with DSBs and promoters without. Area under the ROC curve (AUROC) is plotted. b Precision–recall (PR) curve of
the random forest used in (a). Area under the PR curve (AUPR) is plotted. c ROC curve of a random forest discriminating between gene bodies with
DSBs and gene bodies without. d Precision–recall curve of the random forest used in (c). e ROC curve of a random forest discriminating between
enhancers with DSBs and enhancers without. f Precision–recall curve of the random forest used in (e). g ROC curve of a random forest
discriminating between 250-base bins with DSBs and 250-base bins without. h Precision–recall curve of the random forest used in (g). AUPR, area
under the PR curve, AUROC area under the ROC curve, DSB double-strand break, PR precision–recall, ROC receiver operating characteristic

yielded only slightly better predictions than using a
NHEK-trained random forest (AUROC = 0.859; CI95%:
[0.849,0.868]; AUPR= 0.904; Additional file 1: Figure S10).
Moreover, DNase and CTCF had the highest variable
importance, as found in NHEKs (Fig. 6b). Unfortunately,
we could not carry out the same ROC and PR curve anal-
yses with the BLESS data because not enough DSB sites
were identified by peak calling.
In the second benchmark, we split the genome into

250-base bins and then predicted DSBs genome-wide.
The model identified 87 190 bins with a high DSB score
(predicted DSBs) and 77 510 bins with a low DSB score
(predicted controls). As expected, we found a high enrich-
ment of both DSBCapture and BLESS reads at predicted
DSBs compared to predicted controls (Fig. 6c). On aver-
age, both DSBCapture and BLESS signals accordingly
increased with the predicted DSB signal (Additional file 1:
Figure S11a,b). Fortunately, there were also ChIP-seq
data available for XRCC4, a DNA repair protein involved
in non-homologous end-joining. Hence, we looked at
whether XRCC4 was recruited at predicted DSBs. We
found a high enrichment of XRCC4 at predicted DSBs
compared to predicted controls (Fig. 6c), and an increase
of the XRCC4 signal depending on the predicted DSB
signal (Additional file 1: Figure S11c). In addition,
ChIP-seq data were available for γ -H2AX, a histone mark

that is induced at a megabase domain scale after DSBs,
but is depleted on the few kilobases surrounding the
exact break point [38, 39]. Accordingly, we observed that
γ -H2AX was depleted at predicted DSBs compared to
predicted controls (Fig. 6c), andwe found a decrease of the
γ -H2AX signal with the predicted DSB signal (Additional
file 1: Figure S11d).
Additionally, we performed genome-wide DSB predic-

tions in two other cell types for which endogenous DSB
data were available, namely KBM7 (chronic myelogenous
leukemia) andMCF-7 (breast cancer). For KBM7 cells, we
used DNase-seq, CTCF, H3K4me1/me3, and H3K9me3
for prediction and BLISS for validation [40]. The model
identified 163 113 bins with a high DSB score (predicted
DSBs) and 115 204 bins with a low DSB score (predicted
controls). We found an enrichment of BLISS reads at pre-
dicted DSBs compared to predicted controls (Additional
file 1: Figure S12a). On average, the BLISS signal accord-
ingly increased with the predicted DSB signal (Additional
file 1: Figure S12b). For MCF-7 cells, we used DNase-seq,
CTCF, H3K4me1/me3, H3K9ac/me3, and H3K27me3 for
prediction and END-seq for validation [35]. The model
identified 54 746 bins with a high DSB score (predicted
DSBs) and 84 576 bins with a low DSB score (predicted
controls). As expected, we found an enrichment of
END-seq reads at predicted DSBs compared to predicted
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Fig. 6 Prediction of double-strand breaks (DSBs) using a random forest learned from DSBs in one cell type (NHEK) to predict DSBs in another cell
type (U2OS). a Receiver operating characteristic (ROC) curve to predict U2OS DSBs using the NHEK-learned random forest. Area under the ROC
curve (AUROC) is plotted. b Variable importance from the prediction of U2OS DSBs using the U2OS-learned random forest. c Average profiles of
DSBCapture, BLESS, XRCC4, and γ -H2AX at predicted DSB regions compared to non-DSB regions over the whole genome. AUROC area under the
ROC curve, DSB double-strand break, ROC receiver operating characteristic

controls (Additional file 1: Figure S12c). On average, the
END-seq signal accordingly increased with the predicted
DSB signal (Additional file 1: Figure S12d). We also tested
whether our predictions in MCF-7 cells overlapped
etoposide (ETO) induced DSBs mapped by END-seq.
Interestingly, we found a strong enrichment of ETO
END-seq reads at predicted DSBs compared to predicted
controls (Additional file 1: Figure S12e). On average, the
END-seq signal accordingly increased with the predicted
DSB signal (Additional file 1: Figure S12f).
All these results revealed that the strongest predictors

including DNase and CTCF were the same in two dif-
ferent cell types, and that accordingly, a random forest
learned in one cell type can efficiently predict DSBs in
another cell type.

