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CD146, from a melanoma cell adhesion molecule to a signaling

receptor

Zhaoging Wang', Qingji Xu'?, Nengwei Zhang®, Xuemei Du*, Guangzhong Xu® and Xiyun Yan'?®

CD146 was originally identified as a melanoma cell adhesion molecule (MCAM) and highly expressed in many tumors and
endothelial cells. However, the evidence that CD146 acts as an adhesion molecule to mediate a homophilic adhesion through the
direct interactions between CD146 and itself is still lacking. Recent evidence revealed that CD146 is not merely an adhesion
molecule, but also a cellular surface receptor of miscellaneous ligands, including some growth factors and extracellular matrixes.
Through the bidirectional interactions with its ligands, CD146 is actively involved in numerous physiological and pathological
processes of cells. Overexpression of CD146 can be observed in most of malignancies and is implicated in nearly every step of the
development and progression of cancers, especially vascular and lymphatic metastasis. Thus, immunotherapy against CD146 would
provide a promising strategy to inhibit metastasis, which accounts for the majority of cancer-associated deaths. Therefore, to
deepen the understanding of CD146, we review the reports describing the newly identified ligands of CD146 and discuss the
implications of these findings in establishing novel strategies for cancer therapy.
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INTRODUCTION
In 1987, Johnson et al. first found that a tumor antigen, MUC18,
was expressed most strongly on metastatic lesions and advanced
primary melanoma with rare detection in benign lesions. Due to
the high sequence homology between MUC18 with cell adhesion
molecules (CAMs), this melanoma antigen was given an official
name, melanoma CAM (MCAM)." With an increasing number of
discoveries about MCAM by various research groups, more alias
names were given to this protein, including PTH12, MUC18, A32
antigen, S-Endo-1, Mel-CAM, MET-CAM, HEMCAM, or CD146.'

CAM is a kind of proteins located on the cell surface and
mediates contacting and binding of cell to cell or cell to
extracellular matrix (ECM).* These dynamic interactions provide
signals input into the cellular decision-making process such as cell
growth, survival, migration, and differentiation,” essential for
embryonic development and for maintaining the integrity of
tissue architecture in adults.>” Dependent on adhesion, some
CAMs can initiate the formation of complexes composed of
extracellular ligands, kinases, and cytoskeletal proteins.® Abnormal
expression of CAMs can cause various diseases, such as cancer and
inflammatory disorders.>'®

There are three forms of CD146 proteins in human, mouse, and
chicken. The two membrane-anchored forms of CD146 are
encoded by cd146 gene and soluble form of CD146 (sCD146)
is generated by the proteolytic cleavage of the membrane
forms.”'"® Soluble CD146 can be detected in cell culture
supernatants, serum, and interstitial fluids from either healthy
or unhealthy subjects.'*'® Because sCD146 does not have either
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transmembrane or cytoplasmic regions, it is not competent in
cellular adhesion.'”'® Therefore, we will not describe sCD146, its
ligands and its functions in this review, although it is a potential
target in tumor microenvironment of CD146-positive invasive
tumors.'®

Recent evidence has revealed that membrane-bound CD146
may act as a cell-surface receptor to bind with various ligands
involved in cellular signaling transduction independent of the
adhesion properties. In order to deepen the understanding of the
functions of CD146 in physiological and pathological processes,
we summarize the various newly identified ligands of CD146
and the ligand-elicited roles in signal transduction and discuss
the implications of CD146 in remodeling interactions between
the cancerous cells with the elements of their surrounding
microenvironments.

THE CD146 PROTEIN

Membrane CD146 protein has two isoforms: long form (CD146-I)
has a long cytoplasmic tail; short form (CD146-s) has a short
cytoplasmic tail."”""® These two CD146 isoforms are produced from
different exon splicing strategies and the premature molecules
have a signal peptide located on the anterior region of the amino
terminal.”® In human, mature CD146 protein is composed of an
extracellular sections with five distinct Ig-like domains that exist in
a V-V-C2-C2-C2 structural motif, a hydrophobic transmembrane
region and a short cytoplasmic tail.>’ The cytoplasmic domain in
both isoforms contains two potential recognition sites for protein
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kinases C (PKC), an ERM (protein complex of ezrin, radixin, and
moesin) binding site, a motif with microvilli extension, and a
double leucine motif for baso-lateral targeting.?' The two isoforms
co-exist as monomers and dimers and the dimerization is
mediated through a disulfide bond between cysteine residues in
the C2 domain most proximal to the membrane.?**? However, the
information about CD146 crystal structure, including secondary
and tertiary, is still lacking.

CD146 is a highly glycosylated type | transmembrane protein
and belongs to the immunoglobulin superfamily. Based on
bioinformation analysis, eight putative N-glycosylation sites are
present in the extracellular fragment across species.”® In clear cell
renal cell carcinoma and prostate cancer, CD146 glycosylation
levels were upregulated.>** In 2018, it was reported that CD146
glycosylation is favorably carried out by b-1,3-galactosyl-Oglyco-
syl-glycoprotein b-1,6-N-acetylglucosaminyltransferase-3, which
was overexpressed in highly metastatic melanomas. Such
glycosylations can extend CD146 protein stability, upregulate
CD146 protein levels, and lead to elevation of CD146-mediated
cellular motility in melanoma cells.”® These observations suggest
that the degree of CD146 glycosylation may be directly related
to malignant progression of tumors, especially CD146-positive
neoplasms.

THE EXPRESSION PROFILE OF CD146 PROTEIN

Based on literature, metazoan CD146 has been detected in
majority of cell types, including vessel constituting cells (endothe-
lium, pericyte, and smooth muscle cell), epithelia, fibroblasts,
mesenchymal stem cells, and lymphocytes, except erythrocytes.?!
Under physiological conditions, CD146 expression is restricted to
limited adult normal tissues and its adhesive strength is relatively
weak, in contrast to most other CAMs, which show wide
expression patterns in normal adult tissues and strong adhesion
strength.?'** However, CD146 expression is broadly and highly
detected in embryonic tissues compared to its abundance in
normal adult tissues.?' In quickly proliferating cells, increased
expression of CD146 may allow cells to actively interact with each
other and with the elements of the cellular microenvironment,
promoting cell proliferation, and migration.