Prediction from DNAmotifs and shape
We then explored the possibility of predicting DSBs based
onDNA sequence using DNAmotif occurrences.We built

a random forest classifier using 454 available motifs from
the JASPAR 2016 database and obtained good prediction
accuracy (AUROC = 0.827; CI95%: [0.819,0.831]; AUPR
= 0.910; Fig. 7a; Additional file 1: Figure S13a). Several
motifs from the transcription factor complex AP-1 were
good predictors, such as FOS::JUN (VI = 0.016) and FOS
(VI = 0.009) (Fig. 7b), which were previously shown to
be enriched at DSB sites (see Section “Results and dis
cussion”, DSBs are enriched with epigenome marks and
DNA motifs). Using lasso regression, we improved pre-
vious predictions (AUROC = 0.839; CI95%: [0.829,0.840];
AUPR = 0.919; Fig. 7a; Additional file 1: Figure S13a).
Based on lasso regression, we found that the CTCF motif
had the highest beta coefficient (β = 3.22), corresponding
to OR = 25 (Fig. 7c), supporting recent evidence showing
that long-range contacts are involved in DNA repair
[25, 35, 41]. Furthermore, motifs of tumor proteins p53,
p63, and p73 had high coefficients (β > 2.03, OR >

7.6), in agreement with previous predictions based on
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c d

Fig. 7 Prediction of double-strand breaks (DSBs) using DNA motifs and shape. a Receiver operating characteristic (ROC) curve for the DSB
predictions using DNA motifs from the JASPAR 2016 database. Random forest (RF) and lasso logistic regression were compared. b The 20 highest
DNA motif variable importance values. c The 20 highest DNA motif lasso coefficients. d ROC curve for the DSB predictions using DNA motifs with
DNA shape. AUROC area under the ROC curve, DSB double-strand break, RF random forest, ROC receiver operating characteristic

ChIP-seq data (see above). We also found motifs
recognized by factors involved in heavy metal response
(MTF-1: β = 2.08, OR = 8), in oxidative stress response
(NRF1: β = 0.93, OR = 2.53; REST: β = 1.75, OR =
5.75), in endoplasmic reticulum stress (ATF4: β = 0.97,
OR = 2.64), and in estrogen-induced DNA damage
(ESR1: β = 0.88, OR = 2.41). To assess the significance of
those motifs, we built a logistic regression model without
any regularization including all motifs with β > 0.5. We
found that most motifs (22/29) were significantly associ-
ated with DSBs (p < 0.05 after false discovery correction;
Additional file 1: Table S2). Many of the above mentioned
proteins have been shown to interact with each other.
For instance, NRF1 associates with Jun proteins of the
AP-1 complex [42]. ESR1 associates with AP-1/JUN and
FOS to mediate estrogen element response-independent
signaling [43].

DNA shape was recently shown to predict transcrip-
tion factor binding sites and gene expression [14, 44].
Thus, we assessed if DNA shape could similarly serve
to predict DSBs together with motifs. For this, we pre-
dicted four DNA shape features using simulations: minor
groove width (MGW), propeller twist (ProT), roll (Roll),
and helix twist (HelT) of DSB sites at base resolution.
From each feature, we computed 12 predictors includ-
ing quantiles (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and
100%) and the variance to describe the distribution of
the feature within a DSB site. We used the resulting 48
variables combined with motif occurrences to predict
DSBs with random forests and obtained better accuracy
(AUROC = 0.838 and AUPR = 0.915; Fig. 7d; Additional
file 1: Figure S13b) compared to using motifs alone
(AUROC = 0.827 and AUPR = 0.910; Fig. 7a; Additional
file 1: Figure S13a). Among the DNA shape variables,
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ProT median and MGW variance had the highest vari-
able importance (VI = 0.01 and VI = 0.01, respectively).
Using lasso regression, we also obtained better predic-
tions (AUROC = 0.858), compared to using motifs only
(AUROC = 0.839 and AUPR = 0.928; Fig. 7d; Additional
file 1: Figure S13b). These results reflect the importance of
DNA shape in determining DSB sites, in agreement with
studies showing that narrow minor grooves (created by
either sequence context or DNA bending) limit access of
reactive oxygen species [45].

Conclusions
DSBs are a major threat to a cell and they are associated
with cancer development. Over the past years, new tech-
niques have been developed to map DSBs at high reso-
lution and genome-wide level. However, these techniques
are costly and challenging. Here, we show, for the first
time, that such DSBs can be computationally predicted
using public epigenomic data, even when the availabil-
ity of data is limited (e.g., DNase I and H3K4me1). By
using state-of-the-art computational models, we achieve
excellent prediction accuracy, paving the way for a better
understanding of DSB formation depending on develop-
mental stage or cell-type specific epigenetic marks. Thus,
our computational approach should allow the genome-
wide mapping of DSBs in numerous cell lines and tissues
using the ENCODE and Roadmap Epigenomics databases.
There are multiple perspectives for this work. Recent

developments from deep (convolutional) neural networks
[13, 46] can improve model predictions and decrease the
number of false positives at the genome level. In addition,
our current model did not account for the impact of
copy number variation in cancer cells on prediction, and
future studies should integrate copy number variation as
a quantitative predictor variable in the model to correct
for this bias.

Methods
Double-strand breaks
All double-strand DNA break data used are summa-
rized in Table 1. We used double-strand DNA breaks
mapped by DSBCapture and BLESS in human epidermal

keratinocyte (NHEK) cells from the Gene Expression
Omnibus (GEO) accession GSE78172 [6]. DSBCap-
ture and BLESS peaks were called using MACS 2.1.0
on human genome assembly hg19 (https://github.com/
taoliu/MACS). The peaks obtained from two biological
replicates were intersected to yield more reliable DSB sites
for model predictions.
We used double-strand DNA breaks mapped by

DSBCapture and BLESS in AID-DIvA cells, a U2OS cell
line (human bone osteosarcoma epithelial cells) express-
ing the AsiSI restriction enzyme fused to a modified
estrogen receptor ligand-binding domain [38]. Upon
tamoxifen treatment, AsiSI induces sequence-specific
DSBs at GCGATCGC sites. DSBCapture data were from
tamoxifen-treated cells from GEO accession GSE78172
[6]. DSBCapture peaks were called using MACS 2.1.0 on
human genome assembly hg19. BLESS data were from
untreated cells arrested in G1 phase from ArrayExpress
accession E-MTAB-4846 [37]. Because of the low cov-
erage of BLESS data, a sufficient number of DSB peaks
could not be called.
We used double-strand DNA breaks mapped by BLISS

in KBM7 cells (human myeloid leukemia) from NCBI
Sequence Read Archive at SRP099132 [40]. We also
used double-strand DNA breaks mapped by END-seq
in untreated and etoposide-treated MCF-7 cells (human
breast cancer) from GSE99197 [35].

ChIP-seq and DNase-seq data
All ChIP-seq and DNase-seq data used are summarized
in Table 2. We used ChIP-seq uniform peaks (CTCF,
POL2B, EZH2, H3K4me1/me2/me3, H3K9me1/me3/ac,
H3K27me3/ac, H3K36me3, H3K79me2, H4K20me1, and
H2A.Z) and DNase-seq uniform peaks for NHEKs
from the ENCODE project [7] (https://genome.ucsc.edu/
encode).We also used p63 ChIP-seq of keratinocytes from
GEO accession GSE59827 [21].
For U2OS cells, we used DNase-seq andH3K27ac ChIP-

seq peaks from GEO accession GSE87831 [47]. We used
H3K4me1 and POL2B ChIP-seq peaks from GEO acces-
sion GSE73742 [48]. We used H3K4me3 and H3K27me3
ChIP-seq peaks from GSE35573 [49]. We used H3K9me3

Table 1 Double-strand DNA break data summary

Cell line Treatment Technique Number of replicates Accession

NHEK No treatment DSBCapture 2 GSE78172

NHEK No treatment BLESS 2 GSE78172

U2OS 4-hydroxytamoxifen DSBCapture 1 GSE78172

U2OS No treatment BLESS 1 E-MTAB-4846

KBM7 No treatment BLISS 1 SRP099132

MCF-7 No treatment END-seq 1 GSE99197

MCF-7 Etoposide END-seq 1 GSE99197

https://github.com/taoliu/MACS
https://github.com/taoliu/MACS
https://genome.ucsc.edu/encode
https://genome.ucsc.edu/encode
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Table 2 ChIP-seq and DNase-seq data summary

Cell line Treatment Technique Number of replicates Accession

NHEK No treatment CTCF, H3K4me3, H3K27me3,
H3K36me3 ChIP-seq

2 ENCODE uniform peaks

NHEK No treatment EZH2, H3K4me1/me2,
H3K9me1/me3/ac, H3K79me2,
H4K20me1, H2A.Z, H3K27ac, POL2B
ChIP-seq

1 ENCODE uniform peaks

NHEK No treatment DNase-seq 2 ENCODE uniform peaks

NHEK No treatment p63 ChIP-seq 1 GSE59827

U2OS No treatment DNase-seq, H3K27ac ChIP-seq 1 GSE87831

U2OS No treatment H3K4me1, POL2B ChIP-seq 1 GSE73742

U2OS No treatment H3K4me3, H3K27me3 ChIP-seq 1 GSE35573

U2OS No treatment H3K9me3, H3K36me3 ChIP-seq 1 ENCODE

U2OS No treatment CTCF ChIP-seq 1 ChIP-Atlas

U2OS 4-hydroxytamoxifen XRCC4, γ -H2A.X ChIP-seq 1 E-MTAB-1241

KBM7 No treatment DNase-seq 1 ChIP-Atlas

KBM7 No treatment H3K9me3 ChIP-seq 1 GSE60056

K562 No treatment CTCF, H3K4me1/me3 ChIP-seq 1 ENCODE

MCF-7 No treatment H3K4me1/me3, H3K9ac/me3,
H3K27me3 ChIP-seq

1 GSE23701

MCF-7 No treatment DNase-seq and CTCF ChIP-seq 1 ENCODE

and H3K36me3 ChIP-seq peaks from ENCODE [7]. We
used CTCF ChIP-seq peaks from the ChIP-Atlas database
(http://chip-atlas.org/). We used XRCC4 and γ -H2A.X
ChIP-seq for tamoxifen-treated DIvA cells from ArrayEx-
press accession E-MTAB-1241 [37].
For KBM7 cells, we used DNase-seq from the ChIP-

Atlas database, and H3K9me3 ChIP-seq from GSE60056
[50]. Instead of KBM7, we used K562 (chronic myel-
ogenous leukemia) for CTCF, H3K4me1/me3 ChIP-seq
from the ENCODE project [7] (https://genome.ucsc.
edu/encode). For MCF-7 cells, we used H3K4me1/me3,
H3K9ac/me3, and H3K27me3 ChIP-seq without treat-
ment (DMSO) from GSE23701 [51, 52]. We used DNase-
seq and CTCF ChIP-seq from ENCODE [7].