Under pathological conditions, such as inflammation and
tumorigenesis, CD146 was upregulated in the related cells and
has been identified as a reliable marker for numerous types of
cancers. Accumulating evidence shows that CD146 overexpression
has been linked to either the initial development of the primary
lesion or progression to metastases of most of cancer types,
primarily including melanoma,"?”~%° breast,**°*' ovarian,>***
lung,*®*’ prostate,**™° glioma,*' kidney,** hepatic,**** and gastric
cancers.>'* In 2017, Nollet et al. reported that TsCD146 mAb (for
tumor specific anti-CD146 monoclonal antibody) can specifically
recognize CD146 expressed in cancer cells but not CD146 in
physiological vessels, suggesting that structural features of cancer
CD146 differ from those of physiological CD146.%®

RECOGNITION OF CD146 LIGANDS IN HISTORY

The recognition of CD146 ligands and analysis of their functions
was undertaken over a prolonged period in history. Because CD146
is highly expressed in vessel cells and cancer cells, it is likely that
CD146 within these cells contributes to cancer metastasis through
the mediation of a homophilic adhesion between cancerous cells
and vascular endothelia, a key part of the metastatic process.
However, evidence of the direct interactions between CD146 and
itself is still lacking.**™*® Accordingly, it is possible that CD146-
mediated adhesion between cancerous cells with vascular
endothelia as well as with their surrounding elements occurs
through the bidirectional heterophilic interactions between CD146
with its ligands, but not the homophilic interaction with itself.
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In 1991, the first CD146’s ligand was found using chicken
smooth muscle cells. Taniura et al. discovered that neurite
outgrowth factor (NOF) was a ligand of chicken CD146 (Gicerin)
and that binding of NOF to CD146 is essential for the
development of the chicken retina.**>° However, at that time,
due to technological limitations, the molecular characteristics of
NOF were not determined. In 2012, Laminin 411 was revealed as
the ligand of CD146, facilitating the entry of blood lymphocytes
into the central nervous system (CNS). In this report, the authors
claimed that Laminin 411 is a major tissue ligand for CD146 on
lymphocytes.®’ In 2014, Ishikawa et al. finally determined the
identity of NOF, Laminin 421, which has the same a4 subunit as
Laminin 41152

In 2012, our laboratory identified that CD146 can bind with
vascular endothelial growth factor receptor 2 (VEGFR2) as a co-
receptor required for the activation by vascular endothelial growth
factor-A (VEGF-A).>® Because VEGF-A is a well-known growth factor
with strong pro-angiogenesis effects, this finding provided the
mechanism underlying the roles of CD146 in tumor angiogenesis,
especially in sprouting stage. Subsequently, our laboratory
identified an array of pro-angiogenetic growth factors, including
Wingless/integrase (Wnt)5a,>* Netrin-1,°> fibroblast growth factor
(FGF)4,°® VEGF-C,*” and Wnt1,’® as the ligands of CD146. In 2017,
we further identified that CD146 on endothelia can directly bind
with platelet-derived growth factor receptor- (PDGFR-f) on
pericyte, required for PDGF-B-induced PDGFR-B activation.”®
Because PDGF-B/PDGFR-@ plays crucial roles in recruiting adjacent
pericytes to the endothelia, this finding indicates that CD146 is
required for vessel integrity.

Until now, there had been a total of 13 molecules or complexes
identified as the CD146 ligands (Table 1). According to the
characteristics of these ligands, they can be categorized into three
groups: components of the ECM, pro-angiogenic factor receptors,
and growth factors. All these ligands have been sown to directly
interact with CD146 in physiological and pathological processes
are involved in the promotion of CD146-mediated angiogenesis
and tumor metastasis. Here, we will review the various CD146’
heterophilic ligands and discuss the implications of these findings
in tumoral context.

CD146 IS THE RECEPTOR OF PROTEINS IN RELATION TO THE
ECM

One of the critical features of malignant proliferation is cancer
metastatic plasticity affected by its microenvironment. This
plasticity is a major reason for the failure of inhibition of cancer
metastasis. The metastatic process involves epithelial mesenchy-
mal transition (EMT), attachment of metastatic cells to the
endothelium of the vascular or lymphatic vessels, and invasion
into distant metastatic tissues.%° It is well known that the aberrant
high expression of CD146 is involved in nearly every step of
development and progression in almost all types of malignant
cancers.?! The findings that several ECM-related proteins, includ-
ing Laminin 411 and 421, Galectin-1 and -3, ST00A8/A9, and
matriptase, are specific ligands of CD146, may elucidate the
mechanism underlying the function of CD146 in remodeling
tumor microenvironments during tumor development, especially
metastasis via vascular and lymphatic vessels (Fig. 1).

Laminins 411 and 421

Laminins are a family of large heterotrimeric afy proteins with over
15 different isoforms. Five laminin a chains (a1-a5), four laminin
chains (31-34), and three laminin y chains (y1-y3) constitute afy
heterotrimers. They are denominated according to their chain
composition; for example, laminin a4f31y1 is designated as Laminin
411.°" Laminins are predominantly found in basement membranes
that compartmentalize different tissues and surround blood vessels,
nerves, and adipocytes.5>%® They play a crucial role in physiological

Signal Transduction and Targeted Therapy (2020)5:148



CD146, from a melanoma cell adhesion molecule to a signaling receptor
Wang et al.

Table 1. CD146 ligands

Ligands Function Time of discovery References
Laminin 411 Facilitates lymphocytes entry into CNS 2012 51
Laminin 421 Improves cancer metastasis via vascular and/or lymphatic vessels 2014 52
Galectin-1 Inhibits cell apoptosis 2013 107
Galectin-3 Enhances cell migration and secretion of pro-metastasis cytokines 2017 122
S100A8/A9 Helps lung tropic metastasis 2016 175
Matriptase Promotes neuron differentiation 2017 189
VEGFR2 Pro-angiogenesis 2012 3
PDGFR-f Control of vascular vessel integrity 2017 59
Wnt5a Enables cell migration 2013 54
wnt1 Promotes fibroblast activation 2018 °8
Netrin-1 Pro-angiogenesis 2015 s
FGF4 Promotes cell polarity establishment 2017 =6
VEGF-C Mediates sprouting during lymphangiogenesis 2017 57

and pathological remodeling of the ECM during angiogenesis,
wound healing, embryogenesis, and tumor metastasis. Remodeling
of the ECM during metastasis allows tumor cells to invade their
surrounding ECM, spread via the vascular or lymphatic circulation,
and extravasate into distant organs.

Laminin isoforms, particularly the laminin a chain, are expressed
in a cell and tissue specific manner and are distinctly bound by
almost ten different integrins and other cell-surface receptors.5>¢3
The a4-laminins are mesenchymal laminins expressed by the cells of
mesenchymal origin, such as vascular and lymphatic endothelial
cells, pericytes, and leukocytes, and are required for normal
development of the cardiovascular and neurological system in
mice.5*%¢ Under pathological conditions, a4-laminins are expressed
and secreted by various tumor cells, such as melanoma and
glioma,®”7? or tumor stroma, lymphatic and vascular vessels,
nervous system.®®7374

Laminin 411

Laminin 411 is expressed along the vascular endothelium.
This laminin isoform is recognized by various integrins, including
a6B1, a3p1, a6p4, and aVP3, which promote the migration of
several cell types along vascular or nervous system tracks.”®%°

In 2012, Laminin 411 on the vascular endothelia was discovered as
a specific ligand for CD146 on a subset of human CD4™ T helper (Th)
cells.>" This subset of human T cells expresses CD146 and can enter
tissues to promote pathogenic autoimmune responses. To determine
the CAMs involved in the migratory capacity of Th17 cells into tissues,
researchers used purified Laminin 411 to identify its receptor. In this
study, the authors demonstrated that purified CD146-Fc binds to
Laminin 411 with high affinity (27nM) and that this binding
disappeared when the endogenous Laminin 411 was specifically
deleted. Correspondingly, blocking this binding by CD146 antibody
in vivo also reduced Th17 lymphocyte infiltration into the CNS.
Therefore, the authors concluded that Laminin 411 is a major tissue
ligand for CD146" lymphocyte.

However, the role of Th17 cells in the pathogenesis of
malignant tumors is still remains controversial. Some studies
revealed that increased percentage of Th17 lymphocytes among
cells infiltrating ovarian cancer cells stimulate tumor progres-
sion;®" whereas other studies showed that Th17 lymphocytes have
anticancer activity and can reduce tumor growth and metastasis.®*
Therefore, the roles of CD146" Th17 cells in cancer development
may be worthy of further investigations.

68,73,75

Laminin 421
CD146 is a reliable biomarker of endothelia and is concentrated at
the intercellular junctions of endothelial cells of vessel system.?’
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Most cancer cells, including melanoma, migrate along the
abluminal sides of vascular and/or lymphatic vessels, as they
disseminate throughout the body.2* Laminin 421 is major laminins
of along the tumor-dissemination tracks (blood and lymphatic
vessels, nerves, and tumor stroma).2*-3¢

To determine the mechanism of CD146 roles in metastasis,
researchers used melanoma cells to test what laminin isoforms,
other than Laminin 411, can bind with the melanoma marker of
CD146. Therefore, they used all laminin a chains to examine the
binding affinity with human CD146 in a solid-phase ligand binding
assay.®” Finally, they found that only Laminin 421, of several
laminin isoforms, readily bound to CD146, suggesting that
Laminin 421 is a primary ligand for CD146 in melanoma.
Accordingly, a function-blocking mAb to CD146 inhibited tumor
cell migration on Laminin 421, but not on laminins 411 or 521. In
addition, this investigation determined that the identity of NOF,
previously identified as a ligand for chicken CD146 (gicerin), is
actually Laminin 421.

In this study, the authors also determined that Laminin 411 and
especially Laminin 421 are capable of stimulating migration of a
broad panel of cancer cell lines through a filter. This investigation
is consistent with the observation that the a4-laminins, including
Laminins 411 and 421, expressed and secreted by various
carcinoma cells, have already emerged as “onco-laminins.”®”~"2
Melanoma CD146 binds with Laminin 421 but not 411, whereas
lymphocyte CD146 only binds with Laminin 411; suggesting that
the epitopes of CD146 on somatic cancer cells are different from
those of CD146 on blood lymphocytes. Therefore, the infiltration
of CD146" invasive cancers into tumor-dissemination tracks is
likely dependent on the interaction between CD146 and Laminin
421, and blocking their binding may affect the efficacy of cell-cell
interactions and interfere metastasis.

Galectin-1 and -3
CD146 is a highly glycosylated junctional CAM involved in the
control of vascular vessel integrity. Sequence analysis predicts the
presence of eight putative N-glycosylation sites at residue
positions 56, 418, 449, 467, 508, 518, 527, and 544.”' It has been
estimated that 35% of the CD146 molecular mass is attributed to
glycans® The galactose residues in glycans can bind with
galectins, and such binding can be inhibited by lactose.
Galectins are a family of soluble carbohydrate-binding lectins
that modulate cell-to-cell and cell-to-ECM adhesions.2° Up to now,
15 galectins have been identified in mammals and 11 are found
in humans. Among them, Galectin-1, -3, and -9 are three best-
investigated galectins and Galectin-1 and -3 promote tumor
development, progression, and immune escape.’® Galectin-1 and
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-3 can hamper antitumor responses and are considered multi-
functional targets for cancer therapy.”"** The underlying mechan-
isms include interfering with drug efficacy/delivery or reducing
the antitumor effect of immune cells. For instance, Galectin-1
confers drug resistance via inducing the expression of multidrug
resistance protein 1, which in turn helps tumor cells to pump out
cytotoxic drugs, facilitating cancer cells to combat anticancer
drugs.”® Regarding the immunosuppressive effects of Galectin-1
and -3 on T cells, in a mouse melanoma model, targeted inhibition
of Galectin-1 enhanced T cell-mediated tumor clearance;”
Galectin-3 can neutralize glycosylated IFN-y in tumor matrices,
ablating the immune response to tumors.”> To increase overall
responsiveness of tumors to chemo- or immune-therapy, inhibi-
tors of Galectin-1%°” and -37%°° have been used in combination
with anti-CTLA-4 or anti-PD-1 to treat cancer patients in clinical
trials.

Because both CD146 and galectins are involved in the
modulation of angiogenesis, researchers hypothesized that some
galectins may be the ligands of CD146 and the interactions
between them are required for functional CD146 in angiogenesis,
as well as in cancer metastasis. To date, two galectins, 1 and 3,
have been identified as the ligands of CD146.

Galectin-1

Galectin-1 prefers to bind with the branched N-glycans of cell-
surface glycoproteins and mediates a glycosylation-dependent
angiogenesis.”’'%'% |t has been reported that increased
secretion of Galectin-1 in the ECM facilitates cancer cell
proliferation and resistance to cancer therapy in prostate
cancer'® and Kaposi's sarcoma.'®> Mechanistic investigation has
revealed that Galectin-1 can bind to N-glycans on VEGFR2 to
activate VEGF-like signaling in anti-VEGF-A refractory tumors,
promoting tumor progression. Accordingly, disruption of the
Galectin-1-N-glycan axis inhibits tumor growth by promoting
vascular remodeling.'®' This research highlights the importance of
Galectin-1 in tumor angiogenesis and cancer metastasis. However,
these studies cannot exclude the fact that other cell-surface
proteins with branched N-glycans are also involved in this
glycosylation-dependent pro-angiogenesis pathway.

Early in 2011, it was reported that the co-expression of Galectin-
1 and CD146 is required for tumor vascularization in a human
mesenchymal stem cell strain with significant angiogenic poten-
tial.'® In 2013, Jouve et al. reported that Galectin-1 binds to
CD146 on endothelial cells, facilitating cell survival.'”” In this
report, they explained that CD146 glycosylation is mainly
composed of branched N-glycans. They showed that the
interaction of CD146 with Galectin-1 is carbohydrate-mediated
using both an enzyme-linked immunosorbent assay and surface
plasmon resonance assays. In addition, they demonstrated that
the interaction between Galectin-1 and CD146 protects endothe-
lial cells against apoptosis induced by Galectin-1. Thus, it is
tempting to speculate that CD146 could be a decoy receptor for
Galectin-1, preventing the Galectin-1 from binding to pro-
apoptotic receptors.'®” However, whether this interaction affects
tumor cell survival remains unknown. In 2015, Yazawa et al. thus
further analyzed the functions of this interaction on melanoma
and found that when Galectin-1 binds to CD146, it helps maintain
intrinsic malignant features.'®® The authors examined the expres-
sion, identity, and function of Galectin-1 ligands in melanoma
progression and demonstrated that CD146 is the major Galectin-1
ligand on melanoma cells.