DNAmotifs
We used motif position frequency matrices for tran-
scription factor binding sites from the JASPAR 2016
database (http://jaspar.genereg.net). We called transcrip-
tion factor binding sites over the human genome using
the position weight matrices and a minimum matching
score of 80%.

DNA shape
We predicted four DNA shape features using Monte
Carlo simulations: minor groove width (MGW) and
propeller twist (ProT) at base pair resolution and roll
(Roll) and helix twist (HelT) at base pair step resolution
using R package DNAshapeR (https://bioconductor.org/
packages/release/bioc/html/DNAshapeR.html).

Random forest and lasso regression
We used R package ranger (https://cran.r-project.org/
web/packages/ranger) to compute the random forest clas-
sification efficiently [30]. We used the default package
parameters: num.trees=500 and mtry is the square
root of the number of variables. Variable importance
was computed using the mean decrease in accuracy in
the out-of-bag sample. To discriminate between DSB and
non-DSB sites, we randomly selected genomic sequences
that matched sizes, GC, and repeat contents of DSB
sites using R package gkmSVM (https://cran.r-project.
org/web/packages/gkmSVM). To learn the model, we
mapped epigenomic data, DNA motifs, and DNA shape
as follows. For epigenomic data including ChIP-seq and
DNase-seq data, we used peak genomic coordinates of
a feature (for instance, CTCF binding sites) and consid-
ered the presence (x = 1) or absence (x = 0) of the
corresponding feature at the DSB site. If a feature peak
overlapped only 60% of the DSB site, then x = 0.6. For
DNA motifs, we computed the number of motif occur-
rences within DSB and non-DSB sites. For DNA shape,
we computed four features including MGW, ProT, Roll,
and HelT of DSB sites at base resolution. For each DNA
shape feature, we then computed 12 predictors, includ-
ing quantiles (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and
100%) and the variance to describe the distribution of
the feature within a DSB site. The DSB data were next
split into two sets: the training set used for learning
the model and a test set used for assessing prediction

http://chip-atlas.org/
https://genome.ucsc.edu/encode
https://genome.ucsc.edu/encode
http://jaspar.genereg.net
https://bioconductor.org/packages/release/bioc/html/DNAshapeR.html
https://bioconductor.org/packages/release/bioc/html/DNAshapeR.html
https://cran.r-project.org/web/packages/ranger
https://cran.r-project.org/web/packages/ranger
https://cran.r-project.org/web/packages/gkmSVM
https://cran.r-project.org/web/packages/gkmSVM
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accuracy. We also used R package glmnet (https://cran.
r-project.org/web/packages/glmnet/index.html) to com-
pute lasso logistic regression with cross-validation. To
assess the prediction accuracy of random forest and lasso
regression, we computed the ROC curve and AUROC.
To estimate the confidence interval for AUROC, we
used the pROC R package (https://cran.r-project.org/
web/packages/pROC). We also computed the PR curve
and AUPR to assess prediction accuracy when the classes
were very imbalanced, especially for genome-wide analy-
ses. For this, we used the PRROC R package (https://cran.
r-project.org/web/packages/PRROC).

Additional file

Additional file 1: Additional figures and tables. Figures S1–13 and
Tables S1, S2. (PDF 1618 kb)

Acknowledgments
The authors are grateful to the Balasubramanian lab (Babraham Institute, UK),
to the Crosetto lab (Karolinska Institutet, Sweden), and to the Nussenzweig lab
(National Institutes of Health, USA) for data and for help in processing the data.

Funding
This work was supported by the University of Toulouse and by the CNRS.
Funding for open access charge: Fondation pour la Recherche Médicale
(DEQ20160334940).

Availability of data andmaterials
The pipeline was developed in the R language and is available at
https://github.com/morphos30/PredDSB [53] under Apache License 2.0. The
v1.0 release was deposited at https://zenodo.org/badge/latestdoi/117546880
with DOI 10.5281/zenodo.1174011.
The data used in this study were downloaded using the following accession
numbers and databases:

• GSE78172 (NHEK DSBCapture and BLESS) [6]
• GSE78172 (U2OS AID-DIvA DSBCapture) [6]
• E-MTAB-4846 (U2OS AID-DIvA BLESS) [37]
• SRP099132 (KBM7 BLISS) [40]
• GSE99197 (MCF-7 END-seq) [35]
• ENCODE (NHEK ChIP-seq and DNase-seq) [7]
• GSE59827 (NHEK p63 ChIP-seq) [21]
• GSE87831 (U2OS DNase-seq and H3K27ac ChIP-seq) [47]
• GSE73742 (U2OS H3K4me1 and POL2B ChIP-seq) [48]
• GSE35573 (U2OS H3K4me3 and H3K27me3 ChIP-seq) [49]
• ENCODE (U2OS H3K9me3 and H3K36me3 ChIP-seq) [7]
• ChIP-Atlas database (U2OS CTCF ChIP-seq) [54]
• E-MTAB-1241 (U2OS XRCC4 and γ -H2A.X ChIP-seq) [37]
• ChIP-Atlas database (KBM7 DNase-seq) [54]
• GSE60056 (KBM7 H3K9me3 ChIP-seq) [50]
• ENCODE (K562 CTCF and H3K4me1/me3 ChIP-seq) [7]
• GSE23701(MCF-7H3K4me1/me3,H3K9ac/me3,H3K27me3ChIP-seq)[51, 52]
• ENCODE (MCF-7 DNase-seq and CTCF ChIP-seq) [7].