These findings provide a perspective on the interactions
between CD146 and its ligands, such as Galectin-1, as contributors
to cancer malignancy. Indeed, various membrane glycoconjugates
have been identified as binding partners of Galectin-1 such as 31
integrins, CD2, CD3, CD4, CD43, CD45, and GM1 ganglioside. In
addition, Galectin-1 can bind to a number of ECM components in
a dose-dependent and [-galactoside-dependent manner. For
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instance, laminin and fibronectin, which are highly N-glycosylated,
interact with Galectin-1."%° Because it has been reported that
CD146 can interact with Laminin 411, Laminin 421, and (1
integrin, it is reasonable to speculate that CD146 may also interact
with all of those Galectin-1 interactors within cancerous cells.
Since the tumor vasculature is an easily accessible target for
cancer therapy, understanding how galectins influence cancer
angiogenesis is important for the translational development of
therapies intended to prevent tumor progression. Based on the
fact that VEGF-targeted therapies often fail when tumors receive
continued treatment,’'®  targeting  glycosylation-dependent
Galectin-1-receptor interactions, such as Galectin-1-CD146-
VEGFR2 may increase the efficacy of anti-VEGF treatment.

Galectin-3
Like Galectin-1, Galectin-3 can also bind to various galactose-
terminated glycans of cell-surface receptors and proteins of ECM
and is involved in many physiological and pathological processes
from cell adhesion and migration to cell activation.”"""'? In cancer
cells, it modulates cell-cell and cell-microenvironment commu-
nications, contributing to cancer development, progression, and
metastasis.''>"'?° Patients with metastatic diseases tend to have
higher concentrations of circulating Galectin-3 than those with
only localized tumors.'?' Increased circulating Galectin-3 pro-
motes blood-borne metastasis due to the interaction of Galectin-3
with receptors on vascular endothelial cells, further causing
endothelial secretion of several metastasis-promoting cytokines.
To identify the Galectin-3-binding molecules on the endothelial
cell surface, using the Galectin-3 affinity purification method,
Colomb et al. found that CD146 was the major cell-surface
receptor to strongly bind and co-localize with Galectin-3,
compared with other glycosylated receptors, CD31, CD144, and
CD106. They also showed that Galectin-3 bound to N-linked
glycans on CD146 and induced CD146 dimerization and
subsequent activation of protein kinase B (AKT) signaling.
Correspondingly, suppression of CD146 expression abolishes
Galectin-3-induced secretion of metastasis-promoting cytokine
from the endothelial cells. Thus, they concluded that CD146 is the
functional Galectin-3-binding receptor on the endothelial cell
surface responsible for Galectin-3-induced secretion of cytokines,
and therefore influences cancer progression and metastasis.'>
Subsequently, the binding moieties of CD146 by Galectin-3
have been further identified. The authors demonstrated that
Galectin-3 interacts with the highly glycosylated Domain 5 in the
CD146 extracellular fragment regardless of the presence or
absence of lactose. These findings provide a better understanding
of how Galectin-3 interacts with cell-surface receptors to mediate
endothelial cell migration and the secretion of cytokines.'?3'4
The endothelial galectins are confined to four family members,
i.e, Galectin-1, -3, -8, and -9, which contribute to tumor
angiogenesis.”> Tumor-induced angiogenesis is a pathologic
condition in which tumor cells secrete growth factors, such as
VEGFs, to promote the growth of new blood vessels.'*>"?° These
growth factors activate quiescent endothelial cells in host tissue to
facilitate them to invade into the tumor stroma for growth of new
capillaries."?” Endothelial galectins binding with glycoconjugates
on tumors are involved in different processes during tumor-
induced angiogenesis. Because Galectin-1 and -3 binding of
glycoconjugates on tumor cells mediates many key processes in
angiogenesis and elevated levels of Galectin-1 and -3 in the
endothelium are correlated with tumor vascularization,'?>'28-131
the promotion of tumor vascular remodeling by tumor CD146 may
be due to the interactions between CD146 with Galectin-1 and -3.

ST00A8/A9

S100 proteins.
S100 protein family,
motifs and are 100% soluble in saturated ammonium sulfate.’

In humans, there are at least 21 members of the

32 which have 2 EF-hand caIcium-bindinsg
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S100 family members typically form homodimers, as well as
heterodimers, trimers and tetramers, etc.’>*'** $100 proteins are
typically cytoplasmic proteins, but several family members are
secreted by cells as extracellular factors.'**'3” Thus, they
contribute to a broad array of intracellular and extracellular
functions.’**'> Upregulation of $100 proteins promotes pro-
inflammatory responses that contribute to the development and
progression of cancer and autoimmune and chronic inflammatory
diseases.'37 14!

The secreted S100 proteins bind with several cell-surface
receptors, including advanced glycation end products
(RAGE),"**7'*¢ toll-like receptor 4 (TLR4),'*” CD36,'*® FGFR1,'*
ALCAM,™° cD68,">" and ErbB4.">? However, how the cell-surface
receptors mediate extracellular S100 signaling is lacking and how
S100 protein secretion is dynamically regulated in biological
processes also still remains unknown.

ST00A8/A9 heterodimer. The secreted ST00A8/A9 proteins are the
best characterized soluble S100 proteins. Most inflammatory
processes seem to require the release of the S100A8/A9
heterodimer into the ECM.'®37'*> Significant upregulation of
S100A8/A9 has been observed in many tumors, including lung,
gastric, esophageal, colon, pancreatic, bladder, ovarian, thyroid,
breast, and skin cancers.'”®">” The upregulation of S100A8/A9 is
caused either by the infiltrating immune cells of tumor
microenvironment'>® or by the tumor itself,"**'>” contributing
to the establishment of a pre-metastatic niche in the tumor
microenvironment.'>®

Mechanistic investigations demonstrated that upregulated
S100A8/A9 induces the expression of serum amyloid 3, which in
turn recruits myeloid-derived suppressor cell (MDSC), producing a
pro-inflammatory environment during metastasis of aggressive
disease.'®*"%” In addition, enhanced expression of ST00A8/A9 is
also associated with poor prognosis.'®®

S100A8/A9 proteins mediate these effects by binding to plasma
membrane elements, including heparan sulfate proteoglycan
(HSPG),"®® N-glycans,'”® TLR4,"" and RAGE."”*>'”3 In a melanoma
lung metastasis model, Hiratsuka et al. clearly demonstrated that
lung S100A8/A9, as a strong chemokine, interacts with TLR4 on
melanoma to attract distant cancer cells to the lungs.'’* Recently,
it has also been shown that CD146, on melanoma and breast
cancer, can respond to lung S100A8/A9 to induce lung-specific
metastasis of melanoma'’>'”® and breast cancer.'”’

S100A8/A9 as the ligand of CD146. The expression levels of
S100A8 and S100A9 were higher in the lungs than in other organs
and the higher expression levels were induced by the primary
tumor itself.'®? In lung-associated MDSC and endothelial cells,
tumor-derived transforming growth factor-beta (TGF-f) and VEGF-
A can upregulate the expression and secretion of S100A8/A9.'6?
Thus, it has been recognized that STO0A8/A9 plays a critical role in
lung tropic metastasis and the subsequent growth of cancer cells
in the lungs.2®'”® During metastasis, lung ST00A8/A9 might act as
a guiding protein for cancer cells that possess high expression
levels of CD146.'%?