Authors’ contributions
RM supervised the project, conceived the method, wrote the code, designed
the data analysis, and analyzed the data. KG performed the BLESS experiments
for U2OS AID-DIvA cells. RM, GL, and OC interpreted the results and wrote the
paper. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1LBME, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS,
118, route de Narbonne, 31062 Toulouse, France. 2Laboratory of
Bioinformatics and Systems Biology, Centre of New Technologies, University of
Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland. 3LBCMCP, Centre de
Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118, route de
Narbonne, 31062 Toulouse, France.

Received: 30 October 2017 Accepted: 22 February 2018

References
1. McKinnon PJ, Caldecott KW. DNA strand break repair and human genetic

disease. Annu Rev Genomics Hum Genet. 2007;8(1):37–55. https://doi.
org/10.1146/annurev.genom.7.080505.115648.

2. Mehta A, Haber JE. Sources of DNA double-strand breaks and models of
recombinational DNA repair. Cold Spring Harb Perspect Biol. 2014;6(9):
016428. https://doi.org/10.1101/cshperspect.a016428.
http://cshperspectives.cshlp.org/content/6/9/a016428.full.pdf+html.

3. Crosetto N, Mitra A, Silva MJ, Bienko M, Dojer N, Wang Q, et al.
Nucleotide-resolution DNA double-strand break mapping by
next-generation sequencing. Nat Methods. 2013;10(4):361–5. https://doi.
org/10.1038/nmeth.2408.

4. Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, et al.
GUIDE-seq enables genome-wide profiling of off-target cleavage by
CRISPR-Cas nucleases. Nat Biotechnol. 2015;33(2):187–97.

5. Canela A, Sridharan S, Sciascia N, Tubbs A, Meltzer P, Sleckman B, et al.
DNA breaks and end resection measured genome-wide by end
sequencing. Mol Cell. 2016;63(5):898–911.

6. Lensing SV, Marsico G, Hansel-Hertsch R, Lam EY, Tannahill D,
Balasubramanian S. DSBCapture: in situ capture and sequencing of DNA
breaks. Nat Methods. 2016;13(10):855–7.
https://doi.org/10.1038/nmeth.3960.

7. The ENCODE Consortium. An integrated encyclopedia of DNA elements
in the human genome. Nature. 2012;489(7414):57–74. https://doi.org/10.
1038/nature11247.

8. TheRoadmapEpigenomicsConsortium, Kundaje A, Meuleman W, Ernst J,
Bilenky M, Yen A, Heravi-Moussavi A, et al. Integrative analysis of 111
reference human epigenomes. Nature. 2015;518(7539):317–30.
https://doi.org/10.1038/nature14248.

9. Kleftogiannis D, Kalnis P, Bajic VB. DEEP: a general computational
framework for predicting enhancers. Nucleic Acids Res. 2014;43(1):6.
https://doi.org/10.1093/nar/gku1058.

10. Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and
characterization. Nat Methods. 2012;9(3):215–6. https://doi.org/10.1038/
nmeth.1906.

11. Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ. How
chromatin-binding modules interpret histone modifications: lessons from
professional pocket pickers. Nat Struct Mol Biol. 2007;14(11):1025–40.
https://doi.org/10.1038/nsmb1338.

12. Whitaker JW, Chen Z, Wang W. Predicting the human epigenome from
DNA motifs. Nat Methods. 2015;12(3):265–72.

13. Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with
deep learning-based sequence model. Nat Methods. 2015;12(10):931–4.
https://doi.org/10.1038/nmeth.3547.

14. Mathelier A, Xin B, Chiu TP, Yang L, Rohs R, Wasserman WW. DNA shape
features improve transcription factor binding site predictions in vivo. Cell
Syst. 2016;3(3):278–864. https://doi.org/10.1016/j.cels.2016.07.001.

15. Hayashi K, Yoshida K, Matsui Y. A histone H3 methyltransferase controls
epigenetic events required for meiotic prophase. Nature. 2005;438(7066):
374–8. https://doi.org/10.1038/nature04112.