In 2016, Ruma et al. revealed that STO0A8/A9 uses CD146 as a
receptor during lung-specific metastasis of melanoma cells.'”® In this
study, they demonstrated that ST100A8/A9 binding to CD146
activates nuclear factor-kappa B (NF-kB) and induces reactive oxygen
species formation, significantly increasing cell adhesion, growth, and
invasion. Notably, this study proposed that CD146 governs cancer
invasion toward the lungs by sensing the cancer microenvironment
as a soil sensor receptor of lung S100A8/A9."”® Therefore, the authors
conclude that S100A8/A9 plays a crucial role in lung tropic cancer
metastasis by helping to establish an immunosuppressive metastatic
niche, to which it then attracts remote cancer cells by interacting
with CD146 on the cancer cell surfaces.

In 2019, Chen et al. further determined the importance of the
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S100A8/A9-CD146 axis in melanoma dissemination in a skin
lesion, a critical early step for metastasis of melanoma. This
mechanistic study revealed that S100A8/A9-CD146 binding
activates a cascade of functions; it leads to significant activation
of the transcription factor, ETS translocation variant 4 (ETV4), and
the subsequent induction of matrix metalloproteinase-25. The
activation of MAP3K8/ETV4 by S100A8/A9-CD146 binding finally
results in lung tropic metastasis of melanoma.'”®

Breast cancer cells prefer the lung, liver, bone, and brain as
their metastatic sites. This organ-tropic metastasis is known as
the “seed and soil” theory.'”® This conclusion was reached
because CD146 was remarkably overexpressed in metastatic
breast cancer cells.’®82 |n 2019, in breast cancer cells, the
S100A8/A9-CD146 axis-elicited downstream signals that produce
the driving force for distant metastasis were identified. This study
revealed how S100A8/A9 binding to CD146 accelerates breast
cancer growth and metastasis. They found that ST00A8/A9 acts
as an extracellular cytokine to activate the CD146/ETV4 axis,
which upregulates a very high level of ZEB1, a strong EMT
inducer. ZEB1 in turn induced a mobile phenotype, i.e., EMT in
cells. In contrast, the downregulation of CD146/ETV4 axis
repressed S100A8/A9-induced EMT, resulting in greatly wea-
kened tumor growth and lung metastasis. Thus, this report
suggested that S100A8/A9 contributes to these signaling
processes through CD146."””

Since metastasis accounts for the majority of cancer-associated
deaths, studies on metastasis mechanisms are needed to establish
innovative strategies for cancer treatments. These findings that
CD146, as a novel receptor for ST00A8/A9, mediates the transition
of malignant cancers to metastatic sites, suggest that strategies
modulating the interaction between CD146 and S100A8/A9 may
be useful for interference with cancer metastasis, especially in the
progression of pre-metastatic tumors to the lungs.

Matriptase

Matriptase is an epithelial-specific membrane-anchored serine
protease that proteolytically degrades targets, such as ECM
components and the pro-forms of growth factors.'®~'8 Because
most of solid tumors are originated from epithelia, matriptase is
thus critically involved in cancer invasive growth through
degradation events related to breaching the basement mem-
brane, reorganization of the ECM, and activation of oncogenic
signaling pathways.'®’”

During neurogenesis, matriptase, expressed on neural stem/
progenitor (NS/P), plays a critical role in cell-contact signaling
between NS/P and brain endothelial cells.'®® In 2017, the direct
binding between brain endothelial CD146 and NS/P matriptase, was
identified to be involved in the direct endothelia-NS/P contact.'®
Such binding can activate the downstream signaling cascades from
CD146, including p38 and canonical Wnt/B-catenin pathways in
endothelia, leading to secretion of cytokines and chemokines. These
factors in turn act on NS/P cells to induce differentiation and
migration for the adequate neurogenesis. Consistently, none of
these signaling events occurred when either matriptase or CD146 is
deleted. Thus, this study suggests that CD146, expressed on stromal
cells in tumor microenvironment, plays essential roles in tumor
invasion by interaction with matriptase expressed on invading
cancer cells originated from epithelia.

Recent years, matriptase has received considerable attention in
the field of cancer research, because it is upregulated in many
cancers and is required for the degradation of the ECM and the
maturation of a variety of oncogenic pro-growth factors.'®* Mice
with reduced levels of matriptase display a significant delay in
oncogene-induced mammary tumor formation and growth.'?'®"
Therefore, interference of the interaction between CD146 on
stromal cells and matriptase on cancers is a reasonable strategy to
turn off the signaling pathway and invasive responses in cancers,
especially epithelia-originated neoplasms.
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CD146 IS THE CO-RECEPTOR OF PRO-ANGIOGENIC FACTOR
RECEPTORS

Angiogenesis refers to the physiological process by which new
blood vessels are formed from preexisting blood vessels. This
highly ordered process relies on extensive signaling networks
both among and within endothelial cells, their associated
mural cells (vascular smooth muscle cells and pericytes) and
other cell types (e.g., immune cells). VEGF-A is the principal
mediator of angiogenesis and contributes to the formation of a
pioneering tip cells of angiogenic sprouts.®> With further
vessel maturation, endothelial cells-secreted platelet-derived
growth factor (PDGF)-B is the major player for recruitment of
adjacent pericytes and vascular smooth muscle cells to the
endothelial surface.”®>'?* We found that CD146 can directly
interact with VEGFR2>®> and PDGFR-B'®® to promote tumor
angiogenesis and cerebrovascular development, respectively
(Fig. 2).

CD146 as the co-receptor for VEGFR2 in tumor angiogenesis
There are five members of the human VEGF family: VEGF-A, -B, -C,
-D and placental growth factor (PIGF)."”®'®” VEGF-A is the best
characterized family member and the most potent stimulator of
angiogenic processes.'”> VEGF-A has at least nine different
splicing forms with different binding affinities within its receptors
and ECM components.'®® VEGF-A is secreted by many cell types,
such as endothelial cells,'*2?% fibroblasts,®®' smooth muscle
cells,*®? platelets,>*® neutrophils,>** macrophages, and ~60% of all
tumors.”®> VEGF-A secretion is induced by ischemia and inflam-
matory stimuli.2°® Cellular responses to VEGF-A are mainly driven
by their binding to its cognate receptors—the VEGFRs.

VEGFRs belong to the class IV receptor tyrosine kinase family
and are expressed by endothelial cells, macrophages, hemato-
poietic cells and smooth muscle cells.?®’2' In humans, there are
three VEGFR subtypes, which are encoded by separate genes:
VEGFR1 (FLT1), VEGFR2 (KDR), and VEGFR3 (FLT4). Among them,
VEGFR1 and VEGFR2 show high structural similarity.'”®?'" In
endothelial cells, VEGFR2, but not VEGFR1, mediates the full range
of VEGF responses.?'>2"3

VEGFR2 activation leads to distinct activation patterns, including
proliferation via mitogen activated protein kinase (MAPK),2'* cell
migration via phosphoinositide-specific phospholipase C (PLC)-
v>"> and focal adhesion kinase (FAK)>'®*'” and cell survival
through phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/
AKT.2" In addition, VEGFR2 interaction with its co-receptors is
essential for its functions. Till now, the well-established VEGFR2
co-receptors include Neuropilin-1, CD44, vascular endothelial
cadherin, and B integrins.?'® Although the exact molecular
mechanisms of how VEGFR2 induces diverging downstream
signals have not been completely understood, ligand diversity
and availability as well as interactions with co-receptors might
explain most of these effects.