16. Myers S, Bowden R, Tumian A, Bontrop RE, Freeman C, MacFie TS. Drive
against hotspot motifs in primates implicates the PRDM9 gene in meiotic
recombination. Science. 2010;327(5967):876–9. https://doi.org/10.1126/

https://cran.r-project.org/web/packages/glmnet/index.html
https://cran.r-project.org/web/packages/glmnet/index.html
https://cran.r-project.org/web/packages/pROC
https://cran.r-project.org/web/packages/pROC
https://cran.r-project.org/web/packages/PRROC
https://cran.r-project.org/web/packages/PRROC
https://doi.org/10.1186/s13059-018-1411-7
https://github.com/morphos30/PredDSB
https://zenodo.org/badge/latestdoi/117546880
https://doi.org/10.1146/annurev.genom.7.080505.115648
https://doi.org/10.1146/annurev.genom.7.080505.115648
https://doi.org/10.1101/cshperspect.a016428
http://cshperspectives.cshlp.org/content/6/9/a016428.full.pdf+html
https://doi.org/10.1038/nmeth.2408
https://doi.org/10.1038/nmeth.2408
https://doi.org/10.1038/nmeth.3960
https://doi.org/10.1038/nature11247
https://doi.org/10.1038/nature11247
https://doi.org/10.1038/nature14248
https://doi.org/10.1093/nar/gku1058
https://doi.org/10.1038/nmeth.1906
https://doi.org/10.1038/nmeth.1906
https://doi.org/10.1038/nsmb1338
https://doi.org/10.1038/nmeth.3547
https://doi.org/10.1016/j.cels.2016.07.001
https://doi.org/10.1038/nature04112
https://doi.org/10.1126/science.1182363


Mourad et al. Genome Biology  (2018) 19:34 Page 14 of 14

science.1182363. http://science.sciencemag.org/content/327/5967/876.
full.pdf.

17. Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M. PRDM9
is a major determinant of meiotic recombination hotspots in humans and
mice. Science. 2010;327(5967):836–40. https://doi.org/10.1126/science.
1183439. http://science.sciencemag.org/content/327/5967/836.full.pdf.

18. Kinner A, Wu W, Staudt C, Iliakis G. γ -H2AX in recognition and signaling
of DNA double-strand breaks in the context of chromatin. Nucleic Acids
Res. 2008;36(17):5678–94. https://doi.org/10.1093/nar/gkn550.

19. Price BD, D’Andrea AD. Chromatin remodeling at DNA double-strand
breaks. Cell. 2013;152(6):1344–54. https://doi.org/10.1016/j.cell.2013.02.011.

20. Ghandi M, Mohammad-Noori M, Ghareghani N, Lee D, Garraway L,
Beer MA. gkmSVM: an R package for gapped-kmer SVM. Bioinformatics.
2016;32(14):2205–7. https://doi.org/10.1093/bioinformatics/btw203.

21. Kouwenhoven EN, Oti M, Niehues H, van Heeringen SJ, Schalkwijk J,
Stunnenberg HG, et al. Transcription factor p63 bookmarks and regulates
dynamic enhancers during epidermal differentiation. EMBO Rep.
2015;16(7):863–78. https://doi.org/10.15252/embr.201439941.

22. Mathelier A, Fornes O, Arenillas DJ, Chen C-Y, Denay G, Lee J, et al.
JASPAR 2016: a major expansion and update of the open-access database
of transcription factorbindingprofiles.NucleicAcidsRes.2016;44(D1):110–5.
https://doi.org/10.1093/nar/gkv1176.

23. Chiu TP, Comoglio F, Zhou T, Yang L, Paro R, Rohs R. DNAshapeR: an
R/Bioconductor package for DNA shape prediction and feature encoding.
Bioinformatics. 2016;32(8):1211–3. https://doi.org/10.1093/
bioinformatics/btv735.

24. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc
Ser B (Methodol). 1996;58(1):267–88. https://doi.org/10.2307/2346178.

25. Tchurikov NA, Fedoseeva DM, Sosin DV, Snezhkina AV, Melnikova NV,
Kudryavtseva AV, et al. Hot spots of DNA double-strand breaks and
genomic contacts of human rDNA units are involved in epigenetic
regulation. J Mol Cell Biol. 2015;7(4):366–82. https://doi.org/10.1093/
jmcb/mju038.

26. Caron P, Aymard F, Iacovoni JS, Briois S, Canitrot Y, Bugler B, et al.
Cohesin protects genes against γ -H2AX induced by DNA double-strand
breaks. PLoS Genet. 2012;8(1):10002460. https://doi.org/10.1371/journal.
pgen.1002460.

27. Phillips-Cremins JE, Sauria MEG, Sanyal A, Gerasimova TI, Lajoie BR,
Bell JSK, et al. Architectural protein subclasses shape 3D organization of
genomes during lineage commitment. Cell. 2013;153(6):1281–95.
https://doi.org/10.1016/j.cell.2013.04.053.

28. Lin YL, Sengupta S, Gurdziel K, Bell GW, Jacks T, Flores ER. p63 and p73
transcriptionally regulate genes involved in DNA repair. PLOS Genet.
2009;5(10):1000680. https://doi.org/10.1371/journal.pgen.1000680.

29. Williams AB, Schumacher B. p53 in the DNA-damage-repair process. Cold
Spring Harb Perspect Med. 2016;6(5):026070. https://doi.org/10.1101/
cshperspect.a026070. http://perspectivesinmedicine.cshlp.org/content/
6/5/a026070.full.pdf+html.

30. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. https://doi.org/
10.1023/A:1010933404324.

31. Jacquet K, Fradet-Turcotte A, Avvakumov N, Lambert JP, Roques C,
Pandita R, et al. The TIP60 complex regulates bivalent chromatin
recognition by 53BP1 through direct H4K20me binding and H2AK15
acetylation. Mol Cell. 2016;62(3):409–21. https://doi.org/10.1016/j.molcel.
2016.03.031.