Similar to the functions of VEGFR2 in endothelia, CD146 also
contributes to endothelial cell proliferation, migration, and
angiogenesis.??°~2?2 Different from VEGFR2 with kinase activity,
CD146 does not show any kinase activity. But similarly to VEGFR2,
CD146 also can activate numerous signaling pathways, known as
the downstream cascades of VEGFR2, such as focal adhesion
formation mediated by FAK,'* cell migration mediated by PLC-y,"*
ceIIDs4urvivaI through PI3K/AKT,*?* proliferation via MAPK and NF-
KB.

In 2012, we found that CD146 interacts with VEGFR2 on
endothelia and acts as a co-receptor.>® This interaction occurs in
the extracellular protein domain of CD146 independently of VEGF-
A. When CD146 was inhibited using the blocking antibody AA98
or CD146 siRNA, VEGF-A induced phosphorylation of VEGFR2 was
suppressed in human umbilical vein endothelial cells (HUVECs),
demonstrating that the interplay of CD146 with VEGFR2 is
mandatory for functional VEGFR2 signaling.
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In addition to the extracellular binding of CD146 to VEGFR2,
intracellular CD146 signaling is also required for VEGF-A-induced
signal transduction via VEGFR2. When associated with VEGFR2, the
cytoplasmic tail of CD146 recruited ERM proteins and the actin
cytoskeleton, to assemble a “signalosome,” which is required for
signal transduction from VEGFR2 to AKT and P38 MAPK. Inhibition
of CD146 by blocking antibody AA98 hinders the interaction
between VEGFR2 and CD146, resulting in abrogation of the
downstream cascade of p38 MAPK and AKT signaling. Therefore,
our study revealed that the interaction of CD146 with VEGFR2
improves pro-angiogenesis signaling as part of such a signalo-
some in which CD146 binding to VEGFR2 enables the reorganiza-
tion of the cytoskeletal network during angiogenesis.

Using a preclinical pancreas carcinoma xenograft model, we
found that the efficacy of combined treatment with the anti-VEGF
antibody Bevacizumab and the anti-CD146 antibody AA98 was
significantly higher than treatment with either one of the two
agents. The clinical benefit from VEGF-targeted therapies is always
compromised during continued treatment with anti-VEGF anti-
bodies, such as Bevacizumab in pancreatic carcinoma.''??2>22¢
Thus, our findings indicate the possibility that the clinical efficacy
of anti-VEGF therapy can be augmented by targeting CD146
treatment in the future.

Several mechanisms by which tumor angiogenesis may proceed
in the presence of anti-VEGF have been identified. For example,
pro-inflammatory cytokines and Galectin-1 produced from tumors
activate VEGF-like pro-angiogenic pathways.'®'?*” Based on our
findings, we speculate that the interaction between CD146 and
VEGFR2 might also underlie the mechanisms of anti-VEGF
treatment failure. Thus, in the future, investigating the interaction
network of Galectin-1, CD146, and VEGFR2 will be necessary for a
better understanding of the mechanisms underlying the angio-
genesis and metastasis of carcinoma.

CD146 as the co-receptor of PDGFR-B in vessel integrity

PDGF family members, including PDGF-A, -B, -C, and -D, play a
crucial role in embryologic development based on the fact that all
PDGF knockout mice are embryonic lethal. Similar to VEGFs, all
PDGFs are dimers of disulfide-linked polypeptide chains.??® In the
mouse embryo, PDGF-B is strongly expressed in the developing
vascular endothelium,?? tip cells of angiogenic sprouts, and in the
endothelia of growing arteries, where pericytes are actively
recruited.*>%*' During angiogenesis, PDGF-BB released from
endothelial cells promotes the recruitment of adjacent pericytes
to the endothelial surface.'®>'%*

Both PDGFs and their receptors (PDGFR-a and -B) are implicated
in tumor angiogenesis and lymphangiogenesis.**>3> PDGF-AA
and PDGF-CC mainly bind to PDGFR-a, whereas PDGF-BB binds to
PDGFR-B.%>® PDGFR-B is expressed in the mesenchyme, particu-
larly in vascular smooth muscle cells and pericytes.*%**” PDGF-
BB/PDGFR-B signaling elicits several well-characterized signaling
cascades, such as Ras-MAPK, PI3K, and PLC-y. The PDGFR-B-Ras-
MAPK cascade leads to the stimulation of cell proliferation,
differentiation, and migration.”**?*° The PDGFR-B-PI3K branch
promotes cell growth and cytoskeletal reorganizations.?*® PDGFR-
B-PLC-y activates intracellular Ca*" mobilization, stimulating Ca®
*-dependent secondary signaling, such as tube formation and cell
motility.?*'**? In addition, in adult mice, PDGF-BB/PDGFR-3
signaling exerts a neuroprotective function by the recruitment
of pericytes.?*®

In 2017, we revealed that CD146 controls pericyte recruitment
and vessel stabilization through interactions with PDGFR-8 to
protect the CNS.*° First, we extensively examined the expression
patterns of CD146 in brain endothelial cells and pericytes
throughout development and adulthood. In mouse brains,
CD146 is first expressed in the cerebrovascular endothelial cells
of premature blood vessels without pericyte coverage; with
increased coverage of pericytes, CD146 could not be detected in
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cerebrovascular endothelial cells, it could only be found in
pericytes. Furthermore, we studied the role of CD146 in
endothelial-pericyte communication through its selective deletion
in both cell types. We found that a knockdown in either cell type
leads to the breakdown of the blood-brain barrier (BBB), which
initiates the invasion of the endothelial cells toward the CNS and
the recruitment of pericytes to the nascent vessels during
embryogenesis. Furthermore, we demonstrated that CD146
functions as a co-receptor of PDGFR-B to mediate pericyte
recruitment to cerebrovascular endothelial cells, indicating that
pericyte CD146 was important for pericyte recruitment and vessel
stabilization. The attached pericytes in turn downregulate
endothelial CD146 by secreting TGF-B1 to promote further BBB
maturation.

Because both CD146 and PDGFR-f are involved in regulation of
growth and survival of different cell types, including cancer cells,
further investigation of functions of CD146 and PDGFR-f
interaction in cancers may help deeply understand the dysregula-
tion of spatio-temporally controlled PDGF-BB induced signaling
during tumor development and progression, especially tumor
angiogenesis and lymphangiogenesis.

CD146 IS THE RECEPTOR FOR GROWTH FACTORS

Interestingly, all the ligands identified by our laboratory are well-
known growth factors and mitogens, which include Wnt5a, Wnt1,
Netrin-1, FGF4, and VEGF-C. These ligands and their cognate
receptors are not only involved in almost all cellular processes
required for embryogenesis, development, and adult life, but also
effective targets for numerous anticancer treatments (Fig. 2).

CD146 as the receptor of VEGF-C in lymphangiogenesis

VEGF-C belongs to the VEGF family.'®”-*** Different from VEGF-A in
angiogenesis, VEGF-C is the principal driver of lymphangiogenesis
and controls the whole process of lymphangiogenesis.*>~24
Genetic studies in mice have revealed that loss of VEGF-C impairs
the development of the lymphatic vasculature.*”?*® On the other
hand, overexpression of VEGF-C in specific tissues induces in situ
lymphangiogenesis, such as in the skin,2**?*° pancreas,®®' and
lung.*?