32. Tjeertes JV, Miller KM, Jackson SP. Screen for DNA-damage-responsive
histone modifications identifies H3K9Ac and H3K56Ac in human cells.
EMBO J. 2009;28(13):1878–89. https://doi.org/10.1038/emboj.2009.119.
http://emboj.embopress.org/content/28/13/1878.full.pdf.

33. Lhoumaud P, Hennion M, Gamot A, Cuddapah S, Queille S, Liang J, et al.
Insulators recruit histone methyltransferase dMes4 to regulate chromatin
of flanking genes. EMBO J. 2014;33(14):1599–613.
https://doi.org/10.15252/embj.201385965.

34. Pfister SX, Ahrabi S, Zalmas LP, Sarkar S, Aymard F, Bachrati CZ, et al.
SETD2-dependent histone H3K36 trimethylation is required for
homologous recombination repair and genome stability. Cell Rep.
2014;7(6):2006–18. https://doi.org/10.1016/j.celrep.2014.05.026.

35. Canela A, Maman Y, Jung S, Wong N, Callen E, Day A, et al. Genome
organization drives chromosome fragility. Cell. 2017;170(3):507–2118.
https://doi.org/10.1016/j.cell.2017.06.034.

36. Hilmi K, Jangal M, Marques M, Zhao T, Saad A, Zhang C, et al. CTCF
facilitates DNA double-strand break repair by enhancing homologous
recombination repair. Sci Adv. 2017;3(5):1601898. https://doi.org/10.
1126/sciadv.1601898. http://advances.sciencemag.org/content/3/5/
e1601898.full.pdf.

37. Aymard F, Aguirrebengoa M, Guillou E, Javierre BM, Bugler B, Arnould
C, et al. Genome-wide mapping of long-range contacts unveils clustering
of DNA double-strand breaks at damaged active genes. Nat Struct Mol
Biol. 2017;24(4):353–61. https://doi.org/10.1038/nsmb.3387.

38. Iacovoni JS, Caron P, Lassadi I, Nicolas E, Massip L, Trouche D, et al.
High-resolution profiling of γ -H2AX around DNA double strand breaks in
the mammalian genome. EMBO J. 2010;29(8):1446–57. https://doi.org/10.
1038/emboj.2010.38. http://emboj.embopress.org/content/29/8/1446.
full.pdf.

39. Savic V, Yin B, Maas NL, Bredemeyer AL, Carpenter AC, Helmink BA, et
al. Formation of dynamic γ -H2AX domains along broken DNA strands is
distinctly regulated by ATM and MDC1 and dependent upon H2AX
densities in chromatin. Mol Cell. 2009;34(3):298–310. https://doi.org/10.
1016/j.molcel.2009.04.012.

40. YanWX, MirzazadehR, GarneroneS, ScottD, SchneiderMW, Kallas T, et al.
BLISS is a versatile and quantitative method for genome-wide profiling of
DNA double-strand breaks. Nat Commun. 2017;8:15058. https://doi.org/
10.1038/ncomms15058.

41. Bekker-Jensen S, Mailand N. Assembly and function of DNA
double-strand break repair foci in mammalian cells. DNA Repair.
2010;9(12):1219–28. https://doi.org/10.1016/j.dnarep.2010.09.010.

42. Venugopal R, Jaiswal AK. Nrf2 and Nrf1 in association with Jun proteins
regulate antioxidant response element-mediated expression and
coordinated induction of genes encoding detoxifying enzymes.
Oncogene. 1998;17(24):3145–56.

43. Kushner PJ, Agard DA, Greene GL, Scanlan TS, Shiau AK, Uht RM, et al.
Estrogen receptor pathways to AP-1. J Steroid Biochem Mol Biol.
2000;74(5):311–7.

44. Peng PC, Sinha S. Quantitative modeling of gene expression using DNA
shape features of binding sites. Nucleic Acids Res. 2016;44(13):120.
https://doi.org/10.1093/nar/gkw446.

45. Cannan WJ, Pederson DS. Mechanisms and consequences of
double-strand DNA break formation in chromatin. J Cell Physiol.
2016;231(1):3–14. https://doi.org/10.1002/jcp.25048.

46. Kim SG, Harwani M, Grama A, Chaterji S. EP-DNN: a deep neural
network-based global enhancer prediction algorithm. Sci Rep.
2016;6:38433.

47. Ibarra A, Benner C, Tyagi S, Cool J, Hetzer MW. Nucleoporin-mediated
regulation of cell identity genes. Gene Dev. 2016;30(20):2253–8.
https://doi.org/10.1101/gad.287417.116.

48. Pradhan SK, Su T, Yen L, Jacquet K, Huang C, Cote J, et al. EP400
deposits H3.3 into promoters and enhancers during gene activation. Mol
Cell. 2016;61(1):27–38. https://doi.org/10.1016/j.molcel.2015.10.039.

49. Easwaran H, Johnstone SE, Van Neste L, Ohm J, Mosbruger T, Wang Q,
et al. A DNA hypermethylation module for the stem/progenitor cell
signature of cancer. Genome Res. 2012;22(5):837–49. https://doi.org/10.
1101/gr.131169.111.