Full-length VEGF-C undergoes proteolytic processing and
becomes a fully processed form, which increases its affinity for
VEGFR2 and VEGFR3.2°*%** VEGF-C regulation of proliferation and
migration of lymphatic endothelial cells is mainly through binding
with VEGFR3.>>"%*7 VEGF-C/VEGFR3 activates the ERK-MAPK and
PI3K/AKT pathways and enhances diverse physiological effects in
lymphatic endothelial cells, such as growth, proliferation, mobility,
and invasiveness. Therefore, the signaling axis of VEGF-C/VEGFR3
is under extremely sophisticated control.*®%° However, the
receptors that mediate VEGF-C signal transduction for lymphatic
sprouting, the initiating step of lymphangiogenesis, remain
elusive.

In 2017, we found that VEGF-C is also the ligand of CD146 and
the binding site exists between D4 and D5 domains of the
extracellular domain of CD146.>” VEGF-C activates CD146 to
mediate sprouting during lymphangiogenesis, although the exact
amino acid residues in the intracellular domains of CD146
responsible for transmitting VEGF-C signals still need to be
defined. Using a zebrafish model, we discovered why CD146 is
required for the lymphatic sprouting during development.
Knockdown of CD146 inhibited phosphorylation of p38 and ERK,
while knockdown of VEGFR3 inhibited phosphorylation of AKT and
ERK. Furthermore, we confirmed that inhibition of p38 mainly
reduced sprouting of lymphatic endothelial cells during
lymphangiogenesis.
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Maladjustment of VEGF-C-elicited signaling results in tumor
metastasis, especially via lymphatic vessels.?®'>%> Lymphatic
metastasis is a challenge for clinical treatment of tumors and is
the cause of death for some cancers®®?®” such as breast
cancer,”®® lung cancer,”® and melanoma.?’® Soluble VEGFR3,%""%"2
VEGF-C inhibitor,””> VEGFR3 antibodies,”’* and VEGF-C siRNA*"
have been used in the treatment of lymphatic metastasis. Our
findings suggest that targeting CD146 may also be an effective
therapeutic strategy to treat lymphatic metastasis.

CD146 as the receptor of Wnt5a in cell migration

The Wnt family includes several secreted glycoproteins that are
involved in the regulation of a wide variety of normal and
pathological processes, including embryogenesis, differentiation,
and tumorigenesis.’’® In human, there are 19 wnt genes that
encode functionally distinct Wnt proteins, which can bind to their
receptors, FZD/LRP heterodimers. Wnt signaling pathways include
canonical and non-canonical cascades. The canonical pathway
causes stabilization and nuclear translocation of 3-catenin, which
regulates transcription of Wnt target genes. The non-canonical
pathway is B-catenin-independent and can be further divided into
Whnt/planar cell polarity (PCP), Wnt/Ror2, and Wnt/Ca®" signaling
cascades.””” The PCP pathway is activated by c-Jun N-terminal
kinases (JNKs).2”8

Wnt5a transmits signals through either canonical or non-
canonical Wnt pathway.?’*?%° In 2013, we found that CD146 is
the receptor of Wnt5a and is required for the Wnt5a-controlled
cell migration and convergent extension during zebrafish
embryogenesis.>* The biochemical experiments revealed that
CD146 binds to Wnt5a with the high affinity, leading to activation
of JNK-PCP pathway and downregulation of B-catenin expres-
sion.>* Further analysis demonstrated that CD146 can interact with
Dvl2, and this interaction is enhanced under Wnt5a treatment.
Accordingly, knockout of CD146 results in dysregulation of the
Wnt/PCP pathway. Thus, our findings provide the first direct
evidence that CD146 turns on the non-canonical Wnt signaling
branch as a functional Wnt5a receptor in cell migration during
development.

Whnt5a is upregulated in various types of human cancers.
Meanwhile, Wnt5a activation of JNK is linked with c%/toskeletal
remodeling and cell motility in various cell systems.*®372%> For
example, in melanoma, Wnt5a is thought to directly affect cell
motility and metastasis.”®® In this view, CD146 may represent the
prime target to develop more effective and less toxic therapies
toward Wnt5a/CD146/INK activation for meeting the challenges
from tumor metastasis.

281,282

CD146 as the receptor of Wnt1 in fibroblast activation

Whnt1, originally known as oncogene int-1, was initially discovered
by analysis of host cell sequences adjacent to viral integration
sites in tumors of mice infected with mouse mammary tumor
virus.22288 sybsequent evidence suggests that the oncogenic
functions of Wnt1 is mediated via upregulation of proliferative
genes by canonical B-catenin pathway.

Similar with CD146, Wnt1 protein expression levels are high at
developmental stage and low in adults, and ectopic expression of
Wntl causes tumor development.?®® In 2018, we found that
CD146 can directly bind with Wnt1 in fibroblast, activating
fibroblast via canonical Wnt/B-catenin pathway. Such interaction
is essential for Wntl-induced fibroblast proliferation and ECM
production.®®

Because cancer-associated fibroblasts (CAFs), as the main cellular
constituent of the cancer-associated stroma, can drive cancer cell
invasion but can also impair the migration and activation of T cells.
Herein, researchers should further examine whether CD146 is a
marker of CAFs, and if so, inhibiting the interaction of CD146 with
Wnt1 on CAFs may benefit cancer treatment.
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CD146 as the receptor of Netrin-1 in angiogenesis

Netrin-1 belongs to a family of Laminin related secreted proteins
that control axonal and cellular migration during the development
of the nervous system.?*>"2% Netrin-1 is a 640 amino acid protein
and its carboxy-terminal sequence is enriched in basic amino
acids.>**2% This sequence can bind HSPGs with high affinity,
contributing to retaining them in the ECM.?” Netrin-1 is not only
expressed in the nervous system but also in other non-neuronal
organs. 22929129 |t requlates diverse processes, such as neuronal
navigation, cellular adhesion, motility, proliferation, and differ-
entiation during development.?*®73°? Dysregulation of Netrin-1 is
involved in diverse pathological processes, such as cancer,
cardiovascular disease, and kidney disease, making it an attractive

. . 301,303,304

potential therapeutic target.

Netrin-1 acts through two main receptors, DCC (deleted in
colorectal cancer) and UNC5B (uncoordinated-5 homolog), to
alter the architecture of the cytoskeleton networks.>>3° Binding
to its receptors activates chemotropic responses and adhesive
mechanisms, regulating inflammation, angiogenesis, and
apoptosis.299'3m'3°2

Our laboratory clarified that netrin-1 binds CD146 with a higher
affinity than the classical UNC5B receptor.> Netrin-1 preferentially
binds CD146 at low concentrations (50-200 ng/mL) and binds
UNC5B at high concentrations (1000-2000 ng/mL). In addition, our
study demonstrated the dual action of Netrin-1 on angiogenesis:
the pro-angiogenic roles through CD146 and the antiangiogenic
functions through UNC5B. CD146 silencing or deletion inhibits
Netrin-1-induced HUVEC proliferation, migration, and tube forma-
tion, as well as VEGFR2, p38, and extracellular regulated MAP
kinase (ERK)1/2 activation. In contrast, Netrin-1 binding with
UNC5B at high concentrations triggers signals that counteract the
CD146-mediated pro-angiogenic pathway. CD146 can also interact
with VEGFR2 as a co-receptor;”® because of this, CD146-Netrin-1
binding may further improve VEGF-A signaling-mediated
angiogenesis.