50. Tchasovnikarova IA, Timms RT, Matheson NJ, Wals K, Antrobus R,
Göttgens B. Epigenetic silencing by the HUSH complex mediates position
-effect variegation inhuman cells. Science. 2015;348(6242):1481–5.
https://doi.org/10.1126/science.aaa7227.

51. Joseph R, Orlov YL, Huss M, Sun W, Li Kong S, Ukil L. Integrative model
of genomic factors for determining binding site selection by estrogen
receptor-α.MolSystBiol. 2010;6:456. https://doi.org/10.1038/msb.2010.109.

52. Kong SL, Li G, Loh SL, Sung WK, Liu ET. Cellular reprogramming by the
conjoint action of ERα, FOXA1, and GATA3 to a ligand-inducible growth
state. Mol Syst Biol. 2011;7:526. https://doi.org/10.1038/msb.2011.59.

53. Mourad R. morphos30/preddsb v1.0. GitHub. 2018. https://doi.org/10.
5281/zenodo.1174011. https://github.com/morphos30/PredDSB.

54. Oki S, Ohta T, Shioi G, Hatanaka H, Ogasawara O, Okuda Y, et al.
Integrative analysis of transcription factor occupancy at enhancers and
disease risk loci in noncoding genomic regions. bioRxiv. 2018:262899.
https://doi.org/10.1101/262899.

https://doi.org/10.1126/science.1182363
http://science.sciencemag.org/content/327/5967/876.full.pdf
http://science.sciencemag.org/content/327/5967/876.full.pdf
https://doi.org/10.1126/science.1183439
https://doi.org/10.1126/science.1183439
http://science.sciencemag.org/content/327/5967/836.full.pdf
https://doi.org/10.1093/nar/gkn550
https://doi.org/10.1016/j.cell.2013.02.011
https://doi.org/10.1093/bioinformatics/btw203
https://doi.org/10.15252/embr.201439941
https://doi.org/10.1093/nar/gkv1176
https://doi.org/10.1093/bioinformatics/btv735
https://doi.org/10.1093/bioinformatics/btv735
https://doi.org/10.2307/2346178
https://doi.org/10.1093/jmcb/mju038
https://doi.org/10.1093/jmcb/mju038
https://doi.org/10.1371/journal.pgen.1002460
https://doi.org/10.1371/journal.pgen.1002460
https://doi.org/10.1016/j.cell.2013.04.053
https://doi.org/10.1371/journal.pgen.1000680
https://doi.org/10.1101/cshperspect.a026070
https://doi.org/10.1101/cshperspect.a026070
http://perspectivesinmedicine.cshlp.org/content/6/5/a026070.full.pdf+html
http://perspectivesinmedicine.cshlp.org/content/6/5/a026070.full.pdf+html
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.molcel.2016.03.031
https://doi.org/10.1016/j.molcel.2016.03.031
https://doi.org/10.1038/emboj.2009.119
http://emboj.embopress.org/content/28/13/1878.full.pdf
https://doi.org/10.15252/embj.201385965
https://doi.org/10.1016/j.celrep.2014.05.026
https://doi.org/10.1016/j.cell.2017.06.034
https://doi.org/10.1126/sciadv.1601898
https://doi.org/10.1126/sciadv.1601898
http://advances.sciencemag.org/content/3/5/e1601898.full.pdf
http://advances.sciencemag.org/content/3/5/e1601898.full.pdf
https://doi.org/10.1038/nsmb.3387
https://doi.org/10.1038/emboj.2010.38
https://doi.org/10.1038/emboj.2010.38
http://emboj.embopress.org/content/29/8/1446.full.pdf
http://emboj.embopress.org/content/29/8/1446.full.pdf
https://doi.org/10.1016/j.molcel.2009.04.012
https://doi.org/10.1016/j.molcel.2009.04.012
https://doi.org/10.1038/ncomms15058
https://doi.org/10.1038/ncomms15058
https://doi.org/10.1016/j.dnarep.2010.09.010
https://doi.org/10.1093/nar/gkw446
https://doi.org/10.1002/jcp.25048
https://doi.org/10.1101/gad.287417.116
https://doi.org/10.1016/j.molcel.2015.10.039
https://doi.org/10.1101/gr.131169.111
https://doi.org/10.1101/gr.131169.111
https://doi.org/10.1126/science.aaa7227
https://doi.org/10.1038/msb.2010.109
https://doi.org/10.1038/msb.2011.59
https://doi.org/10.5281/zenodo.1174011
https://doi.org/10.5281/zenodo.1174011
https://github.com/morphos30/PredDSB
https://doi.org/10.1101/262899

	Abstract
	Keywords

	Background
	Results and discussion
	Double-strand break prediction approach
	Double-strand breaks are enriched with epigenome marks and DNA motifs
	Prediction using epigenomic and chromatin data
	Comparison with BLESS experiment and validation using an independent dataset
	The impact of controls on prediction
	Prediction in another cell type
	Prediction from DNA motifs and shape

	Conclusions
	Methods
	Double-strand breaks
	ChIP-seq and DNase-seq data
	DNA motifs
	DNA shape
	Random forest and lasso regression

	Additional file
	Additional file 1

	Acknowledgments
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