Thus, this finding highlights the importance of CD146 in Netrin-
1-induced angiogenesis, although other factors are also likely
contributors in the absence of CD146.3% Similarly to CD146,
Netrin-1 also takes part in tumor growth, these properties of
Netrin-1 in cancer offer reasonable therapeutic approaches.
Therefore, preclinical and clinical studies should be planned to
investigate the therapeutic potential of the Netrin-1/CD146
pathway in tumor angiogenesis.

CD146 as the receptor of FGF4 in apical-basal polarization

FGFs were initially recognized as fibroblast-specific growth factors,
and it is now recognized that FGFs regulate multiple biological
functions in diverse cell types beyond fibroblasts. FGFs constitute
a large family with 23 members,**” which share sequences and
structural similarities.3®® These factors include paracrine or
endocrine forms and participate in important pathophysiological
processes such as cell proliferation, survival, migration, angiogen-
esis, wound healing, differentiation, and endocrine secretion
regulation during development and adult life.3°°=3""

Among FGFs, only FGF4 and eight have been revealed to
possess the chemotactic activity and FGF4 acts as a chemo-
attractant during morphogenesis.>'> FGF4 belongs to the para-
crine FGFs that signal FGFRs by forming a tripartite complex with
FGFRs (1-4) and HSPGs2'® Although extensive investigations
focus on the FGF signaling, there has been no indication that FGF
ligands can bind with other receptors beyond FGFRs. Meanwhile,
no direct evidence has indicated that any one of the FGFRs
mediates the FGF4-elicited chemo-attracting activities.

The chief intracellular substrates of FGF signaling are FGF
receptor substrate 2 (FRS2) and PLC-y. Activated FRS2 activates the
transcription factors of activator protein 1 (AP-1) and forkhead box
protein O (FOXO) through RAS-ERK or the PI3K-pyruvate
dehydrogenase kinase pathway, respectively, whereas PLCy leads
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to the activation of Ca>"-dependent nuclear factor of activated
T cells (NFAT).3"® There are several points where other pathways
can cross-talk with FGF signaling, for instance, activated JNK is
required for AP-1 activation and FOXO nuclear translocation.®'

In 2017, we found that CD146 is an independent receptor of
FGF4.>® The binding affinity between CD146 and FGF4 is higher
than that between FGF4 with its receptors (FGFR1-4). In addition,
the presence of HSPG is not required for the binding of FGF4 to
CD146. Using zebrafish as the model system, we found that CD146,
but not FGFR, is the responsive receptor for FGF4. It provided local
spatial cues to organize apical-basal polarity in participating cells
during morphogenesis. An in vitro lumen formation assay further
confirmed the migration of CD146, but not FGFR1, toward FGF4 as
the key activity during FGF4-induced establishment of the apical-
basal polarity. By investigating the effects of CD146 on FGF
signaling output, we found that the cooperative actions between
CD146-dependent activation of JNK and NFAT together with FGF
signaling-dependent activation of ERK ensure that CD146" cells
concomitantly upregulate the transcriptional activity of AP-1 and
NFAT during organ morphogenesis.

Thus, our findings suggest the essential roles of CD146 in FGF4-
elicited morphogenetic signaling. In light of the coincident
spatiotemporal distribution of CD146/FGF4 on developmental
embryos, CD146 may be a more preferable receptor in FGF4
biological responses than FGFRs. The cooperation of CD146/FGF4
in cell polarity establishment suggests that CD146 could be the
genuine responsive receptor in all of FGF4-executed chemo-
attracting actions. Because FGF4 possesses the potent pro-
angiogenetic activity and fails to bind heparan sulfate in the
heart and blood vessels,*'* it is possible that CD146-FGF4 is also a
critical partner in angiogenesis. For this reason, in the therapeutic
regimes of pathological angiogenesis, simultaneous targeting of
both CD146 and FGF4 could have better efficacy than settings
with that singular target either.

CONCLUSIONS

Overall, CD146 expression is frequently increased in fast-
proliferating cells, such as cells in their developmental stages
and cancer cells.?' From the functional perspective of CD146 as a
CAM, upregulation of CD146 expression enhances the interac-
tions between CD146 and its ligands in the ECM, including
Laminin 411, Laminin 421, Galectin-1, Galectin-3, STO0A8/A9, and
matriptase, shifting the balance between cell-cell and cell-matrix
adhesion while increased secretion of pro-metastatic cytokines
causes cells to invade their surrounding ECM, spread via the
vascular or lymphatic circulation, and extravasate into distant
organs. As a co-receptor of VEGFR2 and PDGFR-B, or an
independent receptor of growth factors of Wnt5a, Wnt1, Netrin-
1, FGF4, and VEGF-C, highly expressed CD146 can enhance pro-
angiogenesis signaling and promotes cell growth, proliferation,
differentiation, and survival. Therefore, these novel scenarios
highlight the importance of CD146 in proliferating cells and
facilitate a better understanding of the mechanisms and
implications of the interactions between CD146 with its ligands
in invasive growth, proliferation, and motility of cancer cells.

It has been reported that there are three blocking antibodies to
membrane CD146; ABX-MA1 raised by Bar-Eli's laboratory, AA98
raised by our laboratory, and TsCD146 raised by Blot-Chabaud’s
laboratory. They exhibit powerful inhibitory activity on membrane
CD146's function. ABX-MA1 can effectively decrease cell-cell
adhesion and cell invasion in vitro, as well as decrease primary
tumor growth and lung metastases in vivo.>'®3'® AA98 displays
prevailing inhibitory activity on cancer progression in various
models of tumor bearing mice.'®'*'°322 TsCD146 can specifically
recognize and internalize cancer CD146 without interfering with
physiological CD146 on vessels, suggesting great potential in
tumor diagnostic and/or therapeutic applications.”® Because of
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Fig.2 Schematic representation of CD146 as the co-receptors of growth factor receptors or growth factors. The detailed functions elicited by
the interactions between CD146 and these ligands are described in text

this, CD146-targeted immunotherapy has promising therapeutic
value in tumor treatment because manifold dose regimens of the
antibodies could be administered to the patients without
increasing the immune reaction.

Immunotherapy, including immune checkpoint blockades, has
revolutionized the field of cancer therapy in the last decades.
However, due to the inability of T cells to access the tumor
microenvironment, there are still a substantial number of patients
do not benefit from current forms of immunotherapy. Given the
various roles of CD146 in the remodeling tumor microenvironment,
immunotherapy against CD146 could provide a possibility for
overcoming this impediment. Metastasis accounts for the majority
of cancer-associated deaths, therefore establishing innovative
strategies for modulating CD146 and ligand interactions are needed
for cancer treatment in the future.
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